Neural Networks, Vol. 1, pp. 295-307, 1988
Printed in the USA. All rights reserved.

ORIGINAL CONTRIBUTION

0893-6080/88 $3.00 + .00
Copyright © 1988 Pergamon Press plc

Increased Rates of Convergence Through
Learning Rate Adaptation

ROBERT A. JACOBS

University of Massachusetts

(Received November 1987, revised and accepted March 1988)

Abstract— While there exist many techniques for finding the parameters that minimize an error function, only those
methods that solely perform local computations are used in connectionist networks. The most popular learning
algorithm for connectionist networks is the back-propagation procedure, which can be used to update the weights
by the method of steepest descent. In this paper, we examine steepest descent and analyze why it can be slow to
converge. We then propose four heuristics for achieving faster rates of convergence while adhering to the locality
constraint. These heuristics suggest that every weight of a network should be given its own learning rate and that
these rates should be allowed to vary over time. Additionally, the heuristics suggest how the learning rates should be
adjusted. Two implementations of these heuristics, namely momentum and an algorithm called the delta-bar-delta

rule, are studied and simulation results are presented.

1. INTRODUCTION

From the optimization literature, we know that there
exist many iterative techniques for finding the param-
eters that minimize a function. For example, steepest
descent, Newton’s Method, recursive least squares, and
conjugate-gradient methods are all procedures for
solving such a problem. For purposes that will shortly
be apparent, we can categorize these procedures ac-
cording to how they adjust their estimates of the pa-
rameter values that minimize a function. Those meth-
ods that modify each estimate of a parameter value
based solely on information about that parameter per-
form local computations and are classified as local
techniques. All other methods are classified as non-
local techniques.

Despite the fact that non-local techniques frequently
possess good convergence properties, these procedures
are not used to update the weights of connectionist
networks. This is because the connectionist paradigm
seeks to discover the information processing capabilities
of networks that rely on local computations. The desire

The author acknowledges and appreciates the extensive contri-
butions of Rich Sutton and Andy Barto. This research was supported
by the Air Force Office of Scientific Research, Bolling AFB, through
grant AFOSR-87-0030 and by GTE Laboratories Incorporated.

Requests for reprints should be sent to Robert A. Jacobs, De-
partment of Computer and Information Science, University of Mas-
sachusetts, Amherst, MA 01003.

295

to use only local techniques is referred to as the locality
constraint. This restriction is justified on several
grounds. First, networks that perform local computa-
tions are frequently viewed as metaphores for biological
neural networks. Second, such networks are thought
to be easier to implement in parallel architectures.

In this paper, we investigate several connectionist
learning algorithms. Our study is restricted to methods
that adhere to the locality constraint. Recent years have
seen the development of reasonably successful learning
algorithms for multilayer networks. The most popular
such algorithm, called the back-propagation procedure
(Rumelhart, Hinton, and Williams, 1985), can be used
to update weights by the method of steepest descent.
Despite its effectiveness, many researchers still find this
algorithm’s rate of convergence too slow for the tech-
nique to be used in many practical situations. There-
fore, investigations of new, and hopefully faster, algo-
rithms continue to be pursued. The main theoretical
contribution of this paper consists of four heuristics for
achieving faster rates of convergence than steepest de-
scent techniques. These heuristics suggest that every
weight of a network should be given its own learning
rate and that these learning rates should be allowed to
vary over time. Additionally, the heuristics suggest how
the learning rates should be adjusted.

In Section 2, we describe the method of steepest de-
scent and detail why it can be slow to converge. Section
3 surveys previous research. Section 4 lists the four
heuristics. In Section 5, we study two implementations

296

of these heuristics, namely momentum and the delta-
delta learning rule. In Section 6, we introduce an al-
ternative method of implementing these heuristics,
called the delta-bar-delta learning rule. Section 7 pre-
sents simulation results comparing the steepest descent,
momentum, and delta-bar-delta procedures.

2. STEEPEST DESCENT

As mentioned above, the method of steepest descent
is an iterative procedure for obtaining the values of
parameters that minimize a function. As applied in
learning rules for connectionist networks, the function’s
parameters are the weights of a network and its value
is an error measure. Geometrically, the function spec-
ifies an error surface defined over weight space. At each
iteration of the steepest descent procedure, the values
of the weights are modified in the direction in which
the error function decreases most rapidly. This direction
is given by the gradient of the error surface at the current
point in weight space. The magnitude of the modifi-
cation is a constant proportion of the magnitude of the
gradient. Specifically, each weight is adjusted by a con-
stant proportion of the partial derivative of the error
with respect to the weight. This proportion is commonly
referred to as the learning rate or step size. The pro-
cedure can be written

w(t+ 1) = w(r) — VJ(2), (1)

where w(t) is the vector of weights at time ¢, ¢ is the
learning rate parameter, J is the error function to be
minimized, J(¢) is the error value at time ¢, VJ(¢) is
the vector of first partial derivatives

aJ(t) aJ(t) 17

VJ(t) =)’ Iwent)]

and N is the number of weights. Since the gradient
vector points in the direction of maximum increasing
error, in order to minimize the error it is necessary to
multiply the gradient vector by negative one.

While steepest descent can be an efficient method
for obtaining the weight values that minimize an error
measure, error surfaces frequently possess properties
that make this procedure slow to converge. There are
at least two reasons for this slow rate of convergence.
These reasons involve the magnitude of the components
of the gradient vector and the direction of the gradient
vector.

The magnitude of a partial derivative of the error
with respect to a weight may be such that modifying a
weight by a constant proportion of that derivative will
yield a minor reduction in the error measure. This oc-
curs in two situations. Where the error surface is fairly
flat along a weight dimension, the derivative of the
weight is small in magnitude. Thus, the value of the
weight is adjusted by a small amount and many steps

R. A. Jacobs

are required to achieve a significant reduction in error.
Alternatively, where the error surface is highly curved
along a weight dimension, the derivative of the weight
is large in magnitude. Thus, the value of the weight is
adjusted by a large amount and the value may overshoot
the minimum of the error surface along that weight
dimension.

A second reason for the slow rate of convergence of
a steepest descent algorithm is that the direction of the
negative gradient vector may not point directly towards
the minimum of the error surface. This is illustrated
in Figure 1 for a two-dimensional weight space. The
error surface is drawn topographically using contours
to represent regions of equal error. The minimum of
the error surface is represented by the black dot in the
center of the contours. The current weight vector is
given by w(t). Since at the current point in weight
space the error surface is steeper along the w, dimension
than the w, dimension, the derivative of w, is greater
than the derivative of w;. In general, for the direction
of the negative gradient vector to equal the direction
of the minimum of the error surface for all points in
weight space, the contours that represent regions of
equal error must be circular.

A refinement of these points can be seen by looking
at the relevant results from adaptive filter theory. This
material is included because it provides an analytic
framework within which we can study the reasons for
the slow rate of convergence of the steepest descent pro-
cedure. The following analysis can be found in many
textbooks (e.g., see Haykin, 1986; Honig & Messer-
schmitt, 1984; Widrow & Stearns, 1985).

The system to be analyzed is a single processing ele-
ment. Let w(t) be the weight vector of the element at
time ¢, x(¢) be the input vector at time ¢, and d(¢) be

__od(®)
E)wl(t)
aJ(t)
[3 ——
Wy —VI(t) —= v ow, ()
“1

FIGURE 1. Error surface over two-dimensional weight space.

Increased Rates of Convergence

the desired response of the system at time ¢. Let p denote
the expectation E[x(t)d(t)], which is the cross-cor-
relation vector between the input vector and the desired
response. Let R denote the expectation E[x()x7(1)],
which is the auto-correlation matrix of the input vector.
As is commonly the case, the performance measure to
be minimized is the mean-squared error. The value of
this performance measure at time ¢ can be written

J(1) = (d(2) — wT(1)x(2))>

It is a fact (which will not be derived here) that this
value can be re-written

J(t) = E[d()d(t)] — wT(t)p — pTw(t) + wT(£)Rw(1).

This performance measure specifies a quadratic error
surface defined over weight space. The orientation and
shape of the error surface is a function of R. In addition,
the error surface possesses a unique minimum.

By examining how the eigenvalues of R determine
the shape of the error surface, we illustrate two reasons
why steepest descent search can be slow. The matrix R
can be written

R=QAQ7,

where A is a diagonal matrix whose diagonal compo-
nents are the eigenvalues of R, and Q is a matrix whose
columns are the orthogonal set of eigenvectors asso-
ciated with the eigenvalues. Denote the NV eigenvalues
of R as Ay, ..., Ay. The largest eigenvalue is labelled
Amax and the smallest eigenvalue is labeled A\y;,. The
principal axes of the error surface are in the direction
of the eigenvectors of R. The mean-squared error in-
creases most rapidly in the direction of the eigenvector
corresponding to the eigenvalue A, and most slowly
in the direction of the eigenvector corresponding to the
eigenvalue Ani,. Define the eigenvalues spread to be

A . ol in
% . This spread has a minimum value of one and
min

can be arbitrarily large.

Recall that one reason why a steepest descent pro-
cedure may be slow to converge is that the negative
gradient vector may not point towards the minimum
of the error surface. When the eigenvalues spread equals
one, contours of equal error are circular. In this case,
the negative gradient is in the direction of the minimum
error. When the eigenvalues spread is larger than one,
contours of equal error are elliptical. In this case, the
direction of the negative gradient is not necessarily
equal to the direction of the minimum error.

A second reason why a steepest descent procedure
may be slow to converge is that the learning rate may
not be appropriate for all portions of the error surface.
The component of the gradient vector is smaller in the
direction of the eigenvector corresponding to An;, (the
major axis of the ellipse) than in the direction of the
eigenvector corresponding to Anax (the minor axis of

297

the ellipse). Thus, a value for the learning rate that
yields moderate steps in weight space along the major
axis of the ellipse may result in large steps in weight
space along the minor axis. In this event, the error mea-
sure may show only a slight reduction at each time step
because in the direction of the minor axis, the weight
vector may oscillate across the minimum of the error
surface instead of approaching this minimum. Simi-
larly, a value for the learning rate that yields moderate
steps in weight space along the minor axis of the ellipse
may result in small steps in weight space along the major
axis of the ellipse. This will also result in only a slight
reduction of the error at each time step. In practice,
the value of the learning rate parameter is usually set
so that successive steps in weight space do not overshoot
the minimum of the error surface. Therefore, it is fre-
quently the case that the value of the learning rate is
limited by the value of An.x, and only small steps in
weight space are made in the direction of the major
axis of the ellipse.

3. PREVIOUS RESEARCH

After considering the reasons for the possible slow
rate of convergence of a steepest descent procedure, we
can appreciate why researchers continue to study a va-
riety of techniques for finding the parameters that min-
imize the value of an error function. In this section, we
briefly review several of these techniques. For a more
complete survey of learning algorithms for connec-
tionist networks, see Anderson (1986).

This paper is largely a follow-up of techniques de-
veloped by Kesten (1958), Saridis (1970), Sutton
(1986), and Barto and Sutton (1981). Kesten proposes
that if consecutive changes of a weight (i.e., Aw;(¢ — 1)
and Aw;(t)) possess opposite signs, then the weight
value is oscillating. Hence, the learning rate for that
weight should be decremented. Saridis uses this basic
notion to both increase and decrease learning rates.
Thus, if consecutive derivatives of a weight possess the
same sign, then the learning rate for the weight should
be incremented. If consecutive derivatives of a weight
possess opposite signs, then the learning rate for the
weight should be decremented. In this scheme, the sum
of all learning rates for all weights is maintained at a
constant. Thus, weights are effectively competing for
this fixed quantity. Sutton (1986) discusses why these
techniques are particularly pertinent to connectionist
networks and makes several alternative suggestions for
increasing rates of convergence. In Barto and Sutton
(1981), Sutton introduces a learning rule which is very
similar to the delta-delta rule discussed below. The logic
behind the Kesten, Saridis, and Sutton proposals are
explained at length later in this paper. First, we briefly
survey alternative ideas.

Some researchers advocate utilizing traditional
techniques from the function optimization literature

298

to train connectionist networks. In order to adhere to
the locality constraint, Scalettar and Zee (in press) have
employed a variation of Newton’s Method. This al-
gorithm, which is a modification of a recommendation
by Sutton (1986), can be written

aJ(2)/dwi(1)
A = = T awi |
Extensive results of the performance of this algorithm
are not reported. Parker (1986) has developed an al-
gorithm, called the second-order LMS rule, that uses
both first and second derivatives in the update of
weights. Parker maintains that this rule shows “nearly
optimal performance.”

Derthick (1984) has made several recommendations
for learning procedures. For example, he suggests that
each weight be updated by a fixed amount depending
only on the sign of the weight’s derivative. Alternatively,
he proposes that at each weight update, the current
point in weight space always be moved by a constant
distance in the gradient direction.

Another approach towards developing learning al-
gorithms with fast rates of convergence is to notice
which inputs are most predictive of the correct output.
The principal behind this approach is that faster rates
of convergence can be achieved if the search for good
weight values is confined to the most relevant weight
dimensions. For example, a technique proposed by
Hampson and Volper (1986) iteratively approximates
several conditional probabilities involving the inputs
and outputs and uses these approximations to update
the weights. Similarly, Littlestone (1987) has a scheme
that detects irrelevant inputs. Mjolsness (1987) suggests
a method for networks with symmetric weights that
shows qualities resembling the approaches that detect
irrelevant features and the approaches that are varia-
tions of Newton’s Method.

4. HEURISTICS FOR INCREASING THE
RATE OF CONVERGENCE

Based on the above discussion and following the rec-
ommendations of Kesten, Saridis, and Sutton, four
heuristics can be proposed that provide guidelines for
how to achieve faster rates of convergence than steepest
descent techniques.

First, every parameter of the performance measure
to be minimized should have its own individual learning
rate. As mentioned above, the step size appropriate for
any one parameter dimension is not necessarily appro-
priate for other parameter dimensions.

Second, every learning rate should be allowed to vary
over time. It is common for error surfaces to possess
different properties along different regions of a single
parameter dimension. In order to take appropriate step

R. A. Jacobs

sizes as the parameter varies over its possible values,
the learning rate will also need to vary.

Third, when the derivative of a parameter possesses
the same sign for several consecutive time steps, the
learning rate for that parameter should be increased.
When the sign of the derivative behaves in this manner,
it is frequently the case that the error surface at the
current point in parameter space along that parameter
dimension possesses a small curvature, and therefore,
continues to slope in the same direction for some sig-
nificant distance. By increasing the learning rate for
this parameter, the number of time steps required for
the value of this parameter to traverse this distance can
be reduced.

Fourth, when the sign of the derivative of a parameter
alternates for several consecutive time steps, the learning
rate for that parameter should be decreased. When the
sign of the derivative behaves in this manner, it is fre-
quently the case that the error surface at the current
point in parameter space along that parameter dimen-
sion possesses a high curvature, and therefore, the slope
of this area of the error surface may quickly change
sign. In order to prevent the value of the parameter
from oscillating, this value should be adjusted by a
smaller amount.

Note that by providing different learning rates for
each parameter dimension, the current point in weight
space is not modified in the direction of the negative
gradient. Thus, such a system is not performing steepest
descent search. Instead, parameters are updated based
on both the partial derivatives of the error with respect
to the parameters and on an estimate of the curvatures
of the error surface at the current point in parameter
space along each parameter dimension.

While the above heuristics provide guidelines for how
faster rates of convergence can generally be achieved,
certain caveats must be included in order to provide a
balanced presentation. Most importantly, there exist
error surfaces where use of these heuristics may not
result in the desired effects. For example, consider an
error surface defined over a two-dimensional weight
space where the surface possesses a valley that is at a
45 degree angle to both weight axes. In the vicinity of
this valley, the surface possesses a high curvature along
both weight dimensions. Thus, when the current point
in weight space is in the valley, these heuristics would
cause the learning rate for each weight to be decreased.
Ideally, in order to decrease the error measure the fast-
est, the learning rates for both weights should be in-
creased.

The failure of the heuristics in this circumstance
can be attributed to the fact that they satisfy the locality
constraint. As a further example of how this constraint
limits the utility of the heuristics, consider the quadratic
error surface described in the discussion on adaptive
filter theory. Ideally, in this situation, we would like
heuristics that govern the step size in each eigendirec-

Increased Rates of Convergence

tion of the matrix R. Unfortunately, the heuristics can
only be used to control the step size in each weight
dimension.

Despite their limitations, we believe that the re-
mainder of this paper demonstrates the merits of the
heuristics.

5. TWO EXISTING IMPLEMENTATIONS
OF THE HEURISTICS

There exist several possible implementations of the
heuristics described above. Two that are reviewed here
are momentum and the delta-delta learning rule.

5.1. Momentum

Momentum implements the heuristics through the
addition of a new term to the weight update equation.
At time step ¢, each weight w(¢) of a network is updated
according to the following rule:

Aw(t) = —(1 — a)e (‘:VJV((Z; YaAw(i—1) ()
L =)
=—(1 a)ei=0a ——_aw(t—i) s

where « is the momentum factor that determines the
relative contribution of the current and past partial de-
rivatives to the current weight change. This contribution
is the exponentially weighted sum of the weight’s cur-
rent and past partial derivatives where « is the base and
the time from the current time step is the exponent.
Note that without the use of momentum (when « is
set to zero), the update rule performs steepest descent.

Momentum is considered an implementation of the
heuristics for the following reasons. When consecutive
derivatives of a weight possess the same sign, the ex-
ponentially weighted sum grows large in magnitude and
the weight is adjusted by a large amount. Similarly,
when consecutive derivatives of a weight possess op-
posite signs, this sum becomes small in magnitude and
the weight is adjusted by a small amount.

In order to analyze the advantages of momentum,
we examined its effect on the optimization of a one
dimensional quadratic error surface. The error surface
is defined by the following function:

J(1) = $kw?(1),

where k is the curvature of the surface. This specifies
a quadratic error surface whose minimum is at w = 0.
Four experiments were performed corresponding to
four values for momentum. These values were 0.0, 0.25,
0.5, and 0.9. Within each experiment, several simula-
tions were executed. In order to test the performance
of a particular value of momentum over a wide range
of curvatures, the curvature of the error surface was
varied logarithmically between 0.00001 and 2.0 across

299

simulations. For each experiment, a value for the
learning rate was selected that resulted in the best per-
formance over the entire range of curvatures. For the
four experiments, the values of the learning rate were
1.0, 1.67, 3.0, and 19.0 respectively. At the start of each
simulation, w was initialized to 1000. Solution of
the problem is reached at the first of ten consecutive
time steps during which the absolute value of w is less
than 10.

The results are displayed in Figure 2. The x-axis of
the graph logarithmically represents the curvature of
the error surface. The y-axis logarithmically represents
the number of steps until solution. Two important
properties should be noted. First, the width of the range
of curvatures over which performance is best for the
given values of the learning rate and momentum dra-
matically increases with increases in momentum. Sec-
ond, there exists a range of curvatures over which mo-
mentum decreases performance of the learning algo-
rithm. This latter result suggests that there exists room
for improvement in the development of techniques to
achieve faster rates of convergence.

There are at least two limitations to momentum’s
effectiveness. First, there exists an upper bound on how
large an adjustment momentum can make to a weight.
For example, if all derivatives of a weight over time are
assumed to be equal to one, then the exponentially
weighted sum of the weight’s current and past deriva-

tives converges to N as time goes to infinity. In this

-

event, the most a weight can be modified by is the value
of the learning rate. A second limitation of momentum
is that this exponentially weighted sum may have a sign
opposite to the sign of the weight’s current derivative.
Thus, momentum can cause the weight to be adjusted
up the slope of the error surface along the weight di-
mension, instead of down the slope as is desired.

5.2. Delta-Delta Learning Rule

The delta-delta learning rule consists of both a weight
update rule and a learning rate update rule. The weight
update rule is similar to the steepest descent algorithm
with the exception that each weight possesses its own
learning rate parameter. This weight update rule can
be written

aJ(t)
w(t)’

wit+ 1)=w()—et+1) 3)
where w(t) is the value of a single weight at time ¢ and
€(t) is the learning rate value corresponding to w(¢) at
time ¢.

We now derive a learning rate update rule that per-
forms steepest descent on an error surface defined over
learning rate parameter space. This rule and its deri-
vation are a slight variation of the rule and derivation

300

R. A. Jacobs

G
10" — Momentum

.
N,

_w

\, \\\

>, 0.25\
ot —} \ \
0.9
Steps \

Until

Solution

100 —

Curvature of Quadratic Surface

FIGURE 2. Effect of momentum on number of steps required to descend quadratic surfaces.

introduced by Sutton (Barto & Sutton, 1981). For sim-
plicity, we consider the case of a single linear element
whose weight update rule is based on the LMS rule
(Widrow & Hoff, 1960). First, we define the input and
output properties of the element. Let w(¢) be the ele-
ment’s weight vector at time ¢ and x(¢) be the input
vector at time ¢. The element’s output at time ¢, (),
is defined as

y(2) = wl(t)x(2).

Let €(¢) be a diagonal matrix of learning rate values at
time ¢ and d(¢) be the desired response at time ¢. In
accordance with the LMS update rule, the weight up-
date algorithm for this element is

w(t+ 1) =w(t) + e(t + 1)[d(2) — y(£)]1x(2).

Now we define the error function to be minimized by
the learning rate update rule. Note that this error func-
tion is different from the error function minimized by
the weight update rule. To distinguish these two func-
tions, we denote the error function minimized by the
weight update rule as J and the error function mini-
mized by the learning rate update rule as G. As is com-
monly the case, let the value of G at time ¢ be defined
as follows:

G(t) = 3(d(2) — y(1))*
After some algebraic manipulation,

G(2) = $(d(2) — wT(1)x(2))?
=3(d(t) — (w(t— 1) + e()[d(t - 1)
= wi (2 —Dx(t = D]x(t ~ 1)) x(2))2
Finally, we differentiate this error function with respect
to each learning rate. Let ¢; be the learning rate for the
ith weight, w;. This value is also the (i, {)th component
of the diagonal matrix e. Let I; be a square matrix with

all zero components except the (i, i{)th component
which is set equal to one. Then,

S9D — (o) — y) (e = DIx(e = 1) x(0)
(1)
(W = Dx(t = DYx(t = 1)Tx(2))
= —(d(1) = Y(D)(((d(t — 1)
— (WT(= D)x(t = DY) x(— 1)7x(2))
= —((d(t) = YO () (d(t — 1)
— (= D) (e — 1))

s BHNEBIR 1)
T awi(e) dwi(r—1) "

Increased Rates of Convergence

Thus, a learning rate update rule that performs
steepest descent on an error surface defined over pa-
rameter space is

aJ(t) aJ(t—1)
wi(t) dwi(t—1)°

Ae(t) = v

where « is the step size parameter. Most important for
our purposes is that this algorithm for updating the
learning rates implements the heuristics listed above.
When the sign of the derivative of a weight is the same
on consecutive time steps, the algorithm increases the
learning rate for that weight. When the sign of the de-
rivative of a weight alternates on consecutive time steps,
the algorithm decreases the learning rate for that weight.
Unfortunately, the delta-delta rule is of only limited
practical use. When the error surface at the current
point in weight space along a weight dimension pos-
sesses a shallow slope and a small curvature, the deriv-
atives of the weight at two consecutive time steps will
likely have the same sign and have a small magnitude.
Thus, their product is a very small positive number. In
order to significantly increase the learning rate for this
weight dimension, it is necessary to set vy sufficiently
high. However, the sign of the derivative is likely to
remain constant for many consecutive time steps and
the learning rate may grow very large. In this event, the
weight may be adjusted by an extremely large amount,
often well beyond the minimum of the error surface
along that weight dimension. Frequently, a large value
for v results in weights with huge magnitudes whose
derivatives are equal to zero. In addition, problems may
also arise when the error surface at the current point
in weight space along a weight dimension possesses a
high curvature. The derivatives of the weight at two
consecutive time steps will likely have opposite signs
and have a large magnitude. Thus, their product is a
large negative number. If v is set to a large value, it is
frequently the case that the learning rate decreases until
it is a negative number. In this event, the weight is ad-
justed up the slope of the error surface along the weight
dimension instead of down it. To alleviate these prob-
lems, it is necessary to set v to a small positive value.
However, this results in only small changes to the learn-
ing rates and only a slight increase in the rate of con-
vergence over normal steepest descent. For these rea-
sons, the delta-delta rule was not used in the simulations
reported in this paper. Instead, we introduce a related
algorithm called the delta-bar-delta learning rule.

6. DELTA-BAR-DELTA LEARNING RULE

The delta-bar-delta learning rule, which was devel-
oped with the assistance of Rich Sutton, also consists
of a weight update rule and a learning rate update rule.
The weight update rule is the same as the delta-delta
weight update rule and is given by Equation (3). We
now introduce the delta-bar-delta learning rate update

301

rule. Let w(¢) denote the value of a single weight at
time ¢ and e(¢) denote the learning rate value corre-
sponding to w(¢) at time ¢. The learning rate update
rule is defined as follows:

K if 3(t—1)8(2)>0
Ae(t) =4 —oe(z) if 8(z— 1)6(¢) <0 “4)
0 otherwise
where
0(e) = %
and

()= (1 —0)8(2) + 65(¢t — 1).

In these equations, 6(¢) is the partial derivative of
the error with respect to w at time ¢ and (¢) is an
exponential average of the current and past derivatives
with 8 as the base and time as the exponent. Note how
the delta-bar-delta rule uses a technique similar to that
of the delta-delta rule to implement the heuristics listed
above. According to the delta-bar-delta algorithm, if
the current derivative of a weight and the exponential
average of the weight’s previous derivatives possess the
same sign, then the learning rate for that weight is in-
cremented by a constant, . If the current derivative of
a weight and the exponential average of the weight’s
previous derivatives possess opposite signs, then the
learning rate for that weight is decremented by a pro-
portion, ¢, of its current value.

The delta-bar-delta rule increments learning rates
linearly, but decrements them exponentially. Incre-
menting linearly prevents the learning rates from be-
coming too large too fast. Decrementing exponentially
ensures that the rates are always positive and allows
them to be decreased rapidly.

6.1. Examples of the Benefits of the Delta-Bar-Delta
Rule

Recall that in Section 2, we listed several reasons
why steepest descent procedures may be slow to con-
verge. In this section, for each of these reasons, we il-
lustrate why the delta-bar-delta rule may show a faster
rate of convergence than the method of steepest descent.
These illustrations consist of graphs of error surfaces.
All error graphs plot data from a single training period
of a connectionist network. First we discuss the nature
of the training period. Next, we discuss the data pre-
sented in the graphs.

The mapping that the network is being trained to
perform is a binary-to-local task. This problem and the
network architecture are discussed below. For our cur-
rent purposes, the task and architecture are not im-
portant because the problems posed by the shapes of

302

error surfaces discussed in this section are believed to
be common to a wide variety of tasks and architectures.
During the training period, each time step is called an
epoch and is defined to be a single sweep through all
training patterns. At the end of each epoch, the weights
of the network are updated. At each update, we com-
pute how to modify the current point in weight space
by two methods. One method is the method of steepest
descent and the second method is by the delta-bar-delta
algorithm. Note that in the case of the delta-bar-delta
algorithm, the learning rate for each weight is allowed
to vary. However, at the start of the training period,
these parameters are initialized to the value of the
learning rate that is used by the steepest descent rule.
The partial derivatives are computed using the back-
propagation procedure. After calculating how to modify
the weights by the two methods, the current point in
weight space is actually updated by the delta-bar-delta
algorithm.

At the end of each epoch, a graph is produced. Above
each graph is listed several relevant pieces of infor-
mation. The length of the steepest descent update vector
is the length of the vector of weight modifications if the
modifications are determined by the method of steepest

EPOCH = 466

R. A. Jacobs

descent. Similarly, the length of the delta-bar-delta up-
date vector is the length of the vector of weight modi-
fications if the modifications are determined by the
delta-bar-delta method. The difference between the an-
gle of the two update vectors is given in radians. On
each graph, the error surface is shown in two directions
in weight space. One direction is the gradient direction
from the current point in weight space. The second
direction is the direction that the current point in weight
space would be moved if the weights are adjusted using
the delta-bar-delta rule. The surface in each direction
is generated by changing the weights in the network by
a weight change factor times the normalized vector
representing that direction and plotting the error pro-
duced by the network with the modified weight values.
The x-axis is the weight change factor and represents
the distance in weight space that the current weight
vector is adjusted by. The y-axis is the error measure.
This measure is the sum of squared errors which is
defined as the squared discrepancy between a desired
output value and a given output value summed over
all output units of the network summed over all training
patterns. The current point in weight space is identified
by a weight change factor of zero. The tick mark on

LENGTH OF STEEPEST DESCENT UPDATE VECTOR = 8.827

LENGTH OF DELTA-BAR-DELTA UPDATE VECTOR =
ANGULAR DIFFERENCE BETWEEN UPDATE VECTORS

B.130
- 1.8

12.00
Steepest Descent
Delta-Bar-Delta
New weight point calculated
by steepest descent
8.98 Yo ok

-

New weight point calculated
by delta-bar-delta

T

-3.00

3.008

FIGURE 3. Performance of algorithms at region of error surface with small curvature.

Increased Rates of Convergence

the plot of the error surface in the gradient direction
indicates the new position in weight space if the current
point is modified by the steepest descent procedure.
Similarly, the tick mark on the plot of the error surface
in the direction of the delta-bar-delta update vector in-
dicates the new position in weight space if the current
point is modified by the delta-bar-delta procedure.

Steepest descent procedures tend to progress slowly
where the error surface is fairly flat along a weight di-
mension. An analogous situation is illustrated in Figure
3. Note how the error surface at the current point in
weight space possesses a fairly gentle slope. The length
of the gradient vector is relatively small. One reason
why the delta-bar-delta rule may increase the rate of
convergence of the network is that the delta-bar-delta
update vector is significantly longer than the steepest
descent update vector. Hence, use of the delta-bar-delta
rule causes the current point in weight space to traverse
a greater portion of the error surface than the use of
steepest descent.

In addition, Figure 3 illustrates a case where mod-
ifying the current point in weight space in the direction
of the delta-bar-delta update vector is better than mod-
ifying this point in the gradient direction. The error

EPOCH = 1008

303

surface curves less and is generally lower in the direction
of the delta-bar-delta update vector than in the gradient
direction. An intuitive interpretation is that the gradient
vector is roughly perpendicular to a trough in the error
surface while the delta-bar-delta update vector is closer
to being parallel to this trough.

A second environment where steepest descent pro-
cedures may show slow progress is where the error sur-
face is highly curved along a weight dimension. An
analogous situation is illustrated in Figure 4. Note how
the error surface at the current point in weight space
possesses a high curvature. The length of the gradient
vector is relatively large. The delta-bar-delta rule is
beneficial in this circumstance because the length of
the delta-bar-delta update vector is less than the length
of the steepest descent update vector. Therefore, use of
the delta-bar-delta method causes the current point in
weight space to be modified by a smaller amount than
use of steepest descent, thereby curtailing movement
of this point across the curvature and promoting move-
ment of the point down into the curvature. Once again,
modifying the current point in weight space in the di-
rection of the delta-bar-delta update vector is better
than modifying this point in the gradient direction.

LENGTH OF STEEPEST DESCENT UPDATE VECTOR = 8.317

LENGTH OF DELTA-BAR-DELTA UPDATE VECTOR
ANGULAR DIFFERENCE BETWEEN UPDATE VECTOR

22

a.
= 132

= 1
S 1

12.00

Steepest Descent

Delta-Bar-Delta

New weight point calculated _—>

9.0 by delta-bar-delta

New weight point calculated
by steepest descent

-3.00

T

3.00

FIGURE 4. Performance of algorithms at region of error surface with large curvature.

304

TABLE 1
Parameter Values

Initiale « K ¢ [/

Quadratic Surfaces Task
Steepest Descent 1.0

Momentum 19.0 0.9
Delta-Bar-Delta 1.0 5.0 0.1 0.7
Hybrid 10.0 09 375 0.1 0.7

Exclusive-or Task

Steepest Descent 4.0

Delta-Bar-Delta 0.8 0.095 0.1 0.7
Multiplexer Task

Steepest Descent 1.0

Momentum 25 0.9

Delta-Bar-Delta 0.8 0.085 0.15 0.7

Hybrid 225 09 0.045 0.01 0.7

Binary-To-Local Task

Steepest Descent 0.1

Momentum 0.75 0.9
Delta-Bar-Delta 0.8 0.035 0.333 0.7
Hybrid 075 09 0.075 0.2 0.7

7. SIMULATIONS

In order to evaluate the performance of the delta-
bar-delta rule, we report simulation results on four
tasks. These tasks are the optimization of quadratic
surfaces, and the learning of the exclusive-or, multi-
plexer, and binary-to-local functions. These tasks were
chosen because, collectively, their error surfaces possess
a wide variety of terrains. On each task, four algorithms

R. A. Jacobs

were simulated. These algorithms are the steepest de-
scent procedure (Equation 1), momentum (Equation
2), delta-bar-delta (weight update by Equation 3 and
learning rate update by Equation 4), and a hybrid al-
gorithm that combines the momentum and delta-bar-
delta procedures. The hybrid algorithm uses the mo-
mentum weight update rule (Equation 2) with the ex-
ception that each weight possesses its own variable
learning rate parameter. The learning rate parameters
are modified by the delta-bar-delta learning rate update
rule (Equation 4). For each algorithm, parameter val-
ues were selected that resulted in good performance.
These values are shown in Table 1. The results of all
four algorithms on the last three tasks are shown in
Table 2.

Note that the last three tasks require the use of mul-
tilayer networks. For all algorithms, the back-propa-
gation procedure was used to calculate the partial de-
rivative of the error with respect to each weight. At the
start of each simulation, the weights of the network
were initialized to random values between —0.5 and
0.5. During training of the network, each time step is
called an epoch and is defined to be a single sweep
through all training patterns. At the end of each epoch,
the weights of the network were updated. The inputs
to all networks were binary values. However, target val-
ues of 0.1 and 0.9 were used instead of 0 and 1. The
error measure used was the sum of squared errors.

7.1. Quadratic Surfaces Task
The first task is the optimization of a one dimen-

sional quadratic error surface. The error surface is de-
fined by the following function:

TABLE 2
Simulation Results

» Simulations Epochs Until Soluti
Simulations Reached pochs Until Solution
Attempted Solution Mean Standard Deviation
Exclusive-or Task
Steepest Descent 25 24 538.9 402.7
Delta-Bar-Delta 25 23 250.4 59.5
Multiplexer Task
Steepest Descent 25 25 3443 485.2
Momentum 25 25 1241 444
Delta-Bar-Delta 25 25 1371 27.2
Hybrid 25 25 105.6 20.3
Binary-To-Local Task
Steepest Descent 25 20 581441 17719.9
Momentum 25 25 7212.3 2747 .4
Delta-Bar-Delta 25 25 2154.2 929.9
Hybrid 25 25 871.5 236.3

Increased Rates of Convergence

J(1) = dhw(0),

where k is the curvature of the surface. For each weight
update algorithm, several simulations were performed.
In order to test each algorithm over a wide range of
curvatures, the curvature of the error surface was varied
logarithmically between 0.0001 and 2.0 across simu-
lations. At the start of each simulation, w was initialized
to 1000. Solution of the problem is reached at the first
of ten consecutive time steps during which the absolute
value of w is below 10.

The results of the simulations are displayed in Figure
5. The x-axis logarithmically represents the curvature
of the error surface. The y-axis logarithmically repre-
sents the number of steps until solution. Overall, the
delta-bar-delta algorithm performs the best.

7.2. Exclusive-Or Task

The second task is the exclusive-or problem. The
network architecture consisted of two input units which
were connected to two hidden units which were con-
nected to a single output unit. The task is considered
solved when the sum of squared errors for each epoch
averaged over the previous fifty epochs is below 0.04.
Note that when selecting parameter values, a non-zero

305

value for « did not result in a faster rate of convergence
than « set equal to zero in either the momentum or
hybrid algorithms. When « is set equal to zero, mo-
mentum reduces to steepest descent and the hybrid
algorithm reduces to delta-bar-delta. Thus, the mo-
mentum and hybrid algorithms’ results on this task are
not reported.

For each algorithm, twenty-five simulations were at-
tempted. Of those attempted, some may fail to reach
the solution criteria because they converge to local
minima. The statistics on the number of epochs re-
quired to reach solution only includes those simulations
that achieve the solution criteria. Again, the delta-bar-
delta algorithm shows the best performance.

7.3. Multiplexer Task

For the multiplexer task, the network architecture
consisted of six input units which were connected to
six hidden units which were connected to a single out-
put unit. The input to the network is four data lines
and two address lines. The address lines indicate one
of the data lines using a binary code. The desired output
of the system is the input to the data line indicated by
the address lines. Solution of the task occurs when the

\\
10¢ — \
Steps
Until Momentum
nti
\\
Solution

102 —|

10 —

Gradient Descent

Delta-Bar-Delta

10-3 10-!

Curvature of Quadratic Surface

FIGURE 5. Performance of algorithms on quadratic surfaces.

306

R. A. Jacobs

TABLE 3
Results Using Same Parameter Values On All Tasks

o Simulations Epochs Until Solution
Simulations Reached
Attempted Solution Mean Standard Deviation
Exclusive-or Task
Steepest Descent 25 24 16859.8 10866.3
Momentum 25 25 2056.3 1051.2
Delta-Bar-Delta 25 22 4473 258.2
Hybrid 25 23 345.1 49.3
Multiplexer Task

Steepest Descent 25 25 1244.0 399.2
Momentum 25 25 214.8 50.2
Delta-Bar-Delta 25 25 191.0 43.9
Hybrid 25 25 168.4 25.1

sum of squared errors for each epoch averaged over the
previous fifty epochs is below 0.64. On this task, the
hybrid algorithm shows the fastest rate of convergence.
All algorithms perform better than steepest descent.

7.4. Binary-to-Local Task

The network architecture for the binary-to-local task
consisted of three input units which were connected to
a single hidden unit which was connected to eight hid-
den units which were connected to eight output units.
The three components of the input vector encode in
binary a value between zero and seven. The target out-
put vector has all its components set to 0 except the
component indicated by the input vector which is set
to 1. For example, if the input vector is [011]7 (binary
for the value three), then the target output vector is
[00100000]7. Thus, the desired mapping translates a
binary representation of a number into a local repre-
sentation. Note that the single hidden unit that receives
the activation of the input units must learn to output
eight different activation values corresponding to the
eight different input patterns in order for the net to
perform the desired mapping. This network was chosen
because it is believed that such an architecture produces
an error surface with sharp ravines. Thus, it provides
an interesting test-bed for the learning algorithms. So-
lution of the task occurs when the sum of squared errors
for each epoch averaged over the previous fifty epochs
is below 0.64. Again, the hybrid algorithm shows the
fastest rate of convergence. Delta-bar-delta performs
better then momentum and all algorithms perform
better than steepest descent.

7.5. Robustness of Algorithms

Ideally, we would like a learning algorithm using the
same parameter values to exhibit a fast rate of conver-

gence in a variety of tasks and architectures. Such ro-
bust performance would alleviate the need to conduct
a search for good parameter values each time we change
tasks or architectures. Here, we report simulation re-
sults of the four algorithms on the exclusive-or and
multiplexer tasks using the same parameter values that
were found to result in good performance on the binary-
to-local task.

The results of the simulations are listed in Table 3.
The hybrid algorithm shows the fastest rates of con-
vergence. The delta-bar-delta rule is faster than mo-
mentum. All three are faster than the steepest descent
procedure. These results suggest that, with the same
parameter settings, the learning rate update rule of the
delta-bar-delta algorithm is able to adapt the learning
rates of a network to appropriate values for a variety
of tasks and architectures.

8. CONCLUSIONS

The above simulation results provide support for the
four heuristics for how to achieve faster rates of con-
vergence than steepest descent algorithms. We have ex-
amined two implementations of these heuristics,
namely the momentum and delta-bar-delta procedures.
In addition, we considered a hybrid algorithm that
combines these two techniques. All of these methods
generally show a faster rate of convergence than steepest
descent. Clearly there are other implementations of the
heuristics worth studying.

REFERENCES

Anderson, C. W. (1986). Learning and problem solving with multilayer
connectionist systems. Ph.D. thesis, University of Massachusetts.
Barto, A. G., & Sutton, R. S. (1981). Goal seeking components for

Increased Rates of Convergence

adaptive intelligence: An initial assessment (Air Force Wright
Aeronautical Laboratories/Avionics Laboratory Tech. Rep.
AFWAL-TR-81-1070). Ohio: Wright-Patterson AFB.

Derthick, M. (1984). Variations on the Boltzmann machine learning
algorithm (Tech. Rep. CMU-CS-84-120). Pittsburgh, PA: Car-
negie-Mellon University.

Hampson, S. E., & Volper, D. J. (1986). Linear function neurons:
Structure and training. Biological Cybernetics, 53, 203-217.
Haykin, S. (1986). Adaptive filter theory. Englewood Cliffs, NJ: Pren-

tice-Hall.

Honig, M. L., & Messerschmitt, D. G. (1984). Adaptive filters: Struc-
tures, algorithms, and applications. Boston: Kluwer Academic
Publishers.

Kesten, H. (1958). Accelerated stochastic approximation. Annals of
Mathematical Statistics, 29, 41-59.

Littlestone, N. (1987). Learning quickly when irrelevant attributes
abound: A new linear-threshold algorithm. Proceedings of the 28th
IEEE Conference on Foundations of Computer Science.

Mjolsness, E. (1987). Control of attention in neural networks. (Re-

307

search- Rep. YALEU/DCS/RR-545). Cambridge, MA: Yale
University.

Parker, D. B. (1986). A comparison of algorithms for neuron-like
cells. Neural Networks for Computing, AIP Conference Proceedings,
151, 327-332.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1985). Learning
internal representations by error propagation (Institute for Cog-
nitive Science Report 8506). San Diego: University of California.

Saridis, G. N. (1970). Learning applied to successive approximation
algorithms. IEEE Transactions on Systems Science and Cyber-
netics, SSC-6, 97-103.

Scalettar, R., & Zee, A. (in press). A feed-forward memory with
decay. Cognitive Science.

Sutton, R. S. (1986). Two problems with backpropagation and other
steepest-descent learning procedures for networks. Proceedings of
the Eighth Annual Conference of the Cognitive Science Society,
823-831.

Widrow, B., & Hoff, M. E. (1960). Adaptive switching circuits. 1960
WESCON Convention Record Part IV, 96-104.

Widrow, B., & Stearns, S. D. (1985). Adaptive signal processing. En-
glewood Cliffs, NJ: Prentice-Hall.

