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Nature, nurture, and the development of functional
specializations: A computational approach

ROBERT A. JACOBS
University of Rochester, Rochester, New York

The roles assigned to nature and nurture in the acquisition of functional specializations have been
modified in recent years due to increasing evidence that experience-dependent processes are more in-
fluential in determining a brain region’s functional properties than was previously supposed. Conse-
quently, one may study the developmental principles that play a role in the acquisition of functional
specializations. This article studies the hypothesis that a combination of structure-function correspon-
dences plus the use of competition between modules leads to functional specializations. This princi-
ple has been instantiated in a family of neural network architectures referred to as “mixtures-of-
experts” architectures. These architectures are sensitive to structure—function relationships in the
sense that they often learn to allocate to each task a network whose structure is well matched to that
task. The viewpoint advocated here represents a middle ground between nativist and constructivist

views of modularity.

The concept of modularity is central to modern theo-
ries of the mind and brain. Indeed, the notion of modu-
larity motivates significant portions of current research
in the cognitive neurosciences, including research on per-
ception, language, motor control, memory, and neural
systems organization. These investigations often address
at least two major theoretical and empirical issues. The
first issue concerns the modularization of cognitive and
behavioral faculties. Researchers seek to discover the ex-
tent to which different brain regions are specialized to
perform different functions and the extent to which
seemingly different behaviors have distinct underlying
functional and neural processes, as well as to assess
whether a given set of functional specializations is logi-
cal or efficient from an information processing view-
point. The second issue concerns the acquisition of func-
tional specializations. Researchers studying acquisition
want to know whether the developmental processes that
determine the functional properties of a brain region op-
erate according to fixed genetic instructions or whether
these processes are also experience sensitive.

The roles assigned to nature and nurture in the acqui-
sition of functional specializations have been modified
in recent years. A common view in psychology during
the 1980s was that genetic factors played an exclusive
role, or at least an overwhelmingly significant role, in de-
termining the functional modules that characterize the
human mind and in determining the specific brain re-
gions that subserve each of the modules. For example, an
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emphasis on genetic determinism and the existence of
stipulated modules can be found in Fodor’s (1983) writ-
ings regarding so-called input systems (e.g., perceptual
systems, motor systems, language systems). Fodor wrote,

No facts now available contradict the claim that the neural
mechanisms subserving input analysis develop according
to specific, endogenously determined patterns under the
impact of environmental releasers. This picture is, of
course, quite compatible with the view that these mecha-
nisms are instantiated in correspondingly specific, hard-
wired neural structures. It is also compatible with the sug-
gestion that much of the information at the disposal of
such systems is innately specified. (Fodor, 1983, p. 100)

Recently, however, this strong nativist view has been called
into question due to increasing evidence that experience-
dependent processes are more influential in determining
a brain region’s functional properties than was previously
supposed.

Much of this evidence comes from studying cortical
localizations of cognitive functions in human patients.
For example, Ojemann, Ojemann, Lettich, and Berger
(1989) found substantial individual variability in the
exact cortical location of language function between pa-
tients and, thus, concluded that language cannot be reli-
ably localized on the basis of anatomic criteria alone. Re-
lated evidence is provided by studies of hemidecorticate
infantile hemiplegics (patients who had either the left or
right hemisphere removed soon after birth due to cere-
bral injury). Dennis and Whitaker (1976) found that pho-
nemic and semantic linguistic abilities are similarly de-
veloped in patients who have had either their left or right
cerebral hemisphere removed, though syntactic compe-
tence is superior in patients with intact left hemispheres
(see also Dennis & Kohn, 1975). Additional evidence has
been obtained in studies comparing the behavior and event-
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related brain potentials (ERPs) of hearing adults and
congenitally deaf adults during the performance of vi-
sual attentional tasks. Neville and her colleagues (sum-
marized in Neville, 1995) found that ERPs to foveal
stimuli were similar in congenitally deaf and hearing
adults; however, ERPs over superior temporal cortical
areas to peripheral stimuli were two to three times larger
in deaf than in hearing subjects. Deaf adults also re-
sponded faster than hearing subjects in tasks requiring
detection of movement in peripheral stimuli, though re-
sponse times did not differ when foveal stimuli were
used. On the basis of these results, Neville hypothesized
that the portion of the visual system that mediates the
processing of peripheral stimuli may, through a process
of competitive interactions, take over brain regions in the
congenitally deaf that would normally be auditory corti-
cal fields either in primary sensory or multimodal corti-
cal areas.

Further evidence of the experience-dependent nature
of the acquisition of functional specializations comes
from the study of developmental neurobiology. O’Leary
(1989) argued that adult mammalian neocortex consists
of numerous distinct areas, whereas developing neocor-
tex lacks many of these area-specific distinctions. He re-
viewed evidence that this less differentiated structure
undergoes considerable experience-dependent modifica-
tion after neurogenesis that results in the emergence of
well-defined neocortical areas. An example of experi-
ence-sensitive acquisition of functional properties was
provided by Sur and his colleagues (e.g., Sur, Pallas, &
Roe, 1990). These researchers induced retinal afferents
to project to the medial geniculate nucleus (MGN), also
referred to as “auditory thalamus.” Consequently, visu-
ally responsive cells were recorded in MGN. MGN pro-
jects to primary auditory cortex and visually responsive
cells were also found in this region. These cells tended
to have large receptive fields, with roughly one third of
the fields being orientation selective and a similar pro-
portion being direction selective. Similar to the fields of
simple or complex cells in normal visual cortex, the ori-
ented receptive fields had either separate or coextensive
on and off zones. In addition, many cells were driven
binocularly. These results support the hypothesis that
“primary sensory areas arise from regions of developing
neocortex that are initially similar or to some extent
pluripotent” (O’Leary, 1989, p. 401).

Nearly all of the research investigating the modular
nature of the brain in general, and the acquisition of
functional specializations in particular, is behavioral or
neuroscientific in character. In contrast, my colleagues
and I have been using computer simulations in order to
study principles that might underlie the development of
functional specializations. The framework that we have
developed relies on two basic notions. The first notion is
that there exist structure—function correspondences in
the brain. Because different brain regions have different
structural properties (e.g., different patterns of connec-

tivity among their neurons), different regions are best at
performing different types of functions. The second no-
tion is that, analogous to Darwinian evolutionary pro-
cesses, brain regions compete for the ability to perform
a set of tasks. Regions become functionally specialized
due to the competition; that is, different regions learn to
perform different functions. Most importantly for our
purposes, structure—function correspondences serve to
bias the competition; each region tends to win the com-
petition for those functions for which its structure makes
it particularly well suited.

These two notions are not original to the computa-
tional framework reviewed in this article. The idea that
competition leads to functional specializations has ap-
peared in the literature in the form of the hypothesis that
hemispheric specialization in humans is due to competi-
tion between neural subsystems. For example, Kosslyn
(1987) proposed that subsystems of the brain compete to
learn about inputs. If the output of a subsystem is used in
subsequent computational processing, then the strengths
of the neural connections in that subsystem are altered so
that the subsystem produces the output faster and with
less noise when the input recurs in the future. Subsys-
tems whose outputs were not used in subsequent pro-
cessing remain unchanged. Theories of brain lateraliza-
tion also include the hypothesis that structure—function
correspondences in the cerebral hemispheres may influ-
ence the lateralization of brain functions (Geschwind &
Galaburda, 1987). For example, if the left and right hemi-
spheres compete for the ability to process language, then
anatomical differences between the two hemispheres may
bias the competition so that the left hemisphere typically
wins.

This article reviews a novel computational framework
that implements a particular instantiation of these ideas.
A contribution of this work is that it details, evaluates,
and elaborates these ideas in a more explicit manner than
has previously been possible. The computational imple-
mentation uses a family of neural network architectures
referred to as “mixtures-of-experts” (ME) architectures,
as well as a corresponding family of learning rules.
These architectures consist of a number of loosely cou-
pled modules. Adaptation in these systems is a combi-
nation of associative learning and competitive learning.
Simulation results using these architectures show that it
is possible to develop functionally specialized modules
in an experience-dependent manner; that is, genetic stip-
ulation is not required. However, genetic factors do play
arole in that they influence the architectural structure of
each module, thereby biasing, though not strictly deter-
mining, the development of each module’s specific func-
tional specialization. Because the functional specializa-
tions developed by the modules of an architecture are
highly sensitive to the experiences of that architecture,
and because genetic factors are moderately strong influ-
ences on the development of the specializations, the ME
framework is compatible neither with a strong empiricist
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view, nor with a strong nativist view, but rather with a
view that emphasizes both environmental and genetic
contributions to the behavior of a learner.

The article is organized as follows. First it overviews
neural network models in general, and the ME family of
architectures in particular. The next section reports the
results of a number of simulation studies using a variety
of ME architectures. My discussion of these studies does
not emphasize modeling particular sets of experimental
data (though the reader interested in this aspect of the
work is encouraged to see the original articles). Rather,
the emphasis is on showing the logical coherency, as well
as some possible elaborations, of theories that attempt to
account for the development of functional specializations
via a combination of structure—function correspondences
plus the use of competition between modules. The fol-
lowing section overviews some variants and extensions
of the basic ME architecture, including a system in
which some, but not all, of the modules participate in the
competition, and also a hierarchical system. The final
section relates the approach described here to a recent
trend in developmental psychology toward theories that
advocate a middle ground between nativist and con-
structivist views of modularity.
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Figure 1. (A) A three-layered neural network. (B) A visual dis-
play of a character and the character classification.
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ME ARCHITECTURES

Neural networks, also known as connectionist networks
or parallel distributed processing models, have become
over the past decade a popular tool for studying cognitive
and neural processes (e.g., Quinlan, 1991; Rumelhart, Mc-
Clelland, & the PDP Research Group, 1986). Each network
consists of a number of simple processing elements, re-
ferred to as units, that are connected to each other to form
a weblike structure. An example of a network is shown
in Figure 1A. Each unit has associated with it an activa-
tion value that is typically a real number between 0 and 1.
Associated with each connection between two units is a
real-valued strength or weight. The activation of a unit is
computed on the basis of the weighted sum of the acti-
vations of the units that project to it. Learning in neural
networks involves adapting the connection strengths so
that the network performs a desired associative task.

As an illustration, suppose that we would like a net-
work to perform a character recognition task. At each
time step, a letter is displayed on a panel that is 5 pixels
wide and 5 pixels high (see Figure 1B). The network
must decide which one of the 26 letters is currently dis-
played. Suppose that we use a network whose structure
is similar to the one in Figure 1A. It includes 25 input
units, 1 for each of the 25 pixels in the visual display. The
activation of each input unit is set to 1 if its correspond-
ing pixel is black, and set to 0 if its corresponding pixel
is white. The input units send projections to a number of
hidden units that, in turn, send projections to 26 output
units. The target activation of an output unit is 1 if the
unit corresponds to the visually displayed letter; other-
wise it is 0. Most learning algorithms for neural networks
work by adjusting the network’s connection strengths until
the output unit activations approximate their target values
(e.g., Rumelhart, Hinton, & Williams, 1986). In our ex-
ample, the network’s connection strengths would be ad-
Justed at each time step so that the output unit corre-
sponding to the letter that is currently displayed has an
activation near 1 and the activations of all other output
units are near 0. An interesting feature of neural net-
works is that it is possible to examine their inner work-
ings in order to determine how they have learned to per-
form a task. For the character recognition task, networks
typically develop hidden units that act as “visual feature
detectors.” For example, a hidden unit may have a large
activation when the display contains a line at a particu-
lar orientation; otherwise it has a small activation. Dif-
ferent units become tuned to lines at different orienta-
tions (Rueckl, Cave, & Kosslyn, 1989).

The most common neural network architecture is a
single network in which a set of input units connect to a
set of hidden units that connect to a set of output units.
For our purposes, it is useful to note that this generic ar-
chitecture is relatively unstructured, and its internal
components are relatively undifferentiated. Researchers
in the neural network community often implicitly advo-
cate nonmodular processing systems, as evidenced by
the frequent application of these generic networks to the
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study of a wide variety of complex cognitive tasks. This
is, at least in part, what critics mean when they accuse
neural network researchers of adopting a tabula rasa ap-
proach to the study of mind (see Pinker & Prince, 1988).
In contrast, my colleagues and I have advocated the use
of highly structured modular architectures in which dif-
ferent networks learn to perform different tasks. An im-
portant property of modular architectures is that they can
take advantage of task decompositions, meaning that a
difficult task can be decomposed into a set of simpler
subtasks and each network can learn to perform one of
the subtasks. Modular architectures learn to perform
tasks faster than single networks because task decompo-
sitions reduce the complexity of the function learned by
each network of the architecture. Furthermore, suitably
designed modular architectures also show better general-
ization, more interpretable representations, and more ef-
ficient use of hardware (Jacobs, Jordan, & Barto, 1991).

My colleagues and I have developed a modular archi-
tecture, referred to as the mixtures-of-experts (ME) archi-
tecture, that learns task decompositions in the sense that
it uses different networks to learn input—output training
patterns from different regions of the input space (i.e.,
the space of all possible inputs). There are two technical
issues addressed by the ME architecture: (1) detecting
that different training patterns belong to different tasks
and (2) allocating different networks to learn the differ-
ent tasks. Task decompositions are encouraged by en-
forcing a competition among the networks constituting
the architecture. As a result of the competition, different
networks learn different training patterns and, thus, learn
to compute different functions. The architecture was first
presented in Jacobs, Jordan, Nowlan, and Hinton (1991)
and combines earlier work on learning task decomposi-
tions in a modular architecture by Jacobs, Jordan, and
Barto (1991) with the mixture models view of competi-
tive learning advocated by Nowlan (1990) and Hinton
and Nowlan (1990).

The architecture, which is illustrated in Figure 2, con-
sists of two types of networks: expert networks and a gat-
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Figure 2. The mixtures-of-experts architecture consists of ex-
pert networks and a gating network. The expert networks com-
pete to learn the training patterns; the gating network mediates
the competition.

ing network. The expert networks compete to learn the
training patterns, and the gating network mediates this
competition. Whereas the expert networks have an arbi-
trary connectivity, the gating network is restricted to have
as many output units as there are expert networks, and
the activations of these output units must be nonnegative
and sum to 1. The output of the entire architecture, de-
noted y, is the linear combination of the experts’ outputs:

Y=gy (1)

where y; denotes the output of the ith expert network and
g; is the gating network output corresponding to the ith
expert.

The learning process of the ME architecture combines
aspects of competitive and associative learning. Mathe-
matically, the architecture may be characterized as a
probability model known as a conditional mixture den-
sity model. The form of the mixture components depends
on the nature of the task: For regression tasks, the model
is a conditional mixture of normal distributions; for clas-
sification tasks, the model is a conditional mixture of bi-
nomial or multinomial distributions. Because the archi-
tecture is a probability model, it is possible to quantify
its performance using an appropriate likelihood func-
tion. The architecture’s learning process is an optimiza-
tion process that attempts to maximize the likelihood
function. A mathematical description may be found in
Jacobs, Jordan, Nowlan, and Hinton (1991), Jacobs and
Jordan (1993), Jordan and Jacobs (1994), and Peng, Ja-
cobs, and Tanner (1996). Here I present an intuitive de-
scription. During training, the connection strengths of
the expert and gating networks are adjusted simulta-
neously. Each expert network’s output is compared with
the target output at each time step. The expert whose out-
put most closely matches the target is called the winner
of the competition; the other experts are called losers.
An expert receives an amount of training information
that is proportional to its relative performance on the
training pattern. Whereas the winning expert receives a
lot of information, and thus learns a lot about the current
training pattern, the losing experts receive little or no in-
formation, and thus learn little about the current pattern.
The gating network receives a different type of training
information than do the expert networks. The experts re-
ceive information about the current input—output pattern
provided by the environment. In contrast, the gating net-
work receives information about the relative perfor-
mances of the experts on the current pattern. It adjusts its
connection strengths so that when the current input (or a
similar input) recurs in the future, the activation of its
output unit corresponding to the winning expert will be
larger (i.e., closer to 1) and the activations of its remain-
ing output units will be smaller (closer to 0).

The learning process has a positive feedback effect
that forces different expert networks to learn different
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tasks. This effect relies on the fact that, in general, input—
output training patterns from the same task share a com-
mon underlying structure, whereas patterns from differ-
ent tasks have different underlying structures. Suppose
that at some time step, an expert has won the competition
to learn some of the training patterns from one particu-
lar task. The expert will, therefore, have at least partial
“knowledge” of the structure of the task. Consequently,
in the future it will be likely to win the competition for
the remaining patterns from that task. The expert will
thereby become specialized for performing the task. As
aresult of this specialization, however, this expert will be
likely to perform poorly on patterns from other tasks—
-unless some tasks happen to be very similar. Thus other
experts will be likely to win the competition for the pat-
terns from other tasks. In this way, different experts win
the competition to learn patterns from different tasks,
and the experts become specialized for performing dif-
ferent tasks.

From the viewpoint of the cognitive neurosciences, an
interesting property of the ME architecture is the roles it
assigns to nature and nurture in the acquisition of func-
tional specializations. A feature of the architecture is that
it tends to allocate to each task an expert network whose
structure is well matched to that task. Structural proper-
ties of a network, such as its topology or receptive field
characteristics, bias a network so as to make it a partic-
ularly good learner for some tasks but a poor learner for
other tasks. Note that it is not simply the case that more
complex networks (e.g., networks with many units, all
connected to each other) learn faster than simpler net-
works. Instead, there exist structure—function corre-
spondences, meaning that the structural properties of a
network influence the set of tasks that the network can
learn quickly, and the set that it can learn only with dif-
ficulty, if at all. Although little is formally known about
the relationships between a network’s structure and the
nature of a task, some simple cases are clearly under-
stood. For example, linear networks (i.e., networks with-
out hidden units) learn to perform linear tasks faster than
nonlinear networks; however, they cannot learn to per-
form nonlinear tasks. When expert networks with differ-
ent structural properties compete to learn the training
patterns, each network tends to win the competition for
those patterns belonging to the task for which its structure
makes it a good learner. Consequently, the architecture is
capable of discovering structure—function relationships.
The performance of the architecture is consistent with
the theory that genetic instructions do not necessarily
stipulate directly the function to be performed by each re-
gion of the brain (e.g., there is no genetic stipulation that
language processing is predominately performed by the
left cerebral hemisphere). Instead, genetic instructions
bias the acquisition of functional specializations by as-
signing different structural properties to different re-
gions. These structurally different regions may then, due
to their performance characteristics, take on particular
functions for which they are well suited (see Bever,
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1980, and Kosslyn, 1987, for related processing accounts
of cerebral lateralization).

As noted, the gating network composes the output of
the ME architecture in the sense that it determines the
extent to which each expert’s output contributes to the
output of the architecture as a whole. Note, however, that
the ME architecture is equivalent to another architecture
that contains expert networks but does not contain a gat-
ing network (by equivalent I mean that the two systems
are exact notational variants of each other). Instead, the
new architecture contains inhibitory connections among
the expert networks so that each expert can suppress the
outputs of the other experts. The strengths of these in-
hibitory connections are context dependent because they
depend on the value of the current input pattern (units
whose connection strengths are context dependent are
known as sigma-pi units, Rumelhart, Hinton, & McClel-
land, 1986). At the end of training, the expert that was
the winner of the competition in the context of the cur-
rent input (or closely similar inputs) strongly suppresses
the outputs of the other experts; experts that were losers
of the competition do not suppress, or only weakly sup-
press, the other experts’ outputs. This new architecture is
notable in part because it highlights the fact that if one
attempts to find a literal correspondence between neural
systems and the ME architecture, there is no need to
speculate about which specific structure in human ner-
vous systems might correspond to the gating network.
Instead, the job of the gating network can be performed
by sets of inhibitory connections among neural modules.
Further, this architecture is notable because the results
of some experiments may be interpreted as suggesting
that neural modules may use inhibitory interactions of
this kind.

For example, Gazzaniga (1977; cited in Glass, Holyoak,
& Santa, 1979) presented different visual inputs simul-
taneously to each hemisphere of a split-brain patient
(i.e., a patient who has had the corpus callosum severed;
this structure normally carries signals between the two
cerebral hemispheres). While the patient centered his/her
gaze on a fixation point, a word was briefly presented so
that half of the letters fell to one side of the point and
half the letters fell to the other side. If, for instance, the
word was target, then tar fell in the patient’s left visual
field and was processed by the right hemisphere, whereas
get appeared in the right visual field and was processed
by the left hemisphere. When presented with four alter-
natives and asked to point to the one that matched the
visual input, the patient consistently pointed to the stim-
ulus that was presented to the right visual field regard-
less of which hand the patient used to perform the task.
According to Glass et al. (1979), these results indicate
that when there is a conflict between two plausible re-
sponses in this task, the left hemisphere inhibits the out-
puts of the right hemisphere and assumes motor control
of both the left and right hands in making the response.
As a second example, the hypothesis that the left hemi-
sphere normally inhibits the right hemisphere during the
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performance of linguistic tasks can also be found in the
functional localization model of Moscovitch (1973). He
speculated that the linguistic competence of the right
hemisphere of normals is equal to that of split-brain sub-
jects. The reason why experimental results often show
that the right hemisphere of normals has limited linguis-
tic abilities is that the left hemisphere normally inhibits
the right hemisphere’s attempts to process information
linguistically through inhibitory influences across the
corpus callosum. Experimental and theoretical results of
this sort suggest that the inhibitory interactions among
the expert networks of a ME architecture, as notationally
embodied in the architecture’s gating network, may
closely resemble some types of interactions among
neural modules.

SIMULATION RESULTS

The ME architecture can be used for many different
purposes. Some of my research has concerned the char-
acteristics of specialization or modularity in general;
other parts of my work have concerned particular hy-
potheses about high-level visual processing. For exam-
ple, the ME architecture can be used to compare the rel-
ative efficiencies with which different proposed sets of
specializations can be acquired, and can also be used to
compare the efficiency of learning in a device that ac-
quires functional specializations versus that of single
network devices that do not perform task decomposi-
tions. In addition, because the ME architecture tends to
allocate to each task an expert network whose structure
is well matched to that task, it is capable of discovering
the structure—function relationships that are suitable for
particular cognitive functions.

Jacobs, Jordan, Nowlan, and Hinton (1991) illustrated
the use of an ME architecture on a spoken vowel dis-

crimination task. The data were collected by Peterson
and Barney (1952) and consisted of the first two for-
mants of vowel utterances spoken by 75 different speak-
ers. Exemplars from four vowel classes are shown in Fig-
ure 3 (vowels [i], [1], [a], and [a]). The horizontal axis of
this figure gives the first formant value of each utter-
ance, and the vertical axis gives the second formant
value (the formant values have been linearly scaled). The
lines within the graph in the figure show a typical final
outcome of training an ME architecture. The line labeled
Net 1 indicates that the system used one expert network
to discriminate between instances of the vowels [i] and
[1], whereas the lines labeled Net 0 and Net 2 indicate
that two experts were used to discriminate between the
vowels [a] and [a]. The boundary between the instances
of [a] and [a] has a slight bend in it, and so the architec-
ture approximated this boundary by using different ex-
perts on each side of the bend. The line labeled Gate 0:2
indicates that the gating network turned on Expert Net-
work 0 (i.e., g, = 1) for instances to the left of this line,
whereas it turned on Expert 2 for instances to the right
of the line. For our purposes, this simulation serves to il-
lustrate two points. First, at the end of training, expert net-
works are functionally specialized. For example, Expert
Network 1 is able to discriminate between the vowels [i]
and [1], but it has not learned anything about the vowels
[a] and [a]. Second, different expert networks become
specialized for different functions; for example, Expert 1
has a different functional specialization than do Ex-
perts 0 and 2. A drawback of this simulation for current
purposes is that it does not illustrate the fact that the ME
architecture is sensitive to structure—function corre-
spondences (the networks in this simulation were identi-
cal except for the initial random settings of their connec-
tion strengths). However, the three simulations described
below highlight this property.

Gate 0:2

Te

0 + +
0 0.3 0.6
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Figure 3. Data for the vowel discrimination task, and expert and gating networks decision lines at the

end of training.
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Jacobs, Jordan, and Barto (1991) provided an illustra-
tion of how the ME architecture may allocate a network
with an appropriate structure to each of several high-level
visual tasks. An architecture was trained to perform a vi-
sual object recognition task and a spatial localization task
(these tasks were designed by Rueckl et al., 1989, and are
meant to be analogous to the “what” and “where” visual
functions attributed to temporal and parietal cortical
pathways, respectively; see Mishkin, Ungerleider, &
Macko, 1983). The data were formed by placing one of
nine different objects at one of nine different locations on
aretinal array. The localization task (identify the object’s
retinal location), but not the recognition task (identify the
object on the retina), is linearly separable, meaning that
it can be performed by a network with no hidden units.
The ME architecture consisted of three expert networks,
each with a different structure. The first expert had 36
hidden units, the second expert had 18 hidden units, and
the third expert did not have any hidden units. Although
either of the expert networks that contained hidden units
could have learned to perform both tasks, that is not how
the ME architecture allocated its expert networks. Rather,
the architecture tended to use the expert with no hidden
units to learn the localization task, and a network with
hidden units to learn the recognition task. By doing so,
the architecture showed an appropriate match between
the structure of its expert networks and the nature of the
tasks; a network without hidden units won the competi-
tion to learn the linearly separable localization task,
whereas a network with hidden units won the competi-
tion to learn the nonlinear recognition task.

As a different example, Jacobs and Kosslyn (1994)
considered the hypothesis that different subsystems of
the brain are responsible for making categorical visual
judgments and for making coordinate visual judgments.
Categorical judgments include classifying the spatial re-
lations between two stimuli (e.g., Object A is above/below
Object B) and classifying the identity of a stimulus (e.g.,

Object A is a dog). Coordinate judgments include eval- -

uating quantified spatial relations (e.g., Object A is
3.5 in. away from Object B) and identifying a visual
stimulus as a particular exemplar (e.g., Object A is Fido).
Note that much of the information needed to make cate-
gorical judgments is irrelevant for making coordinate
judgments and, conversely, much of the information
needed to make coordinate judgments is irrelevant for
making categorical judgments. Categorization, for ex-
ample, requires that various exemplars be grouped and
treated as equivalent, whereas the identification of indi-
vidual exemplars requires treating the instances as distinct.
Therefore, from an information processing viewpoint, it
is logical that the brain might use different subsystems to
make categorical and coordinate visual judgments. Ja-
cobs and Kosslyn reviewed experimental evidence from
normal subjects for a double dissociation between cate-
gorical and coordinate judgment tasks. Laeng (1994)
found the same double dissociation for categorical and
coordinate spatial relations judgments in a study using
unilateral stroke patients.
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Kosslyn, Chabris, Marsolek, and Koenig (1992) spec-
ulated that there might be a structure—function relation-
ship between receptive field sizes and visual judgments.
Systems that make categorical visual judgments should
be more efficient if they monitor visual neurons with
small, nonoverlapping receptive fields (populations of
such neurons provide relatively low-resolution represen-
tations of visual images), whereas systems that make co-
ordinate visual judgments should be more efficient if
they monitor neurons with large, overlapping receptive
fields (populations of such neurons provide high-resolu-
tion representations of visual images).! Cowin and Hel-
lige (1994) provided experimental evidence in support
of this relationship by examining the effects of dioptric
blurring on the performance of different spatial process-
ing tasks using the same visual stimuli. Jacobs and Koss-
lyn (1994) used computer simulations to evaluate the
proposed structure—function relationship, training neural
networks to identify each visual stimulus as a member
of a particular category (“shape category task”) or to
identify a stimulus as a particular exemplar (“shape co-
ordinate task™). Networks did not view the visual stim-
uli directly; the stimuli were filtered through Gaussian
units with restricted receptive fields. Figure 4 shows the
units’ receptive fields superimposed on top of the input
array. The units with small receptive fields (left) provide
a low-resolution representation of the array, whereas the
units with large receptive fields provide a high-resolu-
tion representation. It was found that, indeed, the cate-
gory task was learned faster when the receptive fields
were relatively small, whereas the coordinate task was
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Figure 4. The Gaussian units’ receptive fields superimposed on
the input array. The units with small receptive fields (left) provide
a low-resolution representation of the array, whereas the units with
large receptive fields provide a high-resolution representation.



306 JACOBS

learned faster when the receptive fields were relatively
large. Networks in which the receptive field sizes were
allowed to adapt developed small receptive fields when
trained on the categorical task and large receptive fields
when trained on the coordinate task. When using an ME
architecture, expert networks with small receptive fields
tended to win the competition for the category task,
whereas the coordinate task tended to be won by experts
with large receptive fields. Overall, this set of simula-
tions supports the hypothesized set of functional spe-
cializations and structure—function relationships by
showing that these specializations and relationships are
computationally efficient.

A third illustration of the ME architecture’s sensitiv-
ity to structure—function relationships was provided by
Erickson and Kruschke (1996; see also Kruschke & Er-
ickson, 1994). These authors conducted a number of ex-
perimental studies to assess how people learn to catego-
rize a set of visual items and to test how people use their
knowledge of the categories when evaluating novel stim-
uli. Most of the training and test items used in the stud-
ies could be categorized according to a rule, though there
also existed some items that were exceptions to the rule.
The investigators compared the experimental results to
the results of training two computational architectures.
The first architecture was ALCOVE (Kruschke, 1992),
an exemplar-based neural network that has been fit suc-
cessfully to a wide range of data from categorization ex-
periments. In short, ALCOVE uses hidden units whose
receptive fields are restricted, local regions in the space
of possible visual inputs. The second architecture was an
ME architecture with two expert networks. These ex-
perts networks had different structures. One expert was
ALCOVE. The other expert used hidden units that indi-
cated whether a given input had a relatively low or high
value along a stimulus dimension. Thus it could learn
rules such as “an input belongs to Category A if it has a
high value along Stimulus Dimension 1; otherwise it be-
longs to Category B.” For this reason, the ME architec-
ture is a hybrid model that includes an exemplar-based
categorization module and a rule-based categorization
module. The gating network of the architecture used the
hidden unit representation of ALCOVE; that is, it used
hidden units with local receptive fields in the space of all
possible inputs.

In one experiment, Erickson and Kruschke (1996)
trained subjects to categorize a variety of stimuli and
then asked the subjects to categorize novel test items
whose values along the stimulus dimensions were outside
the range of values used during training. Some of these
test items were more similar to training items that fol-
lowed the rule, and other test items were more similar to
exception training items. Rule-based theories of catego-
rization predict that subjects will always follow the rule;
exemplar-based theories predict that subjects should
treat as exceptions those test items that are most similar
to exception training items. The empirical results support

the rule-based theories. Comparison of the performance
of the computational models revealed that the ME archi-
tecture’s performance agreed with the empirical data, but
ALCOVESs did not.

In a second experiment, Erickson and Kruschke
(1996) varied the frequency with which both rule and ex-
ception training items were presented. Results suggest
that subjects tended to overgeneralize during early peri-
ods of training; that is, they tended to treat exception
stimuli as rule stimuli. The ME architecture, but not
ALCOVE, showed qualitatively similar behavior. An
analysis of the test phase of the experiment showed that
training item frequencies influenced subjects’ classifi-
cations of test stimuli. Subjects showed fewer rule re-
sponses to test stimuli when the frequency of similar ex-
ception training items was increased and showed more
rule responses when the frequency of similar rule training
items was increased. Once again, the ME architecture,
but not ALCOVE, also showed this behavior. Erickson
and Kruschke concluded that because the ME architec-
ture contains two different expert networks, one whose
structure facilitated exemplar-based processing and one
whose structure facilitated rule-based processing, it
could account for the major findings in the experimental
data, whereas the exemplar-based ALCOVE model
could not.

VARIANTS AND EXTENSIONS OF THE
ME ARCHITECTURE

The ME architecture is one member of a family of ar-
chitectures. The importance of other members arises
when one considers additional learning theory issues in
the context of modular systems. For example, complex
tasks may often be decomposed into subtasks that are
only roughly distinct; that is, the subtasks may share
some common features. The ME with a share network is
an architecture that uses one network (a share network)
to learn the shared features and uses different networks
(expert networks) to learn the distinct features of each
subtask. As before, the experts compete to learn the
training patterns. The share network does not take part in
the competition; it attempts to learn features of all train-
ing patterns. The output of the architecture, y, is the sum
of the output of the share network, y,, and the gated out-
puts of the expert networks:

Y=Y, +2.8 Vi (2)

i=1

The training procedure for this architecture is identical
to the training procedure for the standard ME architecture
with the exception that the networks’ weights are adjusted
so as to maximize a likelihood function that takes into
account the presence of the share network.

In addition to the study of high-level vision, the ME
family of architectures has also been applied to the adap-
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tive control of dynamical systems. The dynamics of non-
linear systems often vary qualitatively over their param-
eter space. Methods for designing piecewise control laws
for dynamical systems, such as gain scheduling, are use-
ful because they circumvent the problem of determining
a single global model of the system dynamics. Instead,
the system dynamics are approximated using local mod-
els that vary with the system’s operating conditions. When
a controller is learned instead of designed, analogous is-
sues arise. The standard ME architecture and the ME with
a share network represent novel approaches to learning
piecewise control laws. Jacobs and Jordan (1993) found
that the ME with a share network showed fast learning of
the inverse dynamics of a simulated two-joint robot arm
that was required to move a variety of payloads, each of
a different mass, along a desired trajectory. The share
network learned to supply the torques necessary to con-
trol the robot arm with no payload, and different expert
networks learned to add extra torques to compensate for
the mass of different payloads. That is, one expert
learned to add extra torques for light payloads, another
expert added extra torques for payloads of moderate
mass, and a third expert added extra torques for heavy
payloads.

If it is useful to divide a task into subtasks, then it
ought to be useful to divide subtasks into subsubtasks,
and so on. The ME architecture can be extended to a hi-
erarchical mixtures-of-experts (HME) architecture that
uses competition to recursively split the input space into
nested regions and to learn separate associative map-
pings within each region. Figure S illustrates a two-level
hierarchy. The first level (left) consists of two ME archi-
tectures. The outputs of these architectures are weighted
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Figure 5. A two-level hierarchical mixtures-of-experts (ME) ar-
chitecture. The outputs of two ME architectures at the lowest
level (left) are weighted by a gating network at the highest level
(right).
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by a gating network at the second level of the hierarchy
(right). In general, the networks of the hierarchy may be
trained to maximize an appropriate likelihood function
via a hill-climbing procedure (Jordan & Jacobs, 1992).
However, my colleagues and I have found it useful to pur-
sue other optimization procedures when using an HME
architecture.

An important theoretical question concerning learn-
ing in modular systems is whether or not adaptation
strategies are available to modular systems that are not
available (or not easily available) to nonmodular devices
that allow the modular systems to show rapid learning. If
we restrict ourselves to a special case of the HME archi-
tecture, namely the case in which each expert and gating
network is a generalized linear model (i.e., a model con-
sisting of a linear transformation followed by a mono-
tone nonlinear transformation so that the distribution of
the model’s output is a member of the exponential fam-
ily), then it appears that such a strategy exists. The HME
architecture may be trained to maximize a likelihood
function using the expectation-maximization (EM) al-
gorithm (Jordan & Jacobs, 1994). Nonlinear learning
systems that lack a modular structure often cannot take
advantage of this algorithm. The EM algorithm is an it-
erative, non-gradient—based algorithm for maximizing
likelihood functions that has proven to be extremely ef-
ficient in a wide variety of applications (Dempster, Laird,
& Rubin, 1977). Indeed, the HME architecture trained
with the EM algorithm learned roughly two orders of
magnitude faster than a single network trained with a
hill-climbing algorithm on a relatively difficult robot dy-
namics task (Jordan & Jacobs, 1994).

Peng et al. (1996) used a different algorithm to train an
HME architecture. This algorithm is a Bayesian infer-
ence algorithm known as a Gibbs sampler. In general, an
advantage of Bayesian sampling techniques is that they
do not simply provide a point estimate of the expected
value of a random variable, but rather provide the entire
distribution of the variable. For present purposes, this
means that an HME architecture trained via the Gibbs
sampler produces both an estimate of the correct re-
sponse and a measure of how confident it is in its estimate.
This confidence measure is useful for obtaining robust
performance. Peng et al. trained an HME architecture
with the Gibbs sampler to classify spoken vowels. The
inputs to the system were the first two formants of each
utterance; the target output was the correct vowel classi-
fication. After training, the HME architecture produced
the vowel class to which it thought each utterance be-
longed, and it also produced a measure of confidence in
each of its classification predictions. Appropriately, the
architecture had the lowest confidence in its classifica-
tions of acoustically ambiguous utterances.

CONCLUSIONS
In summary, this article has noted the increasing evi-

dence that experience-dependent processes are more in-
fluential in determining a brain region’s structural and
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functional properties than was previously supposed.
Consequently, one may study the developmental princi-
ples that play a role in the acquisition of functional spe-
cializations. My research program studies the hypothesis
that a combination of structure—function correspon-
dences plus the use of competition between modules
leads to functional specializations. This principle has
been instantiated in a family of computational architec-
tures referred to as ME architectures, and in a correspond-
ing family of learning rules. The article has reviewed a
number of ME architectures, including a single-level
modular system, a modular system in which some, but
not all, of the networks participate in the competition,
and a multilevel hierarchical system. A variety of learn-
ing rules have also been discussed, including a hill-
climbing procedure, a statistical procedure known as the
EM algorithm that leads to rapid learning, and a
Bayesian procedure that allows for the computation of
confidence measures. Simulation results suggest that an
important feature of ME architectures is that they are
sensitive to structure—function correspondences. Each
network tends to win the competition to learn the tasks
for which its internal structure makes it a particularly
good learner.

The approach proposed here may be viewed as advo-
cating a middle ground in the nature versus nurture debate.
In this sense it is compatible with the views of a growing
number of developmental psychologists. Karmiloff-Smith
(1992), for example, contrasted the views of nativists (e.g.,
Fodor, 1983), with those of constructivists (e.g., Piaget,
1955). Whereas nativists emphasize the existence of built-
in, domain-specific knowledge, and domain-specific pro-
cessing modules, constructivists stress a minimal innate
underpinning to subsequent domain-general learning.
Karmiloff-Smith argued that these two seemingly con-
tradictory views can be reconciled if one posits that mod-
ularization, or functional specialization, develops grad-
ually over time in a way that is shaped by an organism’s
experiences. The function acquired by each module is bi-
ased but not strictly determined by genetic factors.

A long-term goal of researchers is to delineate how
such genetic factors act as a bias. If competition plays a
role in the acquisition of functional specializations in the
way that has been proposed here, it is clear that there must
exist initial differences between the competing modules.
The distinctive features of a module make it a compara-
tively good learner for some tasks, but a poor learner for
other tasks. Other modules, with different distinctive
features, have different learning biases. One way in
which modules may initially differ is in the information
carried by the inputs they receive. A module primarily
receiving visual inputs will perform better on a visual
task than a module primarily receiving auditory inputs.
Results with the ME architecture suggest the importance
of other differences between modules. Differences in re-
ceptive field size, number of processing units, and con-
nectivity among the processing units all serve to bias a

module’s learning performance, thereby biasing its func-
tional specialization.
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NOTE

1. Intuitively, the relationship between neurons’ receptive field sizes
and the resolution of the representation provided by these neurons can
be understood by considering the overlap among the receptive fields.
Suppose that a point of light appears on a retina, and that there exists a
population of two visual neurons in which each neuron has a circular re-
ceptive field on the retina. Also assume that the two neurons’ receptive
fields touch at a point and so do not overlap. Because a neuron becomes
active only when light falls within its receptive field, it is possible to dis-
tinguish three spatial locations on the retina with this population: Either
both neurons are inactive, meaning that the point of light is outside ei-
ther neuron’s receptive field, or one of the two neurons is active, mean-
ing that the point of light falls within the active neuron’s receptive field.
Now contrast this situation with a new one in which the neurons’ re-
ceptive fields are 20% larger in diameter than they were in the first sit-
uation, so that there is some overlap among these fields, although not
complete overlap. In this case, it is possible to distinguish four spatial
locations on the retina: The light is outside either neuron’s receptive
field (both neurons are inactive), the light is in one neuron’s receptive
field but not the other’s (one neuron is active and the other is inactive),
or the light falls within the intersection of the neurons’ receptive fields
(both neurons are active). Because the neurons in the first case can be
used only to distinguish three spatial locations, whereas the neurons in
the second case can be used to distinguish four locations, it is said that
the former neurons provide a relatively low-resolution representation
and the latter neurons provide a high-resolution representation. For pres-
ent purposes, it is possible to extrapolate from these two situations in
order to conclude that populations of neurons with relatively small,
nonoverlapping receptive fields can provide a low-resolution represen-
tation, whereas populations of neurons with large, overlapping receptive
fields can provide a high-resolution representation. See Ballard (1986),
Hinton (1981), Hinton, McClelland, and Rumelhart (1986), and Milner
(1974) for further discussions of this point.
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