Neural Computation (ISSN 0899-7667) is published bimonthly (January, March, May,
July, September, and November) by The MIT Press, Cambridge, Massachusetts 03142,
Subscriptions and address changes should be addressed to MIT Press Journals, 55
Hayward Street, Cambridge, MA 02142; (617) 253-2889; e-mail: journals-orders@mit.edu.
Subscriptions are on a volume-year basis. Rates are: $65.00 for individuals, $166.00 for
institutions, $40.00 for students/retired. Outside the United States add $22.00 for
postage and handling. Canadian subscribers also add 7% GST. Current issues are
$28.00. Back issues are: $14.00 for individuals, $28.00 for institutions. Qutside the
United States add $5.00 per issue for postage a i
add 7% GST. Checks must be drawn on U.S. banks in US, funds. To be honored free,
claims for missing issues must be made immediately upon receipt of the next
published issue. Prices subject to change without notice. Postmaster: Send address
changes to Neural Computation, 55 Hayward Street, Cambridge, MA 02142,
Second-class postage paid at Boston, MA, and at additional post offices.

Please see “Information for Contributors”

at the back of this issue for information
regarding submissions.

Formatted with IXTEX by Arch

etype Publishing Inc., 15 Turtle Pointe Road, Monticello,
IL 61856. Printed in the U.S.A. i

Permission Information

Permission to photocopy articles for internal or personal use, or the internal or
personal use of specific clients, is granted by the copyright owner for users registered
with the Copyright Clearance Center (CCQC) Transactional Reporting Service, provided
that the fee of $5.00 per article-copy is paid directly to CCC, 222 Rosewood Drive,
Danvers, MA 01923. The fee code for users of the Transactio.

Advertising and Mailing List Rental

Inquiries may be addressed to the Marketing Manager, MIT Press Journals, 55
Hayward Street, Cambridge, MA 02142, (617) 253-2866; journals-info@mit.edu.

Abstracting and Indexing

Neural Computation is abstracted or indexed in: Artificial Intelligence Abstracts,
Compumath Citation Index, COMPUSCIENCE; Computer Abstracts, Current

(& ontents/Engineering, Technology, Applied Sciences, and Biology, Current Contents/Life
Sciences, Linguistics and Lan guage Behavior Abstracts, Neural Network Review, Neuroscience
Citation Index (NSCI), Psych Info/Psychology Abstracts, Referativnyi Zhurnal, Research Alert,

and Science Citation Index/SciSearch, It is also scanned by Current Opinion in
Neurobiology.

Copyright © 1994 by the Massachusetts Institute of Technology

Cover Background:

Camera lucida drawing of NADPH-D-labeled, 5-HT, and NADPH-D/5-HT DR neurons in a
coronal section of the rat brain. From “Localization of NADPH diaphorase activity in
monoaminergic neurons of the rat brain,” by Mark D. Johnson and Pokay M. Ma, appearing in
The Journal of Comparative Neurology 332:391-406 (1993). Reprinted by permission of
Wiley-Liss, Inc., a Division of John Wiley and Sons, Inc.

Cover Illustration:

Ocular dominance map based

on competitive synaptic plasticity. See Geoffrey |. Goodhill and
Harry G. Barrow, page 266.

Communicated by Steven Nowlan

ARTICLE

Hierarchical Mixtures of Experts and the EM Algorithm

Michael 1. Jordan S
Department of Brain and Cognitive Sciences, ‘ :
Maisachusetts Institute of Technology, Cambridge, MA 02139 USA

Robert A. Jacobs Thit
Department of Psychology, University of Rochester,
Rochester, NY 14627 USA

: - ; s Pl
We present a tree-structured architecture for s‘uperv'lsed l;amlu;%ix;l““e
tati‘:atical model underlying the architecture is a hlerarc. ica e
fnodel in which both the mixture coefﬁcients)anil the'mlxitsm:ec; tedpas
i i odels (GLIM’s). Learning
nents are generalized linear m ‘ : gty
ikeli s rticular, we presen
imum likelihood problem; in pa ular "
:i(ﬁl\i)l(\/laximization (EM) algorithm for ad]lustmhg thel par;;?:‘t(;:‘s 3’fh :l:h
i -line learning algor
tecture. We also develop an on : b " ‘
talr\zh;)arameters are updated incrementally. ComParatlve simulation re
sults are presented in the robot dynamics domain.

1 Introduction

F divi ¢ is a princi ith wide applicability
inci f divide-and-conquer is a principle wi ;
Eﬂiﬁ;ﬁlg&}zlsgpﬁed mathematics. Divide‘and-conglller alg(;‘rlt‘};ns\jl 3::2:\1;
dividing it into simpler problems whos .
R Sy i he complex problem. This ap-
bined to yield a solution to the complex j
CargalZIe\ (;zr: often lea)(’i to simple, elegant, and efficient algor(xjthm: uler;
fhis paper we explore a particular application of tlhe d\l/\\;édg;:xgriijceoaqnm_
inci blem of learning from examples. We
i o M e i lgorithm for the architecture, both of
k architecture and a learning algorithm |
vv:;ﬁ;ch are inspired by the philosoghy o:hdlmdae;ﬁir;ci-cgz?:f;.g sl
he statistical literature and in the ma .
divicrile-talfd-conquer approaches have become mcreasmglyl];lopul?r}.: r;[;lclﬁ
CART algorithm of Breiman et al. (1984), thelMAngez)gc;;lé vr:,\e ﬁ b
ithm of Quinlan -}
man (1991), and the ID3 algorit ‘ bt
ithms fit surfaces to data by explicitly diy
examples. These algorit L
i space i d sequence of regions, and by
ks g b ithin th egions. They have conver-
.g., constant functions) within t ese reg ; Gy
;aecr‘\ese(firies that are often orders of magnitude faster than gradient-based
neural network algorithms.

Neural Computation 6, 181-214 (1994) © 1994 Massachusetts Institute of Technology
eur: ,

182 Michael L. Jordan and Robert A. Jacobs

Although divide-and-conquer algorithms have much to recommend
them, one should be concerned about the statistical consequences of di-
viding the input space. Dividing the data can have favorable conse-
quences for the bias of an estimator, but it generally increases the vari-
ance. Consider linear regression, for example, in which the variance of
the estimates of the slope and intercept depends quadratically on the
spread of data on the x-axis. The points that are the most peripheral in
the input space are those that have the maximal effect in decreasing the
variance of the parameter estimates.

The foregoing considerations suggest that divide-and-conquer algo-
rithms generally tend to be variance-increasing algorithms. This is in-
deed the case and is particularly problematic in high-dimensional spaces
where data become exceedingly sparse (Scott 1992). One response to this
dilemma-—that adopted by CART, MARS, and ID3, and also adopted
here—is to utilize piecewise constant or piecewise linear functions. These
functions minimize variance at a cost of increased bias. We also make
use of a second variance-decreasing device; a device familiar in the neu-
ral network literature. We make use of “soft” splits of data (Bridle 1989;
Nowlan 1991; Wahba et al. 1993), allowing data to lie simultaneously in
multiple regions. This approach allows the parameters in one region to
be influenced by data in neighboring regions. CART, MARS, and 1D3 rely
on “hard” splits, which, as we remarked above, have particularly severe
effects on variance. By allowing soft splits the severe effects of lopping
off distant data can be ameliorated. We also attempt to minimize the
bias that is incurred by using piecewise linear functions, by allowing the
splits to be formed along hyperplanes at arbitrary orientations in the in-
put space. This lessens the bias due to high-order interactions among the
inputs and allows the algorithm to be insensitive to the particular choice

of coordinates used to encode the data (an improvement over methods
such as MARS and ID3, which are coordinate-dependent).

The work that we describe here makes contact with a number of
branches of statistical theory. First, as in our earlier work (Jacobs et
al. 1991), we formulate the learning problem as a mixture estimation
problem (cf. Cheeseman et al. 1988; Duda and Hart 1973; Nowlan 1991;
Redner and Walker 1984; Titterington et al. 1985). We show that the algo-
rithm that is generally employed for the unsupervised learning of mixture
parameters—the Expectation-Maximization (EM) algorithm of Dempster
et al. (1977)—can also be exploited for supervised learning. Second, we
utilize generalized linear model (GLIM) theory (McCullagh and Nelder
1983) to provide the basic statistical structure for the components of the
architecture. In particular, the “soft splits” referred to above are modeled
as multinomial logit models—a specific form of GLIM. We also show that
the algorithm developed for fitting GLIMs—the iteratively reweighted

least squares (IRLS) algorithm—can be usefully employed in our model,
in particular as the M step of the EM algorithm. Finally, we show that
these ideas can be developed in a recursive manner, yielding a tree-

i 183
Mixtures of Experts and EM Algorithm

structured approach to estimation that is reminiscent of CART, MARS,

d 1D3. ﬂ o ‘
" The remainder of the paper proceeds as follows. We first introduce

the hierarchical mixture-of-experts architecture and pr:e;er\: t(;\e hksllt;;);(;i
i i ter describing a gradient desce 2
function for the architecture. Af] . e
i d 1 learning algorithm for the architec
rithm, we develop a more powerfu ; 3 B e D
b i ial cas 1 Expectat10n~Max1mlzat10n)
that is a special case of the genera . HEZANO))
?rl;renework of pDempster et al. (1977). We also descrll_).t’a a l:!a}st 5;1L:£is
eTSiC i pOTi >ads to a particularly efficient implemen-
version of this algorithm that leads ; ESn F
tation. Both of the latter algorithms are batch lear?mg alborlthngolrri\t;};i
i ecti S -li sion of the least-squares a
final section, we present an on-line versi n ; ‘ por
that in practice agpears to be the most efficient of the algorithms that we

have studied.

2 Hierarchical Mixtures of Experts e e -

The algorithms that we discuss in this paper are superV{se«iN iﬁi;\m&%
i plicitly address the case ot regression, n
algorithms. We explicitly adc 4 omall B
i OrS e nts of R} and the output vectors are ele
input vectors are elements ot) . ; . o
()fpSR” We also consider classification models and counting m‘n?‘elb u;
whicﬁ the outputs are integer-valued. The da”ta T\)fc assunl\e)dqt(?e (())rfnt\he
countable set of paired observations X' = {(x(Yyt 111t: \:Latb of the
batch algorithms discussed below, this set is a?sm}m.ted to be finite;
-line ¢ i ;, the set may be infinite. .
case of the on-line algorithms, | :]
We propose to solve nonlinear supervised learning src;l.)tlte.‘,ms b,}; ;ille
i i ing st
idi i to a nested set of regions and fi
viding the input space in : . S s
> ds at fall in these regions. The regions ;
surfaces to the data that fall in ns. IEEIONS AVE e
ies i é ints may lie simultaneously n P
boundaries, meaning that data points | BHEOUE aiiiple
regions. The boundaries between regions are themselve§ simple param
eterized surfaces that are adjusted by the lﬁ;}n)m\g la‘légmt'lthemi,s P
[ierarchic ixture-of- ts (HME) architectur
The hierarchical mixture-of-exper . , ; il
Figure 1. The architecture is a tree in which the gating hnetworica sit ::
i ™ -, o a1 x ~
inals These networks receive the vector
the nonterminals of the tree. ce el
5 are ¢ unity at each
i ‘ ce scalar outputs that are a partition o y
input and produce scal 5.7 e,
int i e i space. The expert networks sit at the leaves ¢
oint in the input space. The exper ‘ ‘ ‘ e
Each expert produces an output vector p; for each input vgctor.etlvfl\srk
output vectors proceed up the tree, being blended by the gating n
utputs. - .
(F/;ll of the expert networks in the tree are linear with a s?ng(lje 1(')Ut§:"’:
nonlinearity. We will refer to such a network as genera{l\tjzele1 111‘33'1’)
borrowing the terminology from statistics (McCullagh and Nelder 1983).
"o simpli P sstric 'se J g -level hierarchy “\X‘()Ugh‘
o si ify the presentation, we restrict ()ulbtht'.b to a two st Bl
tr:;l) 5”’:}"1:;}’ ;\\lcl ththe algorithms that we dvscnbg, however, g}.l{\ulp\fhu n“lc[i]:l)t/h:;
(li?erarfhgspof‘arbitrarv depth. See Jordan and Xu (1993) for a recursive formalis
handles arbitrary hierarchies.

184 Michael 1. jordan and Robert A. Jacobs

Gating
Network
x T
8111 8212
Gating }—— Gating
Network Network
8211 8112
- T My M2 W2y M2 T %
Expert Expert Expert Expert
Network Network Network Network
x X X X

Figure 1: A two-level hierarchical mixture of experts. To form a deeper tree,
each expert is expanded recursively into a gating network and a set of subex-
perts.

Expert network (i, /) produces its output p; as a generalized linear func-
tion of the input x:

my = f(Ujix) 2.1)

where Uj; is a weight matrix and f is a fixed continuous nonlinearity. The
vector x is assumed to include a fixed component of one to allow for an
intercept term.

For regression problems, f(-) is generally chosen to be the identity
function (i.e., the experts are linear). For binary classification problems,
f(*) is generally taken to be the logistic function, in which case the expert
outputs are interpreted as the log odds of “success” under a Bernoulli
probability model (see below). Other models (e.g., multiway classifica-
tion, counting, rate estimation, and survival estimation) are handled by
making other choices for f(-). These models are smoothed piecewise
analogs of the corresponding GLIM models (cf. McCullagh and Nelder
1983).

Mixtures of Experts and EM Algorithm 185

The gating networks are also generalized linear. Define intermediate
variables ¢; as follows:

&=vlx (2.2)

where v; is a weight vector. Then the ith output of the top-level gating
network is the “softmax” function of the & (Bridle 1989; McCullagh and
Nelder 1983):

= (2.3)

Note that the g; are positive and sum to one for each x. They can be
interpreted as providing a “soft” partitioning of the input space.

Similarly, the gating networks at lower levels are also generalized
linear systems. Define £ij as follows:

&j = vix (2.4)
Then
efu
8jli = Z_k___eﬂ (2.5)

is the output of the jth unit in the ith gating network at the second level
of the architecture. Once again, the g;; are positive and sum to one for
each x. They can be interpreted as providing a “soft” sub-partition of the
input space nested within the partitioning providing by the higher-level
gating network.

The output vector at each nonterminal of the tree is the weighted
output of the experts below that nonterminal. That is, the output at the
ith nonterminal in the second layer of the two-level tree is

Hi= Zgjliﬂi/
j
and the output at the top level of the tree is
B=3 g

Note that both the ¢’s and the yu's depend on the input x, thus the total
output is a nonlinear function of the input.

2.1 Regression Surface. Given the definitions of the expert networks
and the gating networks, the regression surface defined by the hierarchy
Is a piecewise blend of the regression surfaces defined by the experts.
The gating networks provide a nested, “soft” partitioning of the input
space and the expert networks provide local regression surfaces within
the partition. There is overlap between neighboring regions. To under-
stand the nature of the overlap, consider a one-level hierarchy with two

186 Michael I. Jordan and Robert A. Jacobs

expert networks. In this case, the gating network has two outputs, g
and g,. The gating output g, is given by

eEl
i 2.6)
1
T Tiptawrx @.7)

which is a logistic ridge function whose orientation is determined by the
direction of the vector v, — v,. The gating output g is equal to 1—g;. For
a given x, the total output p is the convex combination g1, + g241,. This
is a weighted average of the experts, where the weights are determined
by the values of the ridge function. Along the ridge, ¢, = ¢ = 1/2,
and both experts contribute equally. Away from the ridge, one expert
or the other dominates. The amount of smoothing across the ridge is
determined by the magnitude of the vector v, — vi. If v, — v, is large,
then the ridge function becomes a sharp split and the weighted output of
the experts becomes piecewise (generalized) linear. If v,—v, is small, then
each expert contributes to a significant degree on each side of the ridge,
thereby smoothing the piecewise map. In the limit of a zero difference
vector, g1 = g, = 1/2 for all x, and the total output is the same fixed
average of the experts on both sides of the fictitious “split.”

In general, a given gating network induces a smoothed planar parti-
tioning of the input space. Lower-level gating networks induce a parti-
tion within the partition induced by higher-level gating networks. The
weights in a given gating network determine the amount of smoothing
across the partition at that particular level of resolution: large weight
vectors imply sharp changes in the regression surface across a ridge and
small weights imply a smoother surface. In the limit of zero weights in
all gating networks, the entire hierarchy reduces to a fixed average (a
linear system in the case of regression).

2.2 A Probability Model. The hierarchy can be given a probabilis-
tic interpretation. We suppose that the mechanism by which data are
generated by the environment involves a nested sequence of decisions
that terminates in a regressive process that maps x to y. The decisions
are modeled as multinomial random variables. That is, for each x, we
interpret the values g;(x,v{) as the multinomial probabilities associated
with the first decision and the 8jli(x, v}}) as the (conditional) multinomial
probabilities associated with the second decision, where the superscript
“0” refers to the “true” values of the parameters. The decisions form a
decision tree. We use a statistical model to model this decision tree; in
particular, our choice of parameterization (cf. Equations 2.2, 2.3, 2.4, and
2.5) corresponds to a multinomial logit probability model at each nonter-
minal of the tree (see Appendix B). A multinomial logit model is a special
case of a GLIM that is commonly used for “soft” multiway classification
(McCullagh and Nelder 1983). Under the multinomial logit model, we

i 187
Mixtures of Experts and EM Algorithm

interpret the gating networks as modeling the input?depenldenlt, n;urlet:
nomial probabilities associated with decisions at particular levels o

ion i 1 of the data.
olution in a tree-structured mode he ’ .
Once a particular sequence of decisions has been made, resulting in

o A SRR
a choice of regressive process (i,f), output y 18 f:\ssumgd to be sziﬁ :!)“
according to the following statistical model. First, a linear predic 7
is formed:

0L g0
"ij—wj"

The expected value of y is obtained by passing the linear predictor
through the link function f:*

= f(n5)

The output y is then chosen from a probability density P,f with mean p;;
: Si as
and “dispersion” parameter q&?, We denote the density ot y

P(y|x, 6?}-)

i > weights U ispersion
where the parameter vector 9?; includes the weights LI and the disp

0.
parameter ¢

9% = { UE{) }
4 Pjj -
We assume the density P to be a member of the expovnential faxri_lly of
densities (McCullagh and Nelder 1983). The interpr;;‘:tatlft)n (;:f th:xca ;;;el:
i ticular choice of density. ror Hle,
sion parameter depends on the par | . : .
in thg case of the n-dimensional gaussian, the dispersion parameter 15 the
: o 50 3
ovariance matrix 2j. & :
: Given these assu’rlnptions, the total probability of generatm%);1 fromm)f
is the mixture of the probabilities of generat}ng y from ea.ch o) “tl e :(())ba_
ponent densities, where the mixing proportions are multinomial p

bilities:

P(ylx,6°) = T, V) Zg”,-(x,vﬁ})[)(yh, 0,9;-) (2.8)
i J

(1] 4
! as well as the
Note that 8° includes the expert network parameters #; as

& 4 e also that we have explicitly
gating network parameters v; and vj. Note also p
" 2We utilize the neural network ¢ ; ’
convention is that the link function relates 1 to pu;

-1 :
ur f~ : : ‘ i e
A (;Noft all exponential family densities have a dispersion parameter; in particular,

Bernoulli density discussed below has no dispersion parameter.

ion in defining links. In GLIM theory, the
e :hus, ngs h(p), where h is equivalent

188 Michael 1. Jordan and Robert A. Jacobs

indicated the dependence of the probabilities g; and &jii on the input x and
on the parameters. In the remainder of the paper we drop the explicit
reference to the input and the parameters to simplify the notation:

P(ylx,6") = 3 ¢! >~ gl Pi(y) 2.9)
F

We also utilize equation 2.9 without the superscripts to refer to the prob-
ability model defined by a particular HME architecture, irrespective of
any reference to a “true” model.

2.2.1 Example (Regression). In the case of regression the probabilistic
component of the model is generally.assumed to be gaussian. Assuming
identical covariance matrices of the form o2/ for each of the experts yields
the following hierarchical probability model:

1 202)
PyIx0) = o g 28 2ogyie V00 Ml by
$ /

2.2.2 Example (Binary Classification). In binary classification problems
the output y is a discrete random variable having possible outcomes of
“failure” and “success.” The probabilistic component of the model is
generally assumed to be the Bernoulli distribution (Cox 1970). In this
case, the mean y; is the conditional probability of classifying the input
as “success.” The resulting hierarchical probability model is a mixture of
Bernoulli densities:

Plylx,0) =3¢ > gt (1 — i)'
i f

2.3 Posterior Probabilities. In developing the learning algorithms to
be presented in the remainder of the paper, it will prove useful to define
posterior probabilities associated with the nodes of the tree. The terms
“posterior” and “prior” have meaning in this context during the training
of the system. We refer to the probabilities giand g;; as prior probabilities,
because they are computed based only on the input x, without knowledge
of the corresponding target output y. A posterior probability is defined
once both the input and the target output are known. Using Bayes’ rule,
we define the posterior probabilities at the nodes of the tree as follows:

i 22 8j1iljj
_ AEJ_&L_/BQQ,H 2.10)
22i8i 22 &1iPi(y)
and
8ilii(y)
= SuPiy) @11)
TS giPy(y)

) i 189
Mixtures of Experts and EM Algorithm

We will also find it useful to define the joint posterior probability h,, the
product of h; and hyi:

0 8igiPily) (2.12)
s el

5:: .‘s’:):/ X,|,Pq(y).

This quantity is the probability that expert network (i, j) can be CpﬂSlc;lereg
to have generated the data, based on knowledge of both the inpu wem
the output. Once again, we emphasize that all of these quantities are
conditional on the input x. N ‘ A

In deeper trees, the posterior probability assoc1ated'w1th an e‘?).ert
network is simply the product of the conditional posterior probabilities
along the path from the root of the tree to that expert.

2.4 The Likelihood and a Gradient Ascent Learning Algorlth.mh‘];)f-
dan and Jacobs (1992) presented a gradient ascent learning algoll'}t m olx(‘
the hierarchical architecture. The algorithm was baseq on earllgr worf_
by Jacobs et al. (1991), who treated the pro.blem of l.earnmg in mllxturei}:1
experts architectures as a maximum 1ikehho¢.)d estimation Prqb en}. N e
log likelihood of a data set " = {(x, y) is obta)}\ed by tdku.]% the ‘1018-
of the product of N densities of the form of equation 2.9, which yields
the following log likelihood:

— =) A3
16;) = Y In Y- gt 5 g Py(y®) 10
t i j

Let us assume that the probability density P is gaus‘sian Yvith an ififsx}’tlfy
covariance matrix and that the link function is the identity. In thfs. Ldbhe,
by differentiating /(6; X') with respect to the parameters, we obfam the
following gradient ascent learning rule for the weight matrix U;:

/ 1 (Gt (el (2.14)

Al = pdY_h hy/(y pt)x

t

where p is a learning rate. The gradient ascent legrning rule for the ith
weight vector in the top-level gating network is given by

, 2.15)
v = p A~ g <
t

and the gradient ascent rule for the jth weight vector in the ith lower-level
gating network is given by
(0 Dy, (D) (2.16)
Avy = p S hO () — g x
t
Updates can also be obtained for covariance matrices (Jordan and Jacobs

1992). — .]
The algorithm given by equations 2.14, 2.15, and 2.16 is a batch learn

ing algorithm. The corresponding on-line algorithm is obtained by sim-

190 Michael I. Jordan and Robert A. Jacobs

ply dropping the summation sign and updating the parameters after each
stimulus presentation. Thus, for example,

ulgjnl) 5 ui(jt) i /)hf”h,;?(y(” o “(r))x(z)T 2.17)

is the stochastic update rule for the weights in the (i, j)th expert network
based on the fth stimulus pattern.

2.5 The EM Algorithm. In the following sections we develop a learn-
ing algorithm for the HME architecture based on the Expectation-Maxi-
mization (EM) framework of Dempster ef al. (1977). We derive an EM
algorithm for the architecture that consists of the iterative solution of a
coupled set of iteratively-reweighted least-squares problems.

The EM algorithm is a general technique for maximum likelihood

estimation. In practice EM has been applied almost exclusively to un- °

supervised learning problems. This is true of the neural network litera-
ture and machine learning literature, in which EM has appeared in the
context of clustering (Cheeseman et al. 1988; Nowlan 1991) and density
estimation (Specht 1991), as well as the statistics literature, in which ap-
plications include missing data problems (Little and Rubin 1987), mixture
density estimation (Redner and Walker 1984), and factor analysis (Demp-
ster etal. 1977). Another unsupervised learning application is the learning
problem for Hidden Markov Models, for which the Baum-Welch rees-
timation formulas are a special case of EM. There is nothing in the EM
framework that precludes its application to regression or classification
problems; however, such applications have been few.*

EM is an iterative approach to maximum likelihood estimation. Each
iteration of an EM algorithm is composed of two steps: an Estimation (F)
step and a Maximization (M) step. The M step involves the maximiza-
tion of a likelihood function that is redefined in each iteration by the E
step. If the algorithm simply increases the function during the M step,
rather than maximizing the function, then the algorithm is referred to as
a Generalized EM (GEM) algorithm. The Boltzmann learning algorithm
(Hinton and Sejnowski 1986) is a neural network example of a GEM al-
gorithm. GEM algorithms are often significantly slower to converge than
EM algorithms.

An application of EM generally begins with the observation that the
optimization of the likelihood function I(8; X') would be simplified if only
a set of additional variables, called “missing” or “hidden” variables, were
known. In this context, we refer to the observable data .\’ as the “incom-
plete data” and posit a “complete data” set Y that includes the missing
variables Z. We specify a probability model that links the fictive missing
variables to the actual data: P(y,z|x,0). The logarithm of the density P
defines the “complete-data likelihood,” 1:(6;Y). The original likelihood,

*An exception is the “switching regression” model of Quandt and Ramsey (1972).
For further discussion of switching regression, see Jordan and Xu (1993).

i 191
Mixtures of Experts and EM Algorithm

1(8; X), is referred to in this context as the ‘.’inc_omplete-dat.a hkei:htoodc.)-
It is the relationship between these two likelihood funct%cmls‘ht ad m :
tivates the EM algorithm. Note that the .comple'ete—dat'a llkffl 01(: u,n
random variable, because the missing variables Z are in fact u111 no(;vt.
An EM algorithm first finds the expected value of the conﬁp gte;ha ;
likelihood, given the observed data and the current model. This is the E

step:
Q(0,0V) = E[I.(8; V)| X]

where 8% is the value of the parameters at the pth iteration an'd.th.g
expectation is taken with respect to 8. This step yields a deterministic
function Q. The M step maximizes this function with respect to to find
the new parameter estimates 8% '"):

6%+! = arg max Q(, 6'")

The E step is then repeated to yield an improved estimate of the complete
likelihood and the process iterates. b et

An iterative stes of EM chooses a parameter value that increases the
value of Q, the expectation of the complete likelihood. What is the eftsct
of such a step on the incomplete likelihood? Dempster et 1?1: proved that
an increase in Q implies an increase in the incomplete likelihood:

1(6%); x) 2 1(87); X)

Equality obtains only at the stationary points of [(Wu 1983). Thus thc;f
likelihood ! increases monotonically along the sequence qf pax.‘am(?ter es
timates generated by an EM algorithm. In practice this implies conver-
gence to a local maximum.

2.6 Applying EM to the HME Architecture. To develQP dn bM?]lz
gorithm for the HME architecture, we must define applmp.n?jt.cm tﬂ‘\]bs‘l ri;:
data” so as to simplify the likelihood function. We delmg\m lLﬂl g:r \;ane
ables z; and z;;, such that one and only one O,f thg z; is Fqua gable;
and one and only one of the zj; is equal to one. These mdlcaﬁt.()f va‘ ks
have an interpretation as the labels thatlcor.respond to the deus]u?r}; 1ln e
probability model. We also define the 1nd1@t0r var@.ble z,",v, :\v 1;;;4:}““
product of z; and z;;. This variable has an mt"erpretah.oxj ?:lt ela):el ”
specifies the expert (the regressive process) in lhg proba 1 1;);1 m(; r. i
the labels z;, z;;, and z;; were known, then the maximum 1‘11\;1 «)(;c p;;».h
lem would decouple into a separate set Qf regression prpb en?sblor g. t:) ;
expert network and a separate set of multiway classification pio 1errt\ls i
the gating networks. These problems woul_cl be solvgd mdgpg,fu eix}e ythe
each other, yielding a rapid one-pass learning alg‘orlthm. g tl)‘g‘(?t\szl,‘)dd
missing variables are not known, but we can specify a probability

192 i
Michael L. Jordan and Robert A. Jacobs

that links them to the observable d i ili
written in terms of the z;j as follo‘zvs:a o B meal

1) LB ()
P(Y >Zij lxt ,0) - g;‘)gﬁ?Pﬁ(y(U) 2.18)

) (2
I,I l;I{gi 811 Py ™)} (2.19)

Il

using the fact that z*) is an indi i
o AC j s Icator variable. Taking the 1 i
this probability model yields the following complete-c?i;ata likoe%?;(l)?(;r'l 4

1L(6;Y) = O Il oo
Zt: ;,ZZ" In{gi"g;i Pi(y™)} (2.20)

it O (1 0)
Z,:Ei:/Zz,j {Ing;” +Ing;’ + In P;(y")} (2.21)
Note the relationship of the com a i

. plete-data likelihood i i
(tioiczl:(e) mco‘mbp&lete—data likelihood in equation 2.13 Thénues(zaugtt’lct)}?ez.iil
r variables z; has allowed the 1 i b i 4

. : i : e logarithm to be brought insi
summation signs, substantially simplifying the maximiza%ionull)srlgbeletr}:\e

We now define the E step of the E i
M i ;
of the complete-data likgihood: algorithm by taking the expectation

Q(e, 9(;))) e Ko))
22}; i {lngi + 1“8,|1 +1In P,,'(y“))} (2.22)

where we have used the fact that
Elz|¥] = P@{) =1jy®,x*, o)

(2.23)
Ply®lz) = 1,x0,0%)P(zf) = 1]x0,)
P(yWx®, gy (2.24)
t
28" 58Py [x), 6,0) 2.25)
Nl
nl (2.26)

(Note also that E[z{"|.x] = h" and E[z%t.)|X] =Ry

The M step requires maximizi ' o

aximizing Q(6,60") with respect t
: : o th -

5;;; xt;ztgv;)rzl; paran‘leters and the gating network parametgrs. Exarr:fni?\x
i 0 2.22, we see that the expert network parameters influence thg

unction only through the terms 4" In P, (y'"), and the gati
parameters influ h it ' | St oAy i
e ence the Q function only through the terms 4" In ¢ and
L Ing;’. Thus the M step reduces 4 :
tion problems:

oY = argmax Y hY ¢
j g b 4? i InPy(y") (2.27)

to the following separate maximiza-

(p+1) .
Vi = arg max l(r) (1)
s E,:;’k In gy (2.28)

Mixtures of Experts and EM Algorithm 193

and
vf}"H) = arg max YWY h,(lt,z In g}"k) (2.29)
T I

Each of these maximization problems is itself a maximum likelihood
problem. This is clearly true in the case of equation 2.27, which is simply
a weighted maximum likelihood problem in the probability density P;;.
Given our parameterization of P;, the log likelihood in equation 2.27 is
a weighted log likelihood for a GLIM. An efficient algorithm known as
iteratively reweighted least-squares (IRLS) is available to solve the maxi-
mum likelihood problem for such models (McCullagh and Nelder 1983).
We discuss IRLS in Appendix A.

Equation 2.28 involves maximizing the cross-entropy between the pos-
terior probabilities h,(‘.” and the prior probabilities gi.'). This cross-entropy
is the log likelihood associated with a multinomial logit probability model
in which the h,(f) act as the output observations (see Appendix B). Thus
the maximization in equation 2.28 is also a maximum likelihood problem
for a GLIM and can be solved using IRLS. The same is true of equa-
tion 2.29, which is a weighted maximum likelihood problem with output
observations hf'k) and observation weights g

In summary, the EM algorithm that we have obtained involves a cal-
culation of posterior probabilities in the outer loop (the E step), and the
solution of a set of IRLS problems in the inner loop (the M step). We
summarize the algorithm as follows:

Algorithm 1

1. For each data pair (x",y")), compute the posterior probabilities nY

and h}lt,) using the current values of the parameters.

2. For each expert (i,j), solve an IRLS problem with observations
{(x,y")}Y and observation weights {hf;’}ﬁ".

3. For each top-level §ating network, solve an IRLS problem with ob-
servations {(x, i)}V,

4. For each lower-level gating network, solve a weighted IRLS prob-
lem with observations {(x\", h§|2)}"1\1 and observation weights {1} }}.

5. Iterate using the updated parameter values.

2.7 A Least-Squares Algorithm. In the case of regression, in which
a gaussian probability model and an identity link function are used, the
IRLS loop for the expert networks reduces to weighted least squares,
which can be solved (in one pass) by any of the standard least-squares
algorithms (Golub and van Loan 1989). The gating networks still require
iterative processing. Suppose, however, that we fit the parameters of the

194 Michael L. Jordan and Robert A. Jacobs

gating networks using least squares rather than maximum likelihood.
In this case, we might hope to obtain an algorithm in which the gating
network parameters are fit by a one-pass algorithm. To motivate this
approach, note that we can express the IRLS problem for the gating net-
works as follows. Differentiating the cross-entropy (equation 2.28) with
respect to the parameters v; (using the fact that dg;/0¢; = gi(6;—g;), where
0; is the Kronecker delta) and setting the derivatives to zero yields the
following equations:

S — gi(x, vi))x® = 0 (2.30)

t

which are a coupled set of equations that must be solved for each i.

Similarly, for each gating network at the second level of the tree, we
obtain the following equations:

bB L (h;f;) ~ &l v = 0 (2.31)
t

which must be solved for each i and j. There is one aspect of these
equations that renders them unusual. Recall that if the labels zf” and z;",’
were known, then the gating networks would be essentially solving a
set of multiway classification problems. The supervised errors (z\" — g,“’)
and (z}? o g}?) would appear in the algorithm for solving these problems.
Note ti\at these errors are differences between indicator variables and
probabilities. In equations 2.30 and 2.31, on the other hand, the errors that
drive the algorithm are the differences (hf') = g,(')) and (h;? = g](,‘,)), which are
differences between probabilities. The EM algorithm eéfectively “fills in”
the missing labels with estimated probabilities ; and hyi. These estimated
probabilities can be thought of as targets for the g; and the gj;. This
suggests that we can compute “virtual targets” for the underlying linear
predictors & and &;, by inverting the softmax function. (Note that this
option would not be available for the z; and z;, even if they were known,
because zero and one are not in the range of the softmax function.) Thus
the targets for the ¢; are the values:

In h,m —InC

where C = ¥, ¢% is the normalization constant in the softmax function.
Note, however, that constants that are common to all of the & can be
omitted, because such constants disa?pear when & are converted to g;
(cf. equation 2.3). Thus the values In h!"); can be used as targets for the .
A similar argument shows that the values In h),|k can be used as targets
for the &;, with observation weights h*).

The utility of this approach is that once targets are available for the
linear predictors &; and ¢, the problem of finding the parameters v; and
v;j reduces to a coupled set of weighted least-squares problems. Thus
we obtain an algorithm in which all of the parameters in the hierarchy,

Mixtures of Experts and EM Algorithm 195

both in the expert networks and the gating networks, can ‘be obtaiged
by solving least-squares problems. This yields the following learning
algorithm:

Algorithm 2

4 G (1)
1. For each data pair (x",y""), compute the posterior probabilities h;
and h/('lti) using the current values of the parameters.

2. For each expert (i,j), solve a weighted least-squares I?tr)oblem with
observations {(x",y®)}¥ and observation weights {h; F

3. For each top-level gating network, solve a least-squares problem
with observations {(x, Inh{")}V.

4. For each lower-level gating network, solve a weighted least-squares
problem with observations {(x,In hf(k))}ﬁ" and observation weights

"
5. Iterate using the updated parameter values.

It is important to note that this algorithm does not yigld the s?'r)r\e
parameter estimates as Algorithm 1; the gating network r¢.351d.uals thy =~
gf')) are being fit by least squares rather thap maximum hkeh-hood, The
algorithm can be thought of as an approxunatlof\ to Algorithm 1, a(ﬂ
approximation based on the assumption that the differences betvx'reen h,:
and g}’) are small. This assumption is equi\/'algnt to the assumption that
the architecture can fit the underlying regression surface (a consistency
condition) and the assumption that the noise is small. In practice we
have found that the least-squares algorithm works reasonably well, even
in the early stages of fitting when the residuals can be large. .The abll?ty
to use least squares is certainly appealing from a Fomputatlgnal point
of view. One possible hybrid algorithm involves using the lgasbsquares
algorithm to converge quickly to the neighborhood of a solution and then
using IRLS to refine the solution.

2.8 Simulation Results. We tested Algorithm 1 and Algor?thm 2 on
a nonlinear system identification problem. The data were obtfuned ‘from
a simulation of a four-joint robot arm moving in three-dimensional space
(Fun and Jordan 1993). The network must learn the fonuard z{ymnmcs of
the arm; a state-dependent mapping from joint torques to joint a(_tce]erw
ations. The state of the arm is encoded by eight real-valued variables:
four positions (rad) and four angular velocities (rad/sec). The torque
was encoded as four real-valued variables (N - m). Thus. there were 12
inputs to the learning system. Given these 12 inpgt variables, :he net-
work must predict the four accelerations at the joints (rad/sec?®). This

196 Michael L. Jordan and Robert A. Jacobs

mapping is highly nonlinear due to the rotating coordinate systems and
the interaction torques between the links of the arm.

We generated 15,000 data points for training and 5,000 points for
testing. For each epoch (i.e., each pass through the training set), we
computed the relative error on the test set. Relative error is computed
as a ratio between the mean squared error and the mean squared error
that would be obtained if the learner were to output the mean value of
the accelerations for all data points.

We compared the performance of a binary hierarchy to that of a back-
propagation network. The hierarchy was a four-level hierarchy with 16
expert networks and 15 gating networks. Each expert network had 4
output units and each gating network had 1 output unit. The backprop-
agation network had 60 hidden units, which yields approximately the
same number of parameters in the network as in the hierarchy.

The HME architecture was trained by Algorithms 1 and 2, utilizing
Cholesky decomposition to solve the weighted least-squares problems
(Golub and van Loan 1989). Note that the HME algorithms have no free
parameters. The free parameters for the backpropagation network (the
learning rate and the momentum term) were chosen based on a coarse
search of the parameter space. (Values of 0.00001 and 0.15 were cho-
sen for these parameters.) There were difficulties with local minima (or
" plateaus) using the backpropagation algorithm: Five of 10 runs failed to
converge to “reasonable” error values. (As we report in the next section,
no such difficulties were encountered in the case of on-line backpropaga-
tion.) We report average convergence times and average relative errors
only for those runs that converged to “reasonable” error values. All 10
runs for both of the HME algorithms converged to “reasonable” error
values.

Figure 2 shows the performance of the hierarchy and the backprop-
agation network. The horizontal axis of the graph gives the training
time in epochs. The vertical axis gives generalization performance as
measured by the average relative error on the test set.

Table 1 reports the average relative errors for both architectures mea-
sured at the minima of the relative error curves. (Minima were defined
by a sequence of three successive increases in the relative error) We
also report values of relative error for the best linear approximation, the
CART algorithm, and the MARS algorithm. Both CART and MARS were
run four times, once for each of the output variables. We combined the
results from these four computations to compute the total relative error.
Two versions of CART were run; one in which the splits were restricted
to be parallel to the axes and one in which linear combinations of the
input variables were allowed.

The MARS algorithm requires choices to be made for the values of two
structural parameters: the maximum number of basis functions and the
maximum number of interaction terms. FEach basis function in MARS
yields a linear surface defined over a rectangular region of the input

Mixtures of Experts and EM Algorithm

197

] -—— Backpropagation
O i e T T G b HME (Algorithm 2)
g4 <
Bl e
2 : X
s
c < |
o
O_ - T
o Ll T !
1 10 100 1000

Epochs

i and a
Figure 2: Relative error on the test set for a backpropagation network an

level HME architecture trained with batch algorithms. The standard errors

i urves are 0.013 for backpropagation and 0.002 for HME.

at the minima of the ¢

Table 1: Average Values of Relative Error and Number of Epochs Required for
Convergence for the Batch Algorithms.

Architecture Relative Error # Epoclfﬁ
i s 0.3; 1
Linear
Backpropagation 0.09 5,5;)0
HME (Algorithm 1) 0.10 3
HME (Algorithm 2) 0.12 39
CART 0.17 NA
CART (linear) 0.13 NA
MARS 0.16 NA

space, corresponding roughly to the function implemented lby a sni\:gll(e)
es er’t in the HME architecture. Therefore we chose a mgxnm}L‘lhm'o A,
bagis functions to correspond to the 16 experts in the four-level hierarchy.

To choose the maximum number of interactions (mi), we compared the

performance of MARS for mi = 1, 2, 3, 6, and 12, and chose the value

ielc st pe ance (mi = 3).
that yielded the best performance (1 A il
F();r the iterative algorithms, we also report the number of relpm htT :\-5
quired for convergence. Because the learning curves for these algorith

198 Michael I. Jordan and Robert A. Jacobs

generally have lengthy tails, we defined convergence as the first epoch
at which the relative error drops within 5% of the minimum.

All of the architectures that we studied performed significantly better

than the best linear approximation. As expected, the CART architecture
with linear combinations performed better than CART with axis-parallel
splits.> The HME architecture yielded a modest improvement over MARS
and CART. Backpropagation produced the lowest relative error of the
algorithms tested (ignoring the difficulties with convergence).

These differences in relative error should be treated with some cau-
tion. The need to set free parameters for some of the architectures (e.g,,
backpropagation) and the need to make structural choices (e.g., number
of hidden units, number of basis functions, number of experts) make it
difficult to match architectures. The HME architecture, for example, in-
volves parameter dependencies that are not present in a backpropagation
network. A gating network at a high level in the tree can “pinch off” a
branch of the tree, rendering useless the parameters in that branch of the
tree. Raw parameter count is therefore only a very rough guide to archi-
tecture capacity; more precise measures are needed (e.g., VC dimension)
before definitive quantitative comparisons can be made.

The differences between backpropagation and HME in terms of con-
vergence time are more definitive. Both HME algorithms reliably con-
verge more than two orders of magnitude faster than backpropagation.

As shown in Figure 3, the HME architecture lends itself well to graphic
investigation. This figure displays the time sequence of the distributions
of posterior probabilities across the training set at each node of the tree.
At Epoch 0, before any learning has taken place, most of the posterior
probabilities at each node are approximately 0.5 across the training set.
As the training proceeds, the histograms flatten out, eventually approach-
ing bimodal distributions in which the posterior probabilities are either
one or zero for most of the training patterns. This evolution is indicative
of increasingly sharp splits being fit by the gating networks. Note that
there is a tendency for the splits to be formed more rapidly at higher
levels in the tree than at lower levels.

Figure 4 shows another graphic device that can be useful for under-
standing the way in which an HME architecture fits a data set. This
figure, which we refer to as a “deviance tree,” shows the deviance (mean
squared error) that would be obtained at each level of the tree if the tree
were clipped at that level. We construct a clipped tree at a given level by
replacing each nonterminal at that level with a matrix that is a weighted
average of the experts below that nonterminal. The weights are the to-
tal prior probabilities associated with each expert across the training set.
The error for each output unit is then calculated by passing the test set
through the clipped tree. As can be seen in the figure, the deviance is

*It should be noted that CART is at an advantage relative to the other algorithms in
this comparison, because no structural parameters were fixed for CART. That is, CART
is allowed to find the best tree of any size to fit the data.

Mixtures of Experts and EM Algorithm

199

Epoch 0 Epoch 9
L ,:.t‘»“'\
S TR o Sy
ot s e dy
| | M
/,/} e NG o P
¥ X > - ' : ‘

\ l \ l ‘ l % l Lnu ‘Ihu 1/\ tl:,\
/ \\ //A\ / /\\. / ,\\ //\\ ,\ | / \l\ ; / \‘
i l H ‘1 l \ l e l ll || b s e LK o e
Epoch 19 Epoch 29

|
‘/\ l/“i\ //‘ /l::‘{\\\
y //// (o R T \‘
it o N'\'\ 4 ' L.
// = y P N % /,, \\\ ‘] ;
| & " | | } | ‘I
I, sk ‘l L, Ll 1. L.

X
seaald Lun 1“...I Nl...l ‘!l...l L,' “A,.. \I.L.I ‘il...l \‘I“..l !I..,l ‘\L,,l

il...l n...l ‘u.‘.. Lnu

Figure 3: A sequence of histogram trees for the HME architecture. Each]?lS“
togram displays the distribution of posterior probabilities across the training
set at each node in the tree.

i e ‘ dinate of the plots
bstantially smaller for deeper trees (note that the or .
?: on a log };cale). The deviance in the right branch of the tree is largerl
than in the left branch of the tree. Information $uch as this can'be usefu
for purposes of exploratory data analysis and for model selection.

2.9 An On-Line Algorithm. The batch least-squares algorifhm that
we have described (Algorithm 2) can be conve}'ted into an on—}me algo:
rithm by noting that linear least squares and weighted linear leaat squéret:
problems can be solved by recursive pmcedu.res thgt update thc pérqp1
eter estimates with each successive data point (L]ung and.SL)Qerstr()gT
1986). Our application of these recursive algorxthms is shjaxghtfo}:war 1;
however, care must be taken to handle the observation welghfs' (the fpohb_
terior probabilities) correctly. These wgights change as a fu;mh\;m o atr ec;
changing parameter values. This implies that the recursive faas stqu“fop
algorithm must include a decay parameter .t}‘\at allows the system to
get” older values of the posterior probabilities.

200

Michael I. Jordan and Robert A. Jacobs

il
Ug 11
b ..‘l‘. Ca i
1.«\1. ‘ i, Loy [i i uh

e sk Waie o en KRB MO s wun, 000 UHED 3004 s

Fi : ;
nig:;ess.ua/:egevmncf N;g}a; ffor the HME architecture. Each plot displays the
error or the four output units of the cli
. clipped tree.
plots are on a log scale covering approximately three orders of }rjrl\)agnitrsge -

b bt s ;

sk (t?lus :factlop we present the equations for the on-line algorithm

e ‘,3 akl~06n}§ involve an update not only of the parameters in each of.

i fO(;re:,C : Et talso 1t(he Fstoll;age and updating of an inverse covariance

. etwork. Fach matrix has dimensionali

m is the dimensionalit i by Bl i v
. y of the input vector. (Note that the si

matrices depends on the s . ol g 6

quare of the number of input variab
square of the number of parameter il
. s. Note also that th i

for the inverse covari i ; o i
‘ ance matrix updates the in 56 i i

there is never a need to invert matrifes.) it ke

The on-line update rul
. e for the parameters of th i
given by the following recursive equation: Bl i

SR) g -
uj Uy’ +h; hjli)(y(t) _u‘(jt))x(:)lRl(j_t) 3

3 . :

Note that in this section we use the term “
f’rad}txonally called “weights” in the n
weights” for the observation weights.

parameters” for the variables that
' are
eural network literature. We reserve the term

Mixtures of Experts and EM Algorithm 201

where R; is the inverse covariance matrix for expert network (i, /). This
matrix is updated via the equation:

pl) coa-tplell gt SRR e 3 33)
i if 3 /\[hf'l)],,l g XU)TR}; UX(” ()

where) is the decay parameter.

It is interesting to note the similarity between the parameter update
rule in equation 2.32 and the gradient rule presented earlier (cf. equa-
tion 2.14). These updates are essentially the same, except that the scalar
p is replaced by the matrix RS/”. It can be shown, however, that Rfv,” is an
estimate of the inverse Hessian of the least-squares cost function (Ljung
and Séderstrom 1986), thus equation 2.32 is in fact a stochastic approxi-
mation to a Newton-Raphson method rather than a gradient method.”

Similar equations apply for the updates of the gating networks. The
update rule for the parameters of the top-level gating network is given
by the following equation (for the ith output of the gating network):

v = v 4 sP(nAd - YK (2.34)
where the inverse covariance matrix S; is updated by

(t=1) ()T glt-1)
S x0T,

S,(-t) = /\-rlsl(.t =) L /\71_‘#_,,_7‘_]7_# (2.35)
A+ xOTSH Hx(®

Finally, the update rule for the parameters of the lower-level gating net-
work is as follows:

Vit = v + SO (nkg) — €00 (2.36)

where the inverse covariance matrix S; is updated by
(t=1), () (HT g1
S x xSy

NEPT 4 xOTSTE Dy

i

(2.37)

g =g nx!

2.10 Simulation Results. The on-line algorithm was tested on the
robot dynamics problem described in the previous section. Preliminary
simulations convinced us of the necessity of the decay parameter ().
We also found that this parameter should be slowly increased as train-
ing proceeds—on the early trials the posterior probabilities are changing
rapidly so that the covariances should be decayed rapidly, whereas on
later trials the posterior probabilities have stabilized and the covariances
should be decayed less rapidly. We used a simple fixed schedule: A was

7This is true for fixed values of the posterior probabilities. These posterior proba-
bilities are also changing over time, however, as required by the EM algorithm. The
overall convergence rate of the algorithm is determined by the convergence rate of EM,
not the convergence rate of Newton-Raphson.

202 Michael I. Jordan and Robert A. Jacobs

R e T
o : ——— Backpropagation
& 1 HME

g @

D o

S

8 < |

T O

@
o
A S i

1 5 10 50 100
Epochs

Figure 5: Relative error on the test set for a backpropagation network and a
four-level hierarchy trained with on-line algorithms. The standard errors at the
minima of the curves are 0.008 for backpropagation and 0.009 for HME.

initialized to 0.99 and increased a fixed fraction (0.6) of the remaining
distance to 1.0 every 1000 time steps.

The performance of the on-line algorithm was compared to an on-line
backpropagation network. Parameter settings for the backpropagation
network were obtained by a coarse search through the parameter space,
yielding a value of 0.15 for the learning rate and 0.20 for the momentum.
The results for both architectures are shown in Figure 5. As can be seen,
the on-line algorithm for backpropagation is significantly faster than the
corresponding batch algorithm (cf. Fig. 2). This is also true of the on-line
HME algorithm, which has nearly converged within the first epoch.

The minimum values of relative error and the convergence times for
both architectures are provided in Table 2. We also provide the corre-
sponding values for a simulation of the on-line gradient algorithm for
the HME architecture (equation 2.17).

We also performed a set of simulations which tested a variety of dif-
ferent HME architectures. We compared a one-level hierarchy with 32
experts to hierarchies with five levels (32 experts), and six levels (64 ex-
perts). We also simulated two three-level hierarchies, one with branching
factors of 4, 4, and 2 (proceeding from the top of the tree to the bottom),
and one with branching factors of 2,4, and 4. (Each three-level hierarchy
contained 32 experts.) The results are shown in Figure 6. As can be

Mixtures of Experts and EM Algorithm

203

Table 2: Average Values of Relative Error and Number of Epochs Required for
Convergence for the On-Line Algorithms.

Architecture Relative Error Number of Epochs”
: 1
Linear 4 0.32 -
Backpropagation (on-line) 0.0§ .
HME (on-line) 0.12 164
HME (gradient) 0.15
O — - -
i e 1-level
i 3-level (a)
3 i 3-level (b)
- sy Bigvel
S o —-= 6-level
5 o]
o
2 <
8eogT
0]
7 o
110
@
i LT T T T T T
0 2 4 6 8 10
Epochs

Figure 6: Relative error on the test set for HME hierarchies w;v.ith c?ifffren:?t;ui
: % 5 - ierarchy with branching factors , 4,
“3-level (a)” refers to a 3-level hlerer‘ y : fa ‘
turssé asnde“/’3 level (b)” refers to a 3-level hierarchy with branching faclors of
‘ . . 1 a Sty N - T
;“4 and 4. The standard errors for all curves at their respective minima were

approximately 0.009.

i & $inad h
seen, there was a significant difference betweeln tl;gffone le\;e::‘l(e)ln r;I'Lt hZ
| . - o
chi 5. There were smaller difference: :
and the other architectures. Ther > g vl ot S
multilevel hierarchies. No significant difference was observed betwee
the two different 3-level architectures.

3 Model Selection

Utilizing the HME approach requires that choices be made regardu;g thl:
struC;urél parameters of the model, in particular the number of leve

204 i
Michael I. Jordan and Robert A. Jacobs

?enci r:ihe bra_nc.hing factor of the tree. As with other flexible estimation
ques, it is desirable to allow these structural parameters to be cho-

sen based at least partly on the data. This model selection problem can’

£ A b
o :c;l:;l)x;zzsce}?t? rﬁo\;arllet}; of.ways. In this paper we have utilized a test
el selection, stopping the traini
the test set reaches a mini i 5 7o skl e

: mum. As is the case witk

1 o is the c 1 other neural netwo
:ugrzrlt/};rslls, th;s procedure can be justified as a complexity control me:ilf
2 ar.l HMEve .}a\ye noted, when the parameters in the gating networks
b érfl It/tleciutr;: are small, the entire system reduces to a single

at the root of the tree. As the traini
\ . : ning proceed
gsga;g:i:igs 1€v t}}:e gatmlg networks begin to grow in magnigtu%e and i’pﬁ]t(s?
; en a split is formed the par i
2 : ‘ f parameters in the branches of t
: :gerzgsecx)tfhfr szide of the split are decoupled and the effective number l::"
i rgere; d(;r:um thet ;ystem increases. This increase in complexity
. y as the values of the par: i
i . S parameters increase and t
f(;)vr r;sa Is\lclzrgﬁne.l lt?oy tsto;t)pmg t};)e training of the system based on the pci‘e
1 est set, we obtain control ove i ¢
degéees of freedom in the architecture. e
natur;l}e;p;};pro}a:c.hets to model selection can also be considered. One
oach is to use ridge regression in ;
i ! : : each of the expert networks
Settingeiga:;ggfl(\)i:;vorfks. This ag)proach extends naturally }:o the on~linZ
: of a “weight decay.” It is als ideri

- : . cay. Is also worth consid
ayesian techniques of the kind considered in the decision tree Iiterzﬁﬁg

by Buntine (1991)
(1989). » as well as the MDL methods of Quinlan and Rivest

4 Related work ___

L O N R S

::srers a;r(te z:i variety of ties that can be made between the HME architectu
- thi: z:’ :C . (mork n}l) §t?ltlstics, machine learning, and neural networkrse
we briefly menti i .
0 s y on some of these ties and make some
Stalft)jl:\; irchlt;z(éure is not the only nonlinear approximator to make sub-
ek ks se g) LIMs and the IRLS algorithm. IRLS also figures promi-
s ey mog 1r.améh of nonparametric statistics known as generalized ad-
il Coren s l(AMs; Hastie and Tibshirani 1990). It is interesting to
SR }zhin};r;tgr); rollei1 of IRLS in these two architectures. In the

. : -2 algorithm appears in the outer loo i

;’a;ix)‘::tlegl de];;endent varjable that is fit by a backfitting pfoirn?:rlg]il:\gt?\re‘
A Stgp.oan;&e HME app.rogch, on the other hand, the outer loop is

it fh 4 and IRLS is in the inner loop. This complementarit
H%A > that it m}ght be of interest to consider hybrid models in whi h
a WEhls nested inside a GAM or vice versa o

e have already mentioned the close ties b
se ties between the HME .

and other tree-structured estimators such as CART andel\/ilxlhsag}:ro?h
: p-

Mixtures of Experts and EM Algorithm 205

proach differs from MARS and related architectures—such as the basis-
function trees of Sanger (1991)—by allowing splits that are oblique with
respect to the axes. We also differ from these architectures by using a
statistical model—the multinomial logit model—for the splits. We be-
lieve that both of these features can play a role in increasing predictive
ability—the use of oblique splits should tend to decrease bias, and the
use of smooth multinomial logit splits should generally decrease vari-
ance. Oblique splits also render the HME architecture insensitive to the
particular choice of coordinates used to encode the data. Finally, it is
worth emphasizing the difference in philosophy behind these architec-
tures. Whereas CART and MARS are entirely nonparametric, the HME
approach has a strong flavor of parametric statistics, via its use of gen-
eralized linear models, mixture models, and maximum likelihood.

Similar comments can be made with respect to the decision tree meth-
odology in the machine learning literature. Algorithms such as ID3 build
trees that have axis-parallel splits and use heuristic splitting algorithms
(Quinlan 1986). More recent research has studied decision trees with
oblique splits (Murthy etal. 1993; Utgoft and Brodley 1990). None of these
papers, however, has treated the problem of splitting data as a statistical
problem, nor have they provided a global goodness-of-fit measure for
their trees.

There are a variety of neural network architectures that are related
to the HME architecture. The multiresolution aspect of HME is remi-
niscent of Moody’s (1989) multiresolution CMAC hierarchy, differing in
that Moody’s levels of resolution are handled explicitly by separate net-
works. The “neural tree” algorithm (Stromberg et al. 1991) is a decision
tree with multilayer perceptions (MLPs) at the nonterminals. This archi-
tecture can form oblique (or curvilinear) splits, however, the MLPs are
trained by a heuristic that has no clear relationship to overall classifica-
tion performance. Finally, Hinton and Nowlan (see Nowlan 1991) have
independently proposed extending the Jacobs et al. (1991) modular archi-
tecture to a tree-structured system. They did not develop a likelihood
approach to the problem, however, proposing instead a heuristic splitting

scheme.

5 Conclusions s

We have presented a tree-structured architecture for supervised learning.
We have developed the learning algorithm for this architecture within
the framework of maximum likelihood estimation, utilizing ideas from
mixture model estimation and generalized linear model theory. The max-
imum likelihood framework allows standard tools from statistical theory
to be brought to bear in developing inference procedures and measures
of uncertainty for the architecture (Cox and Hinkley 1974). It also opens
the door to the Bayesian approaches that have been found to be useful

206 Michael I. Jordan and Robert A. Jacobs

in the context of unsupervised mixture model estimation (Cheeseman et
al. 1988).

Although we have not emphasized theoretical issues in this paper,
there are a number of points that are worth mentioning. First, the set of
exponentially smoothed piecewise linear functions that we have utilized
is clearly dense in the set of piecewise linear functions on compact sets in
R", thus it is straightforward to show that the hierarchical architecture is
dense in the set of continuous functions on compact sets in R". That is,
the architecture is “universal” in the sense of Hornik et al. (1989). From
this result it would seem straightforward to develop consistency results
for the architecture (cf. Geman et al. 1992; Stone 1977). We are currently
developing this line of argument and are studying the asymptotic dis-
tributional properties of fixed hierarchies. Second, convergence results
are available for the architecture. We have shown that the convergence
rate of the algorithm is linear in the condition number of a matrix that is
the product of an inverse covariance matrix and the Hessian of the log
likelihood for the architecture (Jordan and Xu 1993).

Finally, it is worth noting a number of possible extensions of the work
reported here. Our earlier work on hierarchical mixtures of experts uti-
lized the multilayer perceptron as the primitive function for the expert
networks and gating networks (Jordan and Jacobs 1992). That option is
still available, although we lose the EM proof of convergence (cf. Jordan
and Xu 1993) and we lose the ability to fit the subnetworks efficiently with
IRLS. One interesting example of such an application is the case where
the experts are autoassociators (Bourlard and Kamp 1988), in which case
the architecture fits hierarchically nested local principal component de-
compositions. Another area in unsupervised learning worth exploring is
the nonassociative version of the hierarchical architecture. Such a model
would be a recursive version of classical mixture-likelihood clustering
and may have interesting ties to hierarchical clustering models. Finally,
it is also of interest to note that the recursive least squares algorithm that
we utilized in obtaining an on-line variant of Algorithm 2 is not the only
possible on-line approach. Any of the fast filter algorithms (Haykin 1991)
could also be utilized, giving rise to a family of on-line algorithms. Also,
it is worth studying the application of the recursive algorithms to PRESS-
like cross-validation calculations to efficiently compute the changes in
likelihood that arise from adding or deleting parameters or data points.

Appendix A: Iteratively Reweighted Least Squares

The iteratively reweighted least squares (IRLS) algorithm is the inner
loop of the algorithm that we have proposed for the HME architecture.
In this section, we describe the [RLS algorithm, deriving it as a special
case of the Fisher scoring method for generalized linear models. Our
presentation derives from McCullagh and Nelder (1983).

i i 207
Mixtures of Experts and EM Algorithm

IRLS is an iterative algorithm for (7nmpuling the maximum !lke?lhf»ﬁ)/dl
estimates of the parameters of a generalizgd l}near moFI?I, ‘lt lska bpc: 1515
case of a general algorithm for maximum likelihood 'gstlrlTatlLflxl.}i\«‘;yzll) ?1
the Fisher scoring method (Finney 1973). Let I(3;X) be a ‘103’; 1;35‘1(‘; 1
function—a function of the parameter vector ﬂ—»anq let (01/0B0f 1) ttv‘
note the Hessian of the log likelihood. The Fisher scoring method updates
the parameter estimates 3 as follows:

- i
: 4 A 5.1)
B =P =k |ogog"|| B

where 3, denotes the parameter estimate at the rth iteratio‘n and (',)l. /00
is the gr;dient vector. Note that the Fisher scoring method is essennall%
the same as the Newton-Raphson algorithm, except that' tl*}e exp_cf tqﬁ
value of the Hessian replaces the Hessian. There are statxstl@] redé(lm:.
for preferring the expected value of the Hessian—and th)e expectod va lLft_
of the Hessian is often easier to compute—but Newton-Raphson can also
be used in many cases. e . :
The likelihood in generalized linear model thepry is -‘a_prgdu}t (')t
densities from the exponential family of distributions. 'lhls.t.ar?ll‘y 115
an important class in statistics and includes many useful densities, sucﬂ}
as the normal, the Poisson, the binomial, and the gamma. The genera

form of a density in the exponential family is the following:

) .
P(y, 1,) = exp{(ny — b(n))/d + c(y. &)} (5.2}

where 7 is known as the “natural parameter” and ¢ is the dispersion
parameter.®

Example (Bernoulli Density). The Bernoulli density with mean has
the following form:

Ply,n) = {1~)ty
= exp{in(: i Oy A+ In(1 -)y
A%] (5.3)
= exp{uyy —In(1+e")} 5.
where 7 = In(7r/1 — 7) is the natural parameter of the Bernoulli density.

This parameter has the interpretation as the log odds of “success” in a
random Bernoulli experiment.

In a generalized linear model, the parameter 1 is modeled as a linear
function of the input x:

T
n=Px
8We restrict ourselves to scalar-valued random variables to simplify the Przslentatnt)ln,
: i 3 5 Aty
and describe the (straightforward) extension to vector-valued random variables at the
end of the section.

208 Michael I. Jordan and Robert A. Jacobs

v)/here B is a parameter vector. Substituting this expression into equa-
tion 5.2 and taking the product of N such densities yields the following
log likelihood for a data set X' = {(x*), y(")}V:

18, %) =3 {(BXy" — b(B"xD)) /¢ + c(y™, $)}
t

The observations y*) are assumed to be sampled independently from
densities P(y, 7",), where 5} = g"x(1),
We now compute the gradient of the log likelihood:

ol

55 = U0 - bETx)x0 /6 69
and the Hessian of the log likelihood:
ol
AN " T
agogt =~ ~ 2L BTy (5.5)

These quantities could be substituted directly into equation 5.1, however,
there is additional mathematical structure that can be exploited. First
note the following identity, which is true of any log likelihood:

ol

(T?is fact can be proved by differentiating both sides of the identity
J Py, B, ¢)dy = 1 with respect to 3.) Because this identity is true for any
set of observed data, including all subsets of X', we have the following:

Ely"] = b'(8"x?)

t(zrr) all t. This equation implies that the mean of y*), which we denote as
1\, is a fupctlon of 7. We therefore include in the generalized linear
model the link function, which models y as a function of :

w = fn")

: Example (Bernoulli Density). Equation 5.3 shows that b(1) = In(1 +
e") for the Bernoulli density. Thus :
el

L::b” =
kARl =

which is the logistic function. Inverting the logistic function yields 1 =
In(u/1 — p); thus, 1 equals , as it must.

The link function f(n) = b'(1) is known in generalized linear model
theor.y as the canonical link. By parameterizing the exponential family
density in terms of 7 (cf. equation 5.2), we have forced the choice of
the canonical link. It is also possible to use other links, in which case 7

Mixtures of Experts and EM Algorithm 209

no longer has the interpretation as the natural parameter of the density.
There are statistical reasons, however, to prefer the canonical link (Mc-
Cullagh and Nelder 1983). Moreover, by choosing the canonical link, the
Hessian of the likelihood turns out to be constant (cf. equation 5.5), and
the Fisher scoring method therefore reduces to Newton-Raphson.’

To continue the development, we need an additional fact about log
likelihoods. By differentiating the identity [P(y,B)dy = 1 twice with
respect to 3, the following identity can be established:

o8 Jlalrar
£ [dﬁaﬂT] ok [aﬂ] L’j’ﬁ}

This identity can be used to obtain a relationship between the variance
of 7 and the function b(7) in the exponential family density. Beginning
with equation 5.5, we have

op [Z b"(ﬁTX(t))XmX(t)T/(Z)il
t
ol
s [bﬁaﬁT]
all[ar]”
e [aﬂ [55}

" —lE [Z(y(“ hl b/(,[ij“)))x(” Z(y(s) e l,/(ﬁTx(s)))x(s)'r

e
i "Ez)l’z*’f [Z(y‘“ = b(BTX) XX
t
= — .(%2. 2; Var[}/“‘]x“\’x“)"‘

where we have used the independence assumption in the fourth step.
Comparing equation 5.5 with the last equation, we obtain the following
relationship:

Var[y®] = ¢b”(8"xY)
Moreover, because f(1)) = b'(7), we have
Varly"] = ¢f'(8"x") (5.6)

We now assemble the various pieces. First note that equation 5.6 can
be utilized to express the Hessian (equation 5.5) in the following form:

—?"I‘T = - " xOxOTy®
opop i
9Whether or not the canonical link is used, the results presented in the remainder
of this section are correct for the Fisher scoring method. If noncanonical links are
used, then Newton-Raphson will include additional terms (terms that vanish under
the expectation operator).

210 Michael I. Jordan and Robert A. Jacobs

where the weight w) is defined as follows:
()2
Gt i)

" Varfy(]
In matrix notation we have
ol ;
— = - X"WX (5.7
0pIs3
where X is the matrix whose rows are the input vectors x!" and W is
a diagonal matrix whose diagonal elements are w'’. Note also that the
Hgssian is a constant, thus the expected value of the Hessian is also
XTWX.
- Similarly, equation 5.6 can be used to remove the dependence of the
gradient (equation 5.4) on ¢: f
ol !
a) (AT aalt)
(‘)E = ;(y(= g)/f/(’l)

This equation can be written in matrix notation as follows:
al -
— = X"We (5.8)

where e is the vector whose components are
et) — (‘l/“) 2 /””)/f'(l/“’)
Finally, substitute equation 5.7 and equation 5.8 into equation 5.1 to ob-
tain
Bw = B+ (XTWX)'XTWe (5.9)
= (X WX X Wy (5.10)

where z = X3, + e These equations are the normal equations for a
weighted least squares problem with observations {(x".z(")}¥ and ob-
servation weights w!Y. The weights change from iteration to iteration,
because they are a function of the parameters B3,. The resulting iterative
algorithm is known as iteratively reweighted least squares (IRLS).

It is easy to generalize the derivation to allow additional fixed obser-
vation weights to be associated with the data pairs. Such weights simply
multiply the iteratively varying weights w!", leading to an iteratively
reweighted weighted least squares algorithm. Such a generalization is in
fact necessary in our application of IRLS: the EM algorithm defines ob-
servation weights in the outer loop that IRLS must treat as fixed during
the inner loop.

Finally, it is also straightforward to generalize the derivation in this
section to the case of vector outputs. In the case of vector outputs, each
row of the weight matrix (e.g., U for the expert networks) is a separate
parameter vector corresponding to the vector 8 of this section. These
row vectors are updated independently and in parallel.

'*As McCullagh and Nelder (1983) note, z has the interpretation as the linearization
of the link function around the current value of the mean.

i 21
Mixtures of Experts and EM Algorithm

Appendix B: Multinomial Logit Models

The multinomial logit model is a special case of the gex'xerah%Tdd‘l;:Sei?\t
model in which the probabilistic component 15 the multmo?n:\he o
or the Poisson density. It is of particular interest to us b.ecausjls 5 gating
networks in the HME architecture are multinomial logit .ml;)l..f: s. :

Consider a multiway classification prt')blem on n varia es g:, yngmln
y,. A natural probability model for multiway classification is the

nomial density:

m! o g
P(yhst-- . ’y'l) = (‘ymmyn')pz Poiz pl'/1

where the p; are the multinomial probabilities associated wxfth thlisn::gs:-
ent classes and m = i yi is general‘ly t.aken to equal ofneh orc b
tion problems. The multinomial density is an me.mber of the exp

family and can be written in the following form:

m! n y
S0 | WERIGEL . RN, W),} (6.1)
P(}/hyz,---»yn) = exp {1[\ (}/l')(yli)(y") i;ly F

Taking the logarithm of both sides, and droplpin]gktlighter(rin;)trh;:‘te(::: ‘;I:It
¢ : see that the log likelihoo -

depend on the parameters p;, we see i .

noIrJnial logit model is the cross-entropy between the observations y; and

the parameters p. . | :
IPr)nplicit in eqluation 6.1 is the constraint that the p; sum to onéyl T|h1§

constraint can be made explicit by defining p, as follows: p, = 1= pi

and rewriting equation 6.1:

n—1

m! — pi 6.2)
= e e iInf=+nln p,,} (6.
P(yr1.Y2,- -+ Yn) = €Xp {ln GO -) ?jy Pn
The natural parameters in an exponential family density are thO?@ quan-
tities that appear linearly in the y; (cf. equation 5.2), thus we define

: (6.3)
i = In el

Pn
Using p, = 1 — ¥ ' pi implies
1

and therefore equation 6.3 can be inverted to yield
e'n
RO 87
elli (64)

n el
/_:] "
i) is ession is the “softmax
using 1, = 0 from equation 6.3. This latter expression 18

function (Bridle 1989).

212 i
Michael I. Jordan and Robert A. Jacobs

Finally, note that equati i i
P i o st 52): ion 6.2 implies that b(r)) must be defined as

b(n) =nln (Z e"")
i=1
which implies

_ 0b(n) ne'

e
O e T e b

~ The fitting of a multinomial logit model proceeds by IRLS as described

in Appendix A, using equati i
R e o g g equations 6.4 _and 6.5 for the link function and the

Acknowledgments s LSO S SR

(\/:\;erk\;\;?:tD tg) tha'nk Geoffrey Hinton, Tony Robinson, Mitsuo Kawato
i tm;r}l\x'com, fmd Daniel Wolpert for helpful comments on thé
McDonneII)I-:Pew 1; pr(gecf was supported in part by a grant from the
i (Km ation, b.y a grant from ATR Human Information
i [gRI-9?)e1a3r9C9 Laboratorles,uby a grant from Siemens Corporation
L i fr; nf}r(t)}rlr; glfef iagﬁgal Scli;\{nce Foundation, and by Grané

aval Research. The project

lejé)gpig;feadngyCNSF Grapt ASC-9217041 in support of theIe) CénteZV?Sragi(-)
i okl omputational Learning at MIT, including funds provided

y under the HPCC program, and NSF Grant ECS—92pl653l io

support an Initiative in Intelligent 0l i
an NSF Presidential Young Invistigecx:t(())lrl.tml Rt

References

Bourlard, H., and Kam
- H, p. Y. 1988. Auto-association b i
Breje::d STgL;lar value decomposition. Biol. Cyberi11]59y 2’8;11;1(;34)"3’” R
a ; i i 198
,mdr;ée r,e fledrman, J. H,, Olshen, R. A., and Stone, C. J. 1984. Classificatior
Bl f §9 gston Trees. Wadsworth International Group, Belmont, CA)
w(,)rk. i 9‘t‘Pro_bab1hst1'c interpretation of feedforward Class,ificaéion net-
Commtin;ﬂj{ !l} ::'lft}? rel/aqtlo;ships to statistical pattern recognition. In Neuro
i ! itnms, Architectures, and Applicati J : i |
B Jt Hers&llt/ i A e flfltcatlons, E Fogelman-Soulie and
untine, W. 1991. Learning classification t \
: b fi n trees. NASA Ames Tech. Rep. FIA-90-
h
eeseman, P, Kelly, J., Self, M., Stutz, J., Taylor, W., and Freeman, D 1988

Autoclass: A Bayesi ificati
. yesian classification system. In P]]
national Conference on Machine Learning, Ann Arbormg/i‘lgdmgs thdiiong

Cox, D. R. 1970. The Analysis of Binary Data. Chapman-Hall, London

Mixtures of Experts and EM Algorithm 213

Cox, D. R., and Hinkley, D. V. 1974. Theoretical Statistics. Chapman--Hall, Lon-
don.

Dempster, A. P, Laird, N. M., and Rubin, D. B. 1977. Maximum likelihood from
incomplete data via the EM algorithm. J. R. Statist. Soc. B 39, 1-38.

Duda, R. O., and Hart, P. E. 1973. Pattern Classification and Scene Analysis. John
Wiley, New York.

Finney, D. J. 1973. Statistical Methods in Biological Assay. Hafner, New York.

Friedman, J. H. 1991. Multivariate adaptive regression splines. Ann. Statist. 19,
1-141.

Fun, W., and Jordan, M. 1. 1993. The Moving Basin: Effective Action Search in
Forward Models. MIT Computational Cognitive Science Tech. Report 9205,
Cambridge, MA.

Geman, S., Bienenstock, E., and Doursat, R. 1992. Neural networks and the
bias/variance dilemma. Neural Comp. 4, 1-52.

Golub, G. H., and Van Loan, G. F. 1989. Matrix Computations. The Johns Hopkins
University Press, Baltimore, MD.

Hastie, T. J., and Tibshirani, R. J. 1990. Generalized Additive Models. Chapman
and Hall, London.

Haykin, S. 1991. Adaptive Filter Theory. Prentice-Hall, Englewood Cliffs, NJ.

Hinton, G. E., and Sejnowski, T. J. 1986. Learning and relearning in Boltzmann
machines. In Parallel Distributed Processing, D. E. Rumelhart and J. L. Mc-
Clelland, eds., Vol. 1, pp. 282-317. MIT Press, Cambridge, MA.

Hornik, K., Stinchcombe, M., and White, H. 1989. Multilayer feedforward net-
works are universal approximators. Neural Networks 2, 359-366.

Jacobs, R. A., Jordan, M. [, Nowlan, S. J., and Hinton, G. E. 1991. Adaptive
mixtures of local experts. Neural Comp. 3, 79-87.
Jordan, M. I, and Jacobs, R. A. 1992. Hierarchies of adaptive experts. In Ad-
vances in Neural Information Processing Systems 4, J. Moody, S. Hanson, and
R. Lippmann, eds., pp. 985-993. Morgan Kaufmann, San Mateo, CA.
Jordan, M. L, and Xu, L. 1993. Convergence Properties of the EM Approach to
Learning in Mixture-of-Experts Architectures. Computational Cognitive Science
Tech. Rep. 9301, MIT, Cambridge, MA.
Little, R. J. A, and Rubin, D. B. 1987. Statistical Analysis with Missing Data. John
Wiley, New York.
Ljung, L., and Soderstrém, T. 1986. Theory and Practice of Recursive ldentification.
MIT Press, Cambridge.
McCullagh, P, and Nelder, J. A. 1983. Generalized Linear Models. Chapman and
Hall, London.
Moody, J. 1989. Fast learning in multi-resolution hierarchies. In Advances in
Neural Information Processing Systems, D. S. Touretzky, ed. Morgan Kaufmann,
San Mateo, CA.
Murthy, S. K., Kasif, S., and Salzberg, S. 1993. OC1: A Randomized Algorithm for
Building Obligue Decision Trees. Tech. Rep., Department of Computer Science,
The Johns Hopkins University.
Nowlan, S. J. 1990. Maximum likelihood competitive learning. In Advances in
Neural Information Processing Systems 2, D. S. Touretzky, ed. Morgan Kauf-

mann, San Mateo, CA.

214 Michael L. Jordan and Robert A. Jacobs

Nowlan, S. J. 1991. Soft Competitive Adaptation: Neural Network Learning Algo-
rithims Based on Fitting Statistical Mixtures. Tech. Rep. CMU-CS-91-126, CMU,
Pittsburgh, PA. ‘

Quandt, R. E.,, and Ramsey, J. B. 1972. A new approach to estimating switching
regressions. |. Am. Statist. Soc. 67, 306-310.

Quinlan, J. R. 1986. Induction of decision trees. Machine Learn. 1, 81-106.

Quinlan, J. R, and Rivest, R. L. 1989. Inferring decision trees using the Mini-
mum Description Length Principle. [nformationand Computation 80, 227-248.

Redner, R. A., and Walker, H. F. 1984. Mixture densities, maximum likelihood
and the EM algorithm. SIAM Rev. 26, 195-239.

Sanger, T. D. 1991. A tree-structured adaptive network for function approxima-
tion in high dimensional spaces. IEEE Transact. Newral Networks 2, 285-293.

Scott, D. W. 1992, Multivariate Density Estimation. John Wiley, New York.

Specht, D. F. 1991. A general regression neural network. [EEE Transact. Neural
Networks 2, 568-576.

Stone, C. J. 1977. Consistent nonparametric regression. Ann. Statist. 5, 595-645.

Stromberg, J. E., Zrida, J., and Isaksson, A. 1991. Neural trees—using neural
nets in a tree classifier structure. [EEE International Conference on Acoustics,
Speech and Signal Processing, 137-140.

Titterington, D. M., Smith, A. F. M., and Makov, U. E. 1985. Statistical Analysis
of Finite Mixture Distributions. John Wiley, New York.

Utgoff, P. E., and Brodley, C. E. 1990. An incremental method for finding mul-
tivariate splits for decision trees. In Proceedings of the Seventh International
Conference on Machine Learning, Los Altos, CA.

Wahba, G., Gu, C.,, Wang, Y., and Chappell, R. 1993. Soft Classification, a.k.a. Risk
Estimation, via Penalized Log Likelihood and Smoothing Spline Analysis of Variance.
Tech. Rep. 899, Department of Statistics, University of Wisconsin, Madison.

Wu, C. E J. 1983. On the convergence properties of the EM algorithm. Ann.
Statist. 11, 95-103.

Received February 22, 1993; accepted July 9, 1993.

