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Abstract

We report the results of a depth-matching experiment in which subjects were asked to adjust the height of an ellipse until it
matched the depth of a simulated cylinder defined by texture and motion cues. In one-third of the trials the shape of the cylinder
was primarily given by motion information, in another one-third of the trials it was given by texture information, and on the
remaining trials it was given by both sources of information. Two optimal cue combination models are described where optimality
is defined in terms of Bayesian statistics. The parameter values of the models are set based on subjects’ responses on trials when
either the motion cue or the texture cue was informative. These models provide predictions of subjects’ responses on trials when
both cues were informative. The results indicate that one of the optimal models provides a good fit to the subjects’ data, and the
second model provides an exceptional fit. Because the predictions of the optimal models closely match the experimental data, we
conclude that observers’ cue-combination strategies are indeed optimal, at least under the conditions studied here. © 1999 Elsevier

Science Ltd. All rights reserved.

Keywords: Depth; Optimal integration; Texture; Motion

1. Introduction

The human visual system obtains information about
depth from a large number of cues. Cues to depth result
from object rotation, observer motion, binocular vision
in which the two eyes receive different patterns of light,
texture gradients in retinal images, and many other
factors (Cutting & Vishton, 1995). Recently, there has
been a significant increase in the number of studies
examining strategies observers use to combine informa-
tion provided by each of multiple cues in a visual
environment (e.g. Dosher, Sperling & Wurst, 1986;
Bruno & Cutting, 1988; Biilthoff & Mallot, 1988;
Rogers & Collett, 1989; Johnston, Cumming & Parker,
1993; Nawrot & Blake, 1993; Young, Landy & Mal-
oney, 1993; Landy, Maloney, Johnston & Young, 1995;
Tittle, Norman, Perotti & Phillips, 1997; Turner,
Braunstein & Andersen, 1997; Jacobs & Fine, 1999).

This article addresses the question of whether or not
observers’ cue combination rules for visual depth can
be characterized as optimal in a Bayesian statistical
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sense described below. This question is important for
several reasons. If observers’ judgments are optimal in a
particular context, then this suggests that their percep-
tual systems are operating in a principled manner
within that context, and that we can use our definition
of optimality in order to reasonably conjecture as to
what those principles are. For instance, an optimal
model based on Bayes’ rule may make assumptions
about the visual environment. If this model provides a
good fit to observers’ judgments, then it is reasonable
to hypothesize that observers may also be making those
same assumptions. Furthermore, if observers’ behaviors
result from a learning process, and those behaviors are
optimal, then this places a strong constraint on hy-
potheses regarding the underlying learning mechanisms.
Proposed learning mechanisms that result in optimal
behaviors are viable hypotheses, whereas mechanisms
that do not result in such behaviors are not.

Some researchers have conjectured that observers’
cue combination rules may indeed be optimal (e.g.
Landy et al., 1995), but there is relatively little available
empirical data that directly evaluates this hypothesis in
a quantitative manner. A notable exception is the re-
cent work of Knill (1998). He asked subjects to make
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judgments about planar surface orientations based on
multiple texture cues. By comparing subjects’ responses
to predictions of different optimal models (referred to
as ‘ideal observers’), he was able to estimate the weight
given to each cue by subjects, and also the strengths of
various assumptions that subjects made about texture
information.

Most investigations assess observers’ combination
rules in a way that does not address the issue of
whether or not these rules are optimal. Sometimes these
investigations make assumptions that preclude the pos-
sibility of evaluating optimality. For instance, Tittle et
al. (1997) had subjects make shape judgments about
stimuli containing binocular disparity, texture, and
shading cues. In order to study subjects’ cue combina-
tion rules, they assumed that subjects’ shape estimates
based on individual cues were veridical, and that these
veridical estimates were linearly combined. Although
these assumptions made it easy to estimate the linear
coefficients that subjects used when combining informa-
tion, they also made it impossible to assess whether or
not the subjects’ cue combination rules were optimal.
Other investigations have shown that observers’ combi-
nation rules are sensible, but not that they are necessar-
ily optimal. For example, Young et al. (1993) used a
perturbation technique in order to analyze depth per-
ceptions based on texture and motion cues. They found
that when either cue was corrupted by added noise,
subjects tended to rely more heavily on the uncontami-
nated cue. While this result suggests that observers
combination rules are sensible, the experiment does not
provide sufficient detail in order to assess whether or
not these rules are statistically optimal.

The present article reports the results of a depth-
matching experiment in which subjects were asked to
adjust the height of an ellipse until it matched the depth
of a simulated cylinder defined by texture and motion
cues. In one-third of the trials the shape of the cylinder
was primarily given by motion information, in another
one-third of the trials it was given by texture informa-
tion, and in the remaining trials it was given by both
sources of information. Two optimal cue combination
models are described where optimality is defined in
terms of Bayesian statistics. The parameter values of
the models are set based on subjects’ responses on trials
when either the motion cue or the texture cue was
informative. These models provide predictions of sub-
jects’ responses on trials when both cues were informa-
tive. The results indicate that one of the optimal models
provides a good fit to the subjects’ data, and the second
model provides an exceptional fit. The results are sur-
prising because the models are strongly constrained
(they are linear), and because the first model has no free
parameters whereas the second model has only one free
parameter. Because the predictions of the optimal mod-
els closely match the experimental data, we conclude

that observers’ cue combination strategies are indeed
optimal, at least under the conditions studied here.
Section 2 describes the two optimal models. Section 3
describes the experiment. In Section 4, the statistical
metrics of bias and variance are used to analyze the
experimental results. The bias of a subject’s response
indicates whether the subject tended to overestimate or
underestimate the depth of a cylinder. The variance of
a subject’s response measures the amount of variability
in the response. The subjects’ data are also compared to
the predictions of the optimal cue combination models.

2. Optimal cue combination models

We define the optimal estimate of visual depth given
motion and texture cues as the depth, denoted d, that
maximizes the probability P(djm, t) where m and ¢
denote the motion and texture cues. Using Bayes’ rule,
this probability may be re-written as

P(d|m, 1) o< P(m, t|d)P(d) (1)

Assuming that the motion and texture cues are condi-
tionally independent given the depth, we arrive at the
equation

P(d|m, t) oc P(m|d)P(t|d)P(d) 2)
where, using Bayes’ rule,
_ P(d|m)P(m)
POnld) =—=p = 3)
P(d|t)P
Pl =200 @

The first optimal cue combination model that we con-
sider assumes that the prior probability distributions of
the depth, P(d), of the motion cue, P(m), and of the
texture cue, P(¢), are uniform (meaning that all possible
depths, all possible motion cues, and all possible texture
cues are equally likely). Consequently, we refer to this
model as Optimal Model-Uniform, henceforth referred
to as model OM-U. In this case,

P(d|m, 1) oc P(d|m)P(d]1) 5)

Note that the probability of depth d factors into the
product of two terms: the first term is the probability of
d given just the motion cue, and the second is the
probability of d given just the texture cue. We assume
that the probability distributions P(dfm) and P(dJt) are
Normal distributions. Let d¥ denote the optimal esti-
mate of depth given just the motion cue [this is the
depth that maximizes P(dJm)], and let d¥ denote the
optimal estimate of depth given just the texture cue
[d¥ = argmax, P(dfr)]. If d¥~d}¥, then Yuille and
Biilthoff (1996) showed that the optimal estimate of
depth based on both cues, denoted d*, is given by
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d* = wodE + wd¥ (6)
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and o2, and o7 are the variances of the distributions
P(dm) and P(d[t) respectively. This solution has sev-
eral appealing properties. First, the optimal estimate of
depth based on both motion and texture cues is a linear
combination of the optimal estimates based on the
individual cues. Second, the linear coefficients, the
weights w,, and w,, are non-negative and sum to one.
Third, the weight on a cue, such as the motion weight
Wwm, 18 large when that cue is relatively reliable (the
variance ¢2, is smaller than the variance ¢2), and small
when the cue is relatively unreliable (¢2, is larger than
a?). Eq. (6) is among the simplest optimal cue combina-
tion rules. For reasons that will become clear below, it
is useful to also define a slightly more complicated
optimal model. In this new model, it is assumed that
observers are biased toward believing that objects are
approximately equally deep as wide (e.g. the horizontal
cross-section of objects is circular) when considering
individually either a motion cue or a texture cue,
though this assumption is not used when considering
both cues. Under the experimental conditions described
below, this ‘circularity’ assumption is consistent with
the compactness assumption proposed by Caudek and
Proffitt (1993), which is an instance of what those
authors referred to as a perceptual heuristic. We refer
to the optimal cue combination rule using the circular-
ity assumption as Optimal Model-Circular, henceforth
referred to as model OM-C. Computationally, the cir-
cularity assumption is implemented by making the prior
probability distribution P(d) in Egs. (3) and (4) be a
Normal distribution with mean d% and variance ¢3,
where the value of the mean is set equal to the width of
the object (the distribution P(d) in Eq. (2) is, as before,
a uniform distribution). In this case,

P(dm)P(d|t)
2P(d)

If d¥ ~ d¥ ~ d%, then it can be shown that the optimal

estimate of depth based on both cues is given by (cf.
Yuille & Biilthoff, 1996)

d* = wodE + wdf —2wpd% (12)
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The optimal estimate of depth based on both motion
and texture cues is a linear combination of the optimal
estimates based on the individual cues and the optimal
estimate based on the prior distribution of depths.

Egs. (6) and (12) are two optimal cue combination
rules. An experiment was conducted to evaluate how
well these rules predict observers’ responses on a depth-
matching task.

3. General methods
3.1. Stimuli and apparatus

The stimuli consisted of elliptical cylinders whose
shapes were simulated on a 2-D video display by appro-
priate texture and motion algorithms. The horizontal
cross-section of a cylinder could be circular, in which
case the cylinder is equally deep as wide, could be
elliptical with a principal axis parallel to the observer’s
line of sight (and minor axis parallel to the frontoparal-
lel plane), in which case the cylinder is more deep than
wide, or could be elliptical with a principal axis parallel
to the frontoparallel plane (and minor axis parallel to
the observers’ line of sight), in which case the cylinder
is less deep than wide. Twenty cylinder shapes were
used in the experiment. The height (320 pixels) and
width (160 pixels) of the cylinders were constant; only
the simulated depths of the cylinder shapes varied. The
20 shapes had simulated depths that were equally
spaced in the interval ranging from 80 to 270 pixels.

Three types of stimuli were defined: texture-informa-
tive stimuli; motion-informative stimuli; and texture-
and-motion informative stimuli. In the texture-
informative stimuli, the texture cue was created by
mapping a homogeneous and isotropic texture consist-
ing of circular spots to the surface of each cylinder
using a texture mapping algorithm (the details of this
algorithm are described in Hearn & Baker, 1997). Cir-
cular spots were placed on a two-dimensional sheet
whose width was equal to the circumference of a hori-
zontal cross-section of the cylinder, and whose height
was equal to the height of the cylinder. The radius of
each spot was randomly sampled from a uniform distri-
bution ranging from 10 to 16 pixels. Either 65 or 80
spots were placed on the sheet, and the placement of
the spots was random with the restriction that spots
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could not overlap. The texture mapping algorithm
mapped the sheet to the surface of the cylinder (though
not to the top and bottom of the cylinder which were
never visible to the observer). When a three-dimen-
sional curved surface is projected onto a two-dimen-
sional image, changes in surface orientation result in
gradients of texture element size, shape, and density in
the image. These gradients are texture cues to the shape
of a cylinder.

The motion-informative stimuli were created as fol-
lows. Small points of light were initially placed on the
surface of a simulated cylinder. Each point of light was
a circle whose radius was 2 pixels. Either 65 or 80
points were placed on the cylinder, and the initial
placement of the points was random with the restriction
that points were about as far apart as the centers of the
texture elements in the texture-informative stimuli. A
movie was created by moving the points horizontally
along the simulated surface of a cylinder in either a
clockwise or anticlockwise direction. Speaking
metaphorically, the motion of a point may be regarded
as analogous to the motion of a train traveling around
a track; the shape of the track is given by the circumfer-
ence of a cylinder’s horizontal cross-section. The veloc-
ity of the points was constant within a stimulus
presentation; this velocity was varied between presenta-
tions. Points traveled the circumference of a cylinder’s
horizontal cross-section in either 55 or 75 frames. Note
that the cylinder did not rotate; rather, the points
moved along the simulated surface of static cylinders.
Thus, the stimuli were different from kinetic depth
effect (KDE) stimuli (except when the horizontal cross-
section of a cylinder was circular, in which case the
stimuli were identical to KDE stimuli). KDE stimuli
were not used because they produce artifactitious depth
cues when the horizontal cross-section of a cylinder is
non-circular, such as changes in retinal angle subtended
by the cylinder over time. The motion cue in the stimuli
used here is an instance of a constant flow field. Con-
stant flow fields produce reliable and robust perceptions
of depth (e.g. Perotti, Todd, Lappin & Phillips, 1998;
Perotti, Todd & Norman, 1996).!

't is perhaps worth noting that whereas the texture-informative
stimuli contained only texture cues to the shape of a cylinder (gradi-
ents of texture element size, shape, and density), the motion-informa-
tive stimuli did not contain only motion cues. Rather, the gradient of
the density of the points of light in any frame of a motion-informa-
tive stimulus is a type of texture cue. Why, then, do we believe that
the motion-informative stimuli are appropriately named? Because the
density gradient is an extremely weak cue to a cylinder’s shape, it is
reasonable to believe that, at least to a first approximation, informa-
tion in the motion-informative stimuli regarding this shape is largely
or exclusively carried by the motions of the points of light. Other
researchers have also made this assumption (e.g. Perotti et al., 1998).
Evidence that density gradients are a weak cue to shape comes from
multiple sources (e.g. Blake, Biilthoff & Sheinberg, 1993; Cumming,
Johnston & Parker, 1993; Cutting & Millard, 1984; Knill, 1998).

The texture-and-motion informative stimuli con-
tained both texture and motion cues to the shape of a
cylinder. The appearances of the texture elements in
each frame of a movie were rendered using the texture
mapping algorithm described above; the motions of the
texture elements were simulated using the motion al-
gorithm described above.

The visual image of a cylinder subtended 2.21° of
visual angle in the horizontal dimension and 4.6° in the
vertical dimension. Stimuli were viewed monocularly
from a distance of 1.45 m. They were rendered using a
PowerComputing 225 computer (a clone of an Apple
Macintosh) and a Sony Trinitron Multiscan 20sf II
monitor. The video format was 100 Hz, noninterlace.
The background luminance was 0.02 cd/m? and the
luminance of the texture elements or the points of light
was 30 cd/m?.

3.2. Procedure

The experimental task was a depth-matching task in
which subjects were asked to adjust the height of an
ellipse until it matched the depth of a simulated cylin-
der (see Fig. 1). On each trial, subjects viewed a cylin-
der as depicted in either a texture-informative,
motion-informative, or texture-and-motion informative
stimulus. The center of the stimulus appeared 260 pixels
to the left of the center of the video screen. The
stimulus was displayed for 1000 ms, then it was erased,
and then it was displayed again 333 ms later. This
pattern was repeated until the subject made a response.

Fig. 1. On each trial, an experimental stimulus appeared on the left
side of the video screen, and an ellipse appeared in the center of the
screen. The subject could increase or decrease the height of the ellipse
by pressing the ‘d” and k> keys on the keyboard. The subject was
instructed to adjust the height of the ellipse so that it matched the
depth of the cylinder depicted in the experimental stimulus. The left
side of this figure shows an instance of a texture-informative stimulus.
The height of the ellipse on the right side of the figure is equal to the
depth of the simulated cylinder depicted in the stimulus.
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In addition to the experimental stimulus, an ellipse
also appeared at the start of a trial. The width of the
ellipse was equal to the width of the cylinders (160
pixels); the height of the ellipse was initially 170 pixels.
The ellipse appeared at the center of the video screen.
During the trial, the subject could increase or decrease
the height of the ellipse by pressing the ‘d” and ‘k’ keys
on the keyboard. The subject was instructed to adjust
the height of the ellipse so that it matched the depth of
the cylinder depicted in the experimental stimulus.
When the subject believed that the ellipse’s height
matched the cylinder’s depth, he or she pressed the
return key. (Note that if the height of the ellipse exactly
matched the depth of the cylinder, then the shape of the
ellipse was identical to the shape of a horizontal cross-
section of the cylinder.) The experimental stimulus was
then erased. On training trials, the subject received
feedback; the ‘target’ ellipse was displayed 260 pixels to
the right of the center of the video screen for 2333 ms.
The height of the target ellipse was equal to the depth
of the depicted cylinder. The word ‘Response’ appeared
below the ellipse that the subject adjusted, and the
word ‘Target’ appeared below the target ellipse. On test
trials, the subject was not shown the target ellipse.

Subjects participated in the experiment for 6 days.
The 6 days generally occurred within a 2-week period.
On Days 1-3, subjects completed six blocks of training
trials (this took about 1 h). Each block contained 60
trials (each of the 20 cylinders was depicted in each of
the texture-informative, motion-informative, and tex-
ture-and-motion informative stimulus conditions in a
random order). On Days 4—6, subjects completed two
blocks of training trials followed by five blocks of test
trials.

3.3. Subjects

The three subjects were graduate students at the
University of Rochester. They had normal or corrected-
to-normal vision. They were naive to the purposes of
the experiment.

4. Results

In the statistics literature, it is common to character-
ize a statistical estimator using the metrics of bias and
variance. We use these same metrics to characterize the
subjects’ responses on the depth-matching task. The
bias of a subject’s response at depth d is defined as

bias(d) =<{d>—d (16)

where d is a subject’s depth estimate when shown a
stimulus depicting a cylinder whose true depth is d, and
the brackets { ) denote an average. The bias is positive
if the subject tended to overestimate the true depth of a

cylinder, and negative if the subject tended to underesti-
mate this depth. The variance of a subject’s response at
depth d is defined as

variance(d) = {(d — {d>)*) (17)

Using the definition of the mean squared error (MSE)
of a subject’s response at depth d as

MSE(d) = {(d — d)*> (18)

it is easy to show that the mean squared error can be
expressed as the sum of two terms, one involving the
bias and the other involving the variance, as follows
(e.g. Casella & Berger, 1990)

MSE(d) = (bias(d))? + variance(d) (19)

Characterizing the subjects’ responses on the experi-
mental task using the metrics of bias and variance is
sensible for our current purposes. Recall that the opti-
mal cue combination rules defined above are dependent
on the variances of subjects’ responses. That is, the
variances of a subject’s responses when using texture-
informative stimuli and when using motion-informative
stimuli help determine the optimal responses when us-
ing texture-and-motion informative stimuli as discussed
above (see Egs. (6)—(10) and (12)—(15)). In addition,
according to the second optimal cue combination
model described above (model OM-C) the biases of a
subject’s responses also help determine the optimal
responses because they indicate the nature of a subject’s
prior distribution over cylinder depths (see Egs. (12)—
(15)). These points are illustrated below.

The 3 x 3 array of graphs in Fig. 2 shows the results
of the experiment for three subjects. Each column
corresponds to a different subject. The horizontal axis
of each graph gives the depth of a cylinder in pixels.
The vertical axes of the graphs in the top row give the
bias of a subject’s response on the test trials for each
depth; the standard deviation of a subject’s response is
given in the graphs in the middle row; the root mean
squared error (RMSE) of a subject’s response is given
in the graphs in the bottom row. The dotted line in
each graph is for responses to motion-informative stim-
uli; the dashed line is for responses to texture-informa-
tive stimuli; the solid line is for responses to
texture-and-motion informative stimuli. Note that, us-
ing the relationship in Eq. (19), the square of the data
in the bottom row (the square of the RMSEs is the
MSEs) is equal to the square of the data in the top row
(the square of the biases) plus the square of the data in
the middle row (the square of the standard deviations is
the variances).

The data in Fig. 2 reveal many features of subjects’
responses. The biases in subjects’ responses tended to
be positive when subjects were viewing cylinders that
are less deep than wide, and negative when they were
viewing cylinders that are more deep than wide. This
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Fig. 2. The results of the experiment. Each column corresponds to a different subject. The graphs in the top row give the bias of a subject’s
response for each cylinder depth; the standard deviation of a subject’s response is given in the graphs in the middle row; the root mean squared
error (RMSE) of a subject’s response is given in the graphs in the bottom row. The dotted line in each graph is for responses to
motion-informative stimuli; the dashed line is for responses to texture-informative stimuli; the solid line is for responses to texture-and-motion

informative stimuli.

trend is most evident for subjects JC and JH, and
appears to be strongest when these subjects were view-
ing texture-informative and motion-informative stimuli,
and less strong when these subjects were viewing tex-
ture-and-motion informative stimuli. This observation
suggests that when subjects were viewing stimuli that
contained only one informative cue, they tended to
assume that the cylinders were roughly circular. How-
ever, when viewing stimuli that contained both cues,
they either did not make this assumption, or else they
made it less strongly. It is possible that subjects may
have adopted this ‘circularity’ assumption because the
average depth of the cylinders used in the experiment
was nearly equal to the cylinders’ width. Overall, sub-
jects’ responses were less variable when both cues were
available. The standard deviations of the subjects’ re-
sponses tended to be less when they were viewing

stimuli that contained both texture and motion cues
compared to when they were viewing stimuli that con-
tained only a texture cue or only a motion cue. Consis-
tent with the above observations regarding biases and
variances, it was also the case that subjects’ depth
judgments were more accurate when both texture and
motion cues were present in a stimulus. Errors tended
to be larger under single-cue viewing conditions than
under multiple-cue viewing conditions.

We compared the subjects’ responses on test trials
using the texture-and-motion stimuli to those predicted
by the optimal cue combination models defined above.
The parameter values of the optimal models were set
based on subjects’ responses on trials when only one
cue was informative. Let optimal(d) denote an optimal
response; this is the predicted average response of a
subject to a texture-and-motion stimulus depicting a
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cylinder of depth d. Let {d,> and {(d,> denote the
subject’s average responses to motion-informative and
texture-informative stimuli depicting a cylinder of depth
d, respectively. Using the first optimal cue combination
model (model OM-U), the optimal response is equal to

optimal(d) = w,,{d,,> + w,{d,> (20)

where the linear coefficients w,, and w, were computed
based on the variances of the subject’s responses to
motion-informative and texture-informative stimuli ac-
cording to Egs. (7)-(10). For subject JC, the coeffi-
cients w,, and w, equal 0.58 and 0.42; w,, =0.45 and
w,=0.55 for subject CH; w,, =0.72 and w,=0.28 for
subject JH. Thus, the motion cue was mildly more
reliable than the texture cue for subject JC (i.e. depth
estimates based on the motion cue were less variable
than estimates based on the texture cue); for subject
CH, the texture cue was mildly more reliable; for
subject JH, the motion cue was strongly more reliable.

The three graphs in Fig. 3 compare the optimal
responses with the subjects’ responses. The horizontal
axis of each graph gives the values of optimal(d), the
predicted average responses to texture-and-motion
stimuli depicting cylinders of depth d for each of the 20
possible values of d; the vertical axis gives a subject’s
actual average responses (the dashed diagonal line indi-
cates where the data would lie if the predicted and
actual responses are identical). For subject JC, the
correlation between the optimal responses and the ac-
tual average responses is 0.96; the correlation for sub-
ject CH is 0.95; the correlation for subject JH is 0.99.
For subject JC, a linear regression in which the optimal
response is the independent variable and the actual
average response is the dependent variable yields a
slope of 1.34 and intercept of — 47.0; the slope and
intercept are 1.18 and — 6.68 for subject CH; the slope
and intercept are 1.35 and —53.08 for subject JH.
Based on these data, we conclude that the optimal cue

270
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combination model OM-U is a good model of subjects’
cue combination strategies under the circumstances
studied here. This is a surprising result, particularly
considering the fact that the model is strongly con-
strained (it is linear) and it does not have any free
parameters. There is a strong linear relationship be-
tween optimal responses predicted by model OM-U and
subjects’ actual average responses. Nonetheless, a visual
inspection of Fig. 3 suggests that there is room for
improvement in how well a linear model’s predictions
can match the subjects’ actual responses, and so we
consider optimal cue combination model OM-C.

Model OM-C includes the assumption that subjects
are biased toward believing that cylinders are approxi-
mately equally deep as wide when considering individu-
ally either a motion cue or a texture cue, though this
assumption is not used when considering both cues. As
evidenced by the bias data illustrated in Fig. 2, and as
was discussed above, this assumption is supported by
the experimental data. Using model OM-C, the optimal
response is

optimal(d) = wy(dy> +wdy — 2wpd} 20

where d% is the expected value of a cylinder’s depth
based upon a subject’s prior distribution of depth val-
ues. Using the assumption that cylinders are approxi-
mately equally deep as wide, we set d% equal to the
width of the cylinders (160 pixels). The linear coeffi-
cients w,,, w,, and w, were computed based on the
variances of a subject’s responses to motion-informative
and texture-informative stimuli, and based on the vari-
ance of a subject’s prior distribution of depth values
(see Egs. (13)—(15)).

The variance of a subject’s prior distribution of depth
values, denoted o3, is the only free parameter in model
OM-C. The value of this parameter was set by hand so
that the model’s predictions closely matched each sub-
ject’s responses (in the sense that the selected value
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Fig. 3. The horizontal axis of each graph gives the optimal responses according to the first optimal cue combination model (OM-U) to
texture-and-motion stimuli depicting cylinders of depth d for each of the twenty possible values of d; the vertical axis gives a subject’s actual
average responses. The dashed diagonal line indicates where the data would lie if the predicted and actual responses are identical.
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Fig. 4. The horizontal axis of each graph gives the optimal responses according to the second optimal cue combination model (OM-C) to
texture-and-motion stimuli depicting cylinders of depth d for each of the 20 possible values of d; the vertical axis gives a subject’s actual average
responses. The dashed diagonal line indicates where the data would lie if the predicted and actual responses are identical.

cylinder of depth d. Let {(d,> and {d,> denote the the
model’s predictions and the subject’s responses). The
value of the standard deviation o, was set to 55, 70, and
40 for subjects JC, CH, and JH, respectively. These
values are sensible given the experimental data. Subject
JH, for example, was most strongly biased toward
assuming that cylinders are approximately equally deep
as wide (see the bias data in Fig. 2), which is consistent
with a prior distribution with a small variance. Subject
CH was least strongly biased, which is consistent with a
prior distribution with a large variance. Once the vari-
ances of the prior distributions are specified, the linear
coefficients can be computed. For subject JC, the coeffi-
cients w,,, w,, and wp equal 0.94, 0.49, and 0.22, respec-
tively; w,, = 0.55, w,=0.73, and wp=0.14 for subject
CH; w,, = 1.03, w, = 0.37, and wp, = 0.20 for subject JH.

The three graphs in Fig. 4 compare the optimal
responses produced by optimal cue combination model
OM-C with the subjects’ actual average responses. For
subject JC, the correlation between the optimal responses
and the subject’s responses is 0.96; the correlation is 0.95
for subject CH; the correlation is 0.98 for subject JH. For
subject JC, a linear regression in which the optimal
response is the independent variable and the actual
average response is the dependent variable yields a slope
of 0.96 and intercept of 16.67; the slope and intercept are
0.91 and 36.03 for subject CH; the slope and intercept
are 0.97 and 7.59 for subject JH. Relative to model
OM-U, model OM-C seems to provide a better fit to the
experimental data as evidenced by the values of the slope
and intercept for each of the three subjects.

Based on these results, we conclude that optimal cue
combination model OM-C provides an outstanding fit to
the experimental data. This is the case despite the fact
that the model is linear, and despite the fact that it has
only one free parameter. This parameter is related to the
model’s use of the assumption that cylinders are approx-
imately equally deep as wide when considering individu-

ally either a motion cue or a texture cue, though this
assumption is not used when considering both cues. The
excellent fit between the model’s predictions and the
subjects’ responses suggests that human observers may
be making this assumption too. This conjecture is sup-
ported by the experimental data regarding the biases in
subjects, responses.

In summary, we have reported the results of a depth-
matching experiment in which subjects were asked to
adjust the height of an ellipse until it matched the depth
of a simulated cylinder defined by texture and motion
cues. In one-third of the trials the shape of the cylinder
was primarily given by motion information, in another
one-third of the trials it was given by texture information,
and in the remaining trials it was given by both sources
of information. Two optimal cue combination models
were described where optimality was defined in terms of
Bayesian statistics. The parameter values of the models
were set based on subjects’ responses on trials when either
the motion cue or the texture cue was informative. These
models provided predictions of subjects’ responses on
trials when both cues were informative. The results
indicate that optimal model OM-U provides a good fit
to the subjects’ data, and model OM-C provides an
exceptional fit. Because the predictions of the optimal
models closely match the experimental data, we conclude
that observers’ cue combination strategies are indeed
statistically optimal, at least under the conditions studied
here.
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