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The ability to learn abstract concepts is a powerful component of human cognition. It has been argued
that variable binding is the key element enabling this ability, but the computational aspects of variable
binding remain poorly understood. Here, we address this shortcoming by formalizing the Hierarchical
Language of Thought (HLOT) model of rule learning. Given a set of data items, the model uses
Bayesian inference to infer a probability distribution over stochastic programs that implement variable
binding. Because the model makes use of symbolic variables as well as Bayesian inference and programs
with stochastic primitives, it combines many of the advantages of both symbolic and statistical
approaches to cognitive modeling. To evaluate the model, we conducted an experiment in which human
subjects viewed training items and then judged which test items belong to the same concept as the train-
ing items. We found that the HLOT model provides a close match to human generalization patterns, sig-
nificantly outperforming two variants of the Generalized Context Model, one variant based on string
similarity and the other based on visual similarity using features from a deep convolutional neural net-
work. Additional results suggest that variable binding happens automatically, implying that binding
operations do not add complexity to peoples’ hypothesized rules. Overall, this work demonstrates that
a cognitive model combining symbolic variables with Bayesian inference and stochastic program primi-
tives provides a new perspective for understanding people’s patterns of generalization.

� 2017 Elsevier B.V. All rights reserved.
1. Introduction

Induction, the ability to discover latent patterns and structure
from a set of data items, is a hallmark of human thinking. This abil-
ity underlies our remarkable language acquisition and conceptual
development, and its roots have been found in infancy. Marcus,
Vijayan, Bandi Rao, and Vishton (1999) studied the ability of
seven-month-olds to infer abstract rules from acoustic sequences.
They showed that infants presented with syllable sequences that
follow an ABA pattern, like ‘‘ga ti ga” and ‘‘li na li”, recognized novel
sequences following that pattern even when those sequences con-
tained new syllables that the infants had not heard, like ‘‘wo fe
wo”. Because the test items could not be distinguished based on
concrete features like transitional statistics between syllables,
sequence length, or prosody, they reasoned that the infants had
learned an abstract rule that reflected latent structure.

Even though rules like ABA are simple, they illustrate a founda-
tional computational element of human abstract rule learning: we
can easily and fluidly handle variable binding (Jackendoff, 2003;
Marcus, 2003). Variable binding refers to the ability to assign a
name to some piece of information for storage and later retrieval.
In the case of ABA rules, infants must remember the first syllable
(that is, store it in a variable A) so it can be compared to subsequent
syllables. The use of variables is what allows the ABA rule to be
abstract: computations can refer to variable names rather than
the values stored therein, so the rule can reflect the relationship
between pieces of information rather than the concrete features
of that information. It does not matter what values the As and Bs
have, so long as the resulting sequence obeys the right pattern of
repetition.

Variable binding has been at the center of a key debate in
cognitive science (Jackendoff, 2003; Marcus, 2003), much of which
has focused on the role of statistics in learning abstract rules.
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Proponents of a rule-based approach point out that statistics alone
are insufficient for learning rules that require variable binding,
since (as with ABA rules) variable binding allows learners to gener-
alize to novel stimuli for which they have no statistical informa-
tion.1 In response, proponents of a statistical approach point out
that a pure rule-based approach cannot explain why learners choose
the rules they do from the infinitely many that are consistent with
the input. In addition, infant studies have shown that the statistics
of the input affect generalization of ABA-like rules. For instance,
Gerken (2006) presented infants with syllable sequences that were
logically consistent with two different rules and showed that they
learned the one that was best supported by the statistics of the input
they had received.

This tension between rules and statistics has been addressed in
recent years by hybrid models, sometimes referred to as proba-
bilistic language of thought (pLOT) models (Piantadosi & Jacobs,
2016). pLOT models operate with infinite hypothesis spaces by
employing a compositional system for creating rules (Erdogan,
Yildirim, & Jacobs, 2015; Goodman, Tenenbaum, Feldman, &
Griffiths, 2008; Kemp, 2012; Siskind, 1996; Piantadosi,
Tenenbaum, & Goodman, 2012; Piantadosi, Tenenbaum, &
Goodman, 2016; Ullman, Goodman, & Tenenbaum, 2012;
Yildirim & Jacobs, 2015). These models integrate rules and statis-
tics by employing statistical (e.g., Bayesian) inference over such
structured hypothesis spaces (Tenenbaum & Griffiths, 2001). By
using structured, symbolic hypotheses, these models can represent
‘‘rule-based” concepts. And by maintaining uncertainty over rules,
these models can operate in the presence of noisy data showing
gradience or typicality effects.

While there have been several process-level models of variable
binding in neural networks (Hummel & Holyoak, 1997; Smolensky,
1990), few models have approached the problem of variable bind-
ing from the ideal-observer (Geisler, 2003) perspective, consider-
ing a computational-level explanation for rule learning as the
rational outcome of an optimal computation.

Frank and Tenenbaum (2011) implemented an ideal-observer
model of ABA-style rule learning in which variables are implicit.
They represented these rules with 3-tuples like ðisga; �;¼1Þ, which
meant that the first syllable is a specific one (‘ga’ in this case), the
second syllable is free (it could be anything), and the third syllable
is equal to the first. Their model used Bayesian techniques to
approximately capture generalization patterns by performing infer-
ence over this space of hypotheses. While this representation is
strictly sufficient to capture ABA-like patterns, it has important
shortcomings. Since its variables are simply built in as a baseline
in the representation, their model is unable to explain why learners
may or may not come to hypothesize variables in the first place.
Second, the space of concepts and rules lacks any prior biases over
hypotheses. In particular, there is no notion of simplicity or com-
plexity, a key inductive bias for human learners (Chater & Vitanyi,
2003; Feldman, 2000). A simplicity bias allows learners to avoid
over-fitting and to come to a reasoned compromise between gener-
ality and fit-to-data. Finally, their representation is highly specific
to identity-based, ABA-like patterns. This makes it unclear how
their methods and ideas might generalize to the many other classes
of rule-based concepts that have been studied in the literature.

Our model addresses all of these issues. We represent concepts
as probabilistic programs, programs with stochastic primitives such
that they produce different random outputs each time they are run.
A program-based representation allows hypotheses in our model
1 While much of this debate has focused on the deficiencies of connectionis
models (Fodor & Pylyshyn, 1988) and possible connectionist solutions (Gayler, 2004
Smolensky, 1990; Smolensky & Legendre, 2006; van der Velde & de Kamps, 2006)
these arguments apply to any sub-symbolic theory that does not have an explici
representation of variables.
t
;
,
t

to contain explicit variable binding operations. To infer these pro-
grams from data, we build upon the pLOT framework’s capability
of Bayesian statistical inference over a structured space of symbolic
hypotheses. Following Goodman et al. (2008), we assume a rich
generative model for concepts that uses a probabilistic context-
free grammar to represent an infinite space of hypotheses. This
grammar-based approach provides a natural simplicity-favoring
prior over programs. These qualities of explicit variable binding
and robust statistical inference allow us to reason about abstrac-
tion in rule learning in a way that is not possible with a fixed
assignment of items to slots and a uniform prior.

At the highest level of generality, the goal of our research pro-
gram is to characterize human learning and reasoning as forms
of program induction. We regard the pLOT as a promising frame-
work for developing such a characterization. Our model combines
a symbolic approach, which provides a means for achieving
abstraction (through variable binding) and for defining an infinite
structured hypothesis space (through compositionality), with a
statistical approach, which provides a means for learning represen-
tations from noisy data in a way that quantifies uncertainty
(through Bayesian inference and the use of programs with stochas-
tic primitives). A novel innovation of our model is that it combines
statistical program induction (i.e., Bayesian inference of a probabil-
ity distribution over programs) with the use of probabilistic pro-
grams (i.e., those with stochastic primitives). We see the work
presented in this paper as an early step toward extending
symbolic-statistical hybrid models so that they can be used to
develop theoretical accounts in many domains of human cognition.

In addition to the theoretical contributions of our computa-
tional framework, our secondary goal is to provide empirical
results that further our understanding of human rule learning. Cur-
rently, our knowledge of human learning of ABA-like rules is lim-
ited to data available from infant studies. The necessary
sparseness of these data makes it difficult to distinguish between
competing models at a fine grain. Therefore, we carried out a
behavioral experiment with adults that is inspired by infants’
learning of ABA-like patterns. This allows us to assess subjects’ gen-
eralization patterns at a detailed level.

The plan of this paper is as follows. First, we describe the details
of our behavioral experiment, then the details of our model. We
next compare the generalization performance of our model with
those of our experimental subjects. We find that our model pro-
vides an excellent account of our experimental data, outperform-
ing alternative models that lack key elements such as variable
binding. Finally, we test a variant of our model in order to deter-
mine which way of handling variable abstractions provides the
most accurate fit to human generalizations.
2. Behavioral experiment

In our behavioral experiment, we evaluated human subjects’
abilities to infer an abstract visual concept or category from a small
number of exemplars. This was accomplished by showing subjects
exemplars consistent with a concept, and then asking them
whether they believed each of several test items was also an exem-
plar from the same concept. All subjects were US residents over the
age of 18. They participated in the experiment over the world wide
web using the Amazon Mechanical Turk crowdsourcing platform.
Raw data from the experiment can be found in the online supple-
mental materials.

Visual stimuli were images depicting 3D, part-based objects
rendered with realistic lighting and texture (see Fig. 1a for the
set of possible object parts). Based on these images, it was easy
to segment an object into its component parts. Our stimuli have
the advantage of being both novel—meaning that subjects did



Fig. 1. (a) Object parts used in the experiment along with their string representation as used by the computational models. Participants viewed these parts (but not the string
representations) during the instructions phase of the experiment. (b) Training exemplars for all experimental conditions along with their string representations as used by the
models.
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not enter the experiment with prior beliefs about the depicted
objects—and naturalistic.

Importantly, visual concepts were defined based on objects’
parts and the spatial relations among parts. Four concepts were
used in the experiment:
� ABA: Concept ABA is analogous to the rule used in Marcus et al.
(1999). In objects consistent with this concept, the leftmost and
rightmost parts are identical, but different from the middle part
(top row of Fig. 1b).
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� xBB: Concept xBB is analogous to the rule used in Gerken
(2006). Here, the leftmost part is always a specific part,
whereas the middle and rightmost parts are different from
the leftmost part, though are identical to each other (second
row of Fig. 1b). These stimuli are consistent with both the
xBB rule and the broader ABB rule in which the leftmost part
can be any part that differs from the right two. However, the
xBB concept is ‘‘narrower” than the ABB concept in that there
are fewer possible objects that satisfy it—with n possible
parts, there are n� 1 xBB objects and nðn� 1Þ ABB objects.
A comparison of subjects’ generalizations after viewing
exemplars from the xBB concept allows us to verify the prior
literature suggesting that people learn a narrower concept
when the evidence supports it.

� ABC: We also wanted to study people’s generalizations when
the evidence supports a ‘‘wider concept” which, to our knowl-
edge, has not been previously studied. We therefore imple-
mented an ABC concept in which all three parts differ (third
row of Fig. 1b). This concept has nðn� 1Þðn� 2Þ satisfying
objects.

� Ring: Previous experiments have primarily used stimuli with
three parts arranged linearly (either in time, by necessity, or
in space). To go beyond this context, we tested a concept with
five-part objects where the parts are arranged in two dimen-
sions. In the Ring concept, four of the five parts comprising an
object are identical and are organized to form a ring. The fifth
part is distinct and resides at the center of the ring (bottom
row of Fig. 1b). Like the ABA concept, this concept has nðn� 1Þ
satisfying objects.

To eliminate possible order or experience effects, each subject
participated in a brief experimental session using a single trial with
a single visual concept. The session consisted of three stages: an
instruction stage, a training stage, and a testing stage. During the
instruction stage, subjects were shown all five possible part shapes
as in Fig. 1a. Next, subjects participated in a training stage where
they were shown three exemplars from a concept. Each subject
was allowed to view the exemplars for as long as he or she wished.
Training was followed by testing. During testing, subjects were
shown an array of 24 test items. Test items had the same general
structure as training exemplars (three parts arranged linearly or
in a ring for the Ring condition), but differed in which parts occu-
pied each position in an item. For each condition, we chose a
unique set of test items in order to broadly cover a range of pat-
terns both consistent with and inconsistent with the intended con-
cept. Participants chose ‘yes’ or ‘no’ for each test item to indicate
whether it belonged to the same concept as the training exemplars.
To eliminate memory demands, training exemplars remained
available for viewing at the top of the web page for the duration
of the test stage.

One hundred twenty subjects participated in experimental ses-
sions, with thirty subjects assigned to sessions using each visual
concept. However, data from some subjects were not used in the
analyses reported below. At least one training exemplar was pre-
sent in the test items. If a subject answered ‘no’ to a test item that
was identical to an exemplar, his or her results were excluded from
our analyses. Based on this criteria, the responses from 29, 28, 23,
and 29 subjects were used in the analyses of the ABA; xBB; ABC,
and Ring conditions, respectively.
2 In other settings, it may be best to only consider items whose output probability
exceeds a threshold as members of a concept.
3. Computational models

This section describes our proposed computational model,
referred to as the Hierarchical Language of Thought (HLOT) model,
as well as two alternative models.
3.1. Hierarchical Language of Thought (HLOT) model

The HLOT model is a rule-learning model. Unlike many rule-
learning models (like those that employ Boolean logic, for exam-
ple), the HLOT model assumes that observed data exemplifying
some concept are the result of an unobserved, stochastic genera-
tive process (Feldman, 1997; Kemp, Bernstein, & Tenenbaum,
2005; Lake, Salakhutdinov, & Tenenbaum, 2015; Stuhlmüller,
Tenenbaum, & Goodman, 2010; Yildirim & Jacobs, 2015). That is,
it defines a concept as the output of a hidden sampling procedure
that generates data items. Such generative approaches have a rich
history in computational approaches to vision (Leyton, 1999; Stiny
& Gips, 1972; Yuille & Kersten, 2006). Here, although we are work-
ing in a visual domain, we apply this approach to abstract concepts
in a domain-general way.

To get a sense for the mechanics of such generative rules, con-
sider the ABA concept used in our experiment. A generative rule for
this concept might look as follows:

1. Randomly pick a part from the set of all possible parts
2. Remove that part from the set of all possible parts
3. Randomly pick a second part from this new set
4. Produce an object whose parts, from left to right, are the first

part, followed by the second part, followed by the first part
again

This procedure for generating three-part objects is capable of
outputting all and only those that follow an ABA pattern. Therefore,
a learner who has inferred this procedure as the underlying rule
has knowledge of a possible causal origin of ABA exemplars. A lear-
ner can use this knowledge to classify a novel object as a member
of the ABA concept by determining whether the object is a possible
output of the procedure.

We represent generative sampling procedures as probabilistic
programs. Probabilistic programs have two computational proper-
ties that make them particularly powerful for dealing with abstract
concepts. First is stochasticity. While traditional programs are
deterministic, ours are probabilistic, meaning they employ as com-
putational primitives functions that sample from distributions.
Therefore, rather than a single output, a program might be able
to produce multiple outputs—a different output each time the pro-
gram is executed. In the concept learning literature, a concept is
defined by its extension, or the set of entities in the world which
it refers to. The set of possible outputs of a program forms a natural
representation of the extension of the concept it characterizes.2

Second is variable binding. As discussed above, abstract concepts
are those that require variable binding. Probabilistic programs are
similar to conventional computer programs in the sense that they
have variable binding built in. Consequently, the HLOT model can
naturally accommodate variable binding and, therefore, generative
procedures representing abstract concepts.

We base our representation of probabilistic programs on
lambda calculus. Lambda calculus is a type of logic that character-
izes computation using function abstraction (via variable binding)
and function application (via symbolic substitution). These two
operations are sufficient to make lambda calculus a universal
model for computation (i.e., it is equivalent in power to a Turing
machine). Since our implementation uses stochastic functions that
sample from distributions, it can be considered a form of stochastic
lambda calculus. In addition to variable binding and function appli-
cation, programs are made up of existing (either innate or previ-
ously learned) cognitive operations referred to as primitives. Each
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primitive is simple, but primitives can be composed to build arbi-
trarily complex programs.

For the purposes of accounting for our experimental data, we
provided the HLOT model with three program primitives: sam-

ple() which samples uniformly from a set, � (minus) which
removes an element from a set, and concat()which concatenates
strings. We chose these primitives because they constitute a min-
imal set necessary to construct reasonable hypotheses in this
domain. Given our model’s simplicity bias (discussed shortly), it
is reasonable to think that even with a larger set of primitives,
learned hypotheses would tend to use a minimal set like the one
we have provided. These primitives are both simple and cogni-
tively plausible, corresponding to manipulations that could be
learned early in development by manipulating objects, such as
removing something from a group or placing two objects near
one another.

Our programs output string representations of objects. Each let-
ter of a string stands for a particular part, and arrows denote spatial
relationships between parts. For simplicity, we assume a fixed,
deterministic mapping between the string representation of an
object and its visual image. For example, all parts have the same
size and orientation in all exemplars and test items, and we
assume the learner knows this mapping. We discuss later (Sec-
tion 6) the potential effects of relaxing this assumption.

Pseudocode equivalent to the above procedure for representing
the ABA concept is the following3:

Program 1.
let x1 = sample(R)
let x2 = sample(R� x1)
output x1 ! x2 ! x1

where R is the set of all possible parts. This probabilistic program
represents the ABA concept because it outputs all and only those
objects that follow an ABA pattern. Its possible outputs are exactly
the extension of the concept.

The HLOT model is a Language of Thought model in that it
defines an infinite space of possible hypotheses (i.e., possible
stochastic programs or stochastic lambda calculus expressions)
by using a probabilistic context-free grammar (PCFG) (Goodman
et al., 2008). PCFGs are a well known formalism from Computer
Science where they have been successfully employed for many
natural language tasks. They are generalizations of (non-
probabilistic) CFGs, which are used to define the syntax of pro-
gramming languages. Just as these grammars are used to charac-
terize natural and artificial languages, the HLOT model uses them
to characterize conceptual languages. A PCFG is made up of a set
of production rules that define how to build up arbitrarily complex
expressions.

We defined a grammar to generate expressions of the following
form:

1. Generate and store a part
2. Generate and store zero or more additional parts
3. Using those parts, output a string representation of an object
3 For ease of reading, we present these stochastic lambda calculus expressions in a
procedural style, with line breaks, an explicit output function, and variable binding
written as ‘‘let x ¼ �”. These are simply syntactic rewritings, and do not change the
semantics. For example, Program 1 is equivalent to the expression:
ðkx1:kx2:x1 ! x2 ! x1ÞðsampleðR� x1ÞÞðsampleðRÞÞ.
The parts can either be sampled from a set (via sample()) or
specified directly (part ‘a’, for example). Sets can consist of either
the full alphabet or any subset thereof, constructed by removing
parts from the full alphabet. The object’s string representation is
then constructed using the variables bound in the previous steps.
The full grammar is shown in Fig. 2.

Given some data—one or more exemplars from a concept—the
model uses Bayesian inference to learn a distribution over stochas-
tic programs, indicating which programs were likely or unlikely to
have generated the data through their sampling process. We can
express this distribution using Bayes’ rule:

Pðhjx1; . . . ; xnÞ / Pðx1; . . . ; xnjhÞ PðhÞ
where h denotes a hypothesized rule and x1; . . . ; xn denotes the set
of exemplars comprising the data set. The term Pðhjx1; . . . ; xnÞ is
known as the posterior, and it is proportional to the product of
the terms Pðx1; . . . ; xnjhÞ and PðhÞ which are known as the likelihood
and prior, respectively. The prior is a distribution defined before
observing the data set, whereas the posterior is the updated distri-
bution calculated after observing the data set. In our model, the
likelihood and prior distributions correspond to the two levels of
the generative hierarchy.

The likelihood function Pðx1; . . . ; xnjhÞ specifies the probability
of seeing the observed evidence if hypothesis h is true. This expres-
sion has a natural interpretation in our model because h is repre-
sented by a probabilistic program which inherently defines a
distribution over its outputs. For example, let h1 denote Program
1, which generates all and only those objects consistent with the
concept ABA. If there are five possible object parts, and a learner
observes data item x1 ¼ a ! b ! a, then the likelihood of that data
item Pðx1jh1Þ ¼ 1

5 � 1
4 ¼ 1

20. Next, consider hypothesis h2 that is iden-
tical to h1 except that the middle part is not constrained to be dif-
ferent from the outer parts. This would be represented by the
following program:

Program 2.

let x1 = sample(R)
let x2 = sample(R)
output x1 ! x2 ! x1

In this case, the likelihood is Pðx1jh2Þ ¼ 1
5 � 1

5 ¼ 1
25. This example

illustrates that the likelihood function implements the ‘‘size princi-
ple”4 (Tenenbaum, 1999). Hypothesis h2 yields a lower likelihood
value than h1 because it must assign some probability mass to every
item it can generate, and since it is a ‘‘wider” hypothesis and can
generate more items (25 versus 20), each item is allocated less of
that overall mass. In this way, the likelihood function prefers
‘‘smaller” hypotheses because they make each individual data item
more probable.

Of course it is unlikely that learners explicitly track the full
extension of their hypotheses; our claim is not that this is the
mechanism by which learners compute, but rather that the Baye-
sian likelihood describes an ideal or optimal value, even if it is
intractable to compute exactly. In practice, both large-scale
machine learning models and human learners must approximate
such values, but it is useful for ideal-observer models such as ours
to specify the optimal quantity so that further work may have a
well-founded target when researching approximation strategies.
(See Frank (2013) for a fuller discussion of different levels of anal-
ysis as it relates to the size principle.)
4 More precisely, the size principle emerges from a generative model’s likelihood
nction in the special case where that function is uniform over exemplars.
fu



Fig. 2. The HLOT model uses a probabilistic context-free grammar to define the space of stochastic lambda calculus expressions. Here we show an equivalent grammar that is
easier to read. Non-terminals are indicated by BOLD-CAPS. The notation ‘‘let <TYPE>: xn ¼ . . .” means that when this rule is expanded in a derivation, a new rule is created in
the grammar: TYPE ! xn . Where indicated, rules have production probabilities which were fit to data. All other production probabilities are uniform, or maximally so without
resulting in an improper grammar.

5 This invariance is at the symbolic level, and may not apply at the visual leve
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When a data set consists of multiple exemplars from a concept,
the HLOT model assumes that the exemplars are conditionally
independent. Thus, the likelihood function is given by:

Pðx1; . . . ; xnjhÞ ¼
Y
i

PðxijhÞ:

The prior distribution PðhÞ, following Goodman et al. (2008),
uses the probabilities from the PCFG to define a distribution over
hypotheses. The grammar consists of a set of rules, each of which
has an associated probability. Expressions are built up by repeated
application of these rules. This results in a tree structure known as
a parse tree, where the leaves of the tree represent the content of
the expression. For example, Fig. 3 shows a parse tree for Program
1. For our simulations, we set the grammar’s production probabil-
ities as uniformly as possible under the constraint that the
expected length of the resultant expressions should be finite. If
there are p production rules associated with a given nonterminal,
this value was generally 1

p for each of those rules, except in cases

where this would result in an improper grammar (the expected
length of its generated expressions is infinite).

There were two rules that we felt corresponded to biases that
subjects may be bringing into the task. Therefore we set their pro-
duction probabilities to free parameters and fit them to data as dis-
cussed in the Appendix. One parameter represented the prior
probability of choosing a specific part as opposed to randomly
sampling one (psingle) and the other parameter represented the prior
probability of removing a part from a set (pminus).

Importantly, this prior implements a bias toward hypotheses
that are ‘‘simpler”. Since each production rule in a PCFG has an
associated probability (less than 1), the HLOT model’s prior distri-
bution favors simplicity by defining the probability of expression h
as the product of the production probability for each rule in its
parse tree:

PðhÞ ¼
Y
r2T

PGðrÞ
where r is a production rule used in parse tree T, and PGðrÞ is the
associated probability for rule r as given by grammar G. Thus, more
complex expressions employing more applications of production
rules have more factors in this product, and therefore have lower
probability.

The combination of the likelihood as defined by the probabilis-
tic program and the prior as defined by the grammar form a prin-
cipled balance between fit to the observed data and generalization
to unseen data items. The likelihood function prefers ‘‘smaller”
hypotheses providing the best fit to data, even if those hypotheses
are complex. The prior, because of its simplicity preference, coun-
teracts ‘‘overfitting” and ensures that the hypothesis generalizes to
novel data items. However as the model receives more data, the
likelihood will begin to dominate the prior and the model may
come to prefer more complex hypotheses. Thus, the hypotheses
with the highest posterior probabilities will be those that best
trade off model fit to the available data, as measured by the likeli-
hood function, with model simplicity and generalizability as
defined by the prior distribution.

This subsection has described the probabilistic rules and their
generating process for the HLOT model. To complete the descrip-
tion of the model, we also describe two variables that influence
how the model generalizes. In visual environments, people often
show orientation invariance in their object recognition perfor-
mances (Attneave, 1955; Liu & Kersten, 2003). The first variable
determines whether hypotheses should be orientation invariant,
meaning, for example, that a probabilistic rule that produces the
object a ! d ! d also produces d ! d ! a.5 In addition, people
may differ in terms of how broadly they generalize due to differing
notions of the space of possible object parts. The second additional
variable of the HLOT model determines whether the set of possible
object parts is the full set of possible parts or if it is limited to just
the parts that occur in a set of training exemplars. We model these
when the parts themselves are not symmetrical.

l



Fig. 3. A simplified parse tree for the pseudocode shown in Program 1 for the concept ABA. Each arrow corresponds to the application of a grammatical production rule. The
production rules define constraints on what grammatical transformations are allowed (i.e., on the syntax of pseudocode in this example), along with an associated probability
with each transformation (not shown here).
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choices as part of the generative process via a vector of Bernoulli ran-

dom variables, denoted h
!
. This makes the full posterior distribution:

Pðh; h
!
jx1; . . . ; xnÞ / Pðx1; . . . ; xnjh; h

!
ÞPðhÞPðh

!
Þ:

We assume that the choices of orientation invariance and set
content are independent, giving:

Pðh
!
Þ ¼

Y
i2foi; rpg

phi
i ð1� piÞ1�hi ð1Þ

where oi stands for ‘‘orientation invariance” and rp stands for
‘‘restricted parts”, and where poi and prp are free parameters that
we fit to our subjects’ responses.

The Appendix describes how we estimated the posterior distri-
bution over hypotheses. In brief, we did so in two steps. The model
has four free parameters: the two production probabilities psingle

and pminus, and the parameters poi and prp. First, the values of these
parameters were set to an initial guess. Upon observing some
exemplars from a target concept, the model then estimated a pos-
terior distribution over hypotheses using a Markov chain Monte
Carlo inference procedure. Samples generated by this procedure
were placed on a list of viable hypotheses. Next, we fit the values
of the free parameters by minimizing the sum of squared error
between model prediction and subjects’ responses as reported in
Section 4.2. We then recomputed the posteriors of the viable
hypotheses using these fitted values.

3.2. Competing models

We compared the HLOT model with two variants of an exem-
plar model based on the Generalized Context Model (GCM)
(Nosofsky, 1986), a highly influential model of human categoriza-
tion. The GCM is a similarity-based model—it determines the
category membership of a test item based on its similarity (or
inverse of distance) to the training exemplars. The GCM is a useful
comparison model because it does not have a native mechanism
for abstraction or variable binding.

The GCM’s probability of responding ‘yes’ to test item k (that is,
its probability of judging test item k as being a member of the same
concept as the training exemplars), denoted rk, is:

Pðrk ¼ ‘yes’jx1; . . . ; xnÞ ¼
P

ie
�c�dðyk ;xiÞ

maxj
P

ie
�c�dðyj ;xiÞ

where dð�; �Þ is a distance function, c is a scaling parameter, xi is the
ith training exemplar, and yj is the jth test item. In the simulations
reported below, we used gradient descent to find a value for scaling
parameter c that minimized the sum of squared error between the
model’s responses and subjects’ responses in our behavioral
experiment. This formulation of the GCM differs slightly from the
standard one because the GCM was originally designed to discrim-
inate between two classes, but there is only a single class in our
experimental task. Therefore, we normalized the similarity scores
by dividing them by the maximum similarity across all test items.
This converts a raw similarity score to a pseudo-probability in the
interval [0,1] (see Stuhlmüller et al. (2010) for a related similarity
score). We implemented two different versions of the GCM, each
with a different distance function.

The first version, referred to as GCM-String, uses a ‘‘symbolic”
distance function. For this function, we chose string edit distance,
also known as Levenshtein distance (Levenshtein, 1966). This is a
metric on strings that gives the minimum number of edits (single
character insertions, deletions, or substitutions) required to trans-
form one string into another. Applied to a string representation of
our objects, this distance measure depends on the parts and their
positions in the object. The lowest distance (and thus highest sim-
ilarity) is assigned to pairs of strings that are exactly matching, as
they require zero edits to transform one into the other. Higher dis-
tances are assigned to a pair of strings representing objects sharing
fewer parts and where those parts are in differing positions.



Fig. 4. Hypotheses assigned the highest posterior probabilities by the HLOT model in each experimental condition. R denotes the set of all object-parts, and RR denotes the set
of parts that are present in the training exemplars.
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The second version, referred to as GCM-CNN, implements a
‘‘visual” distance function. Here, we used a highly successful com-
puter vision system based on a deep convolutional neural network
(CNN). This system, AlexNet (Krizhevsky, Sutskever, & Hinton,
2012), is an eight-layer (five convolutional, three fully connected
layers) CNN trained on 1.2 million images in the ImageNet data
set. We used the pre-trained network provided by the Caffe frame-
work (Jia et al., 2014). It achieved the best performance on the
2012 ImageNet Large Scale Visual Recognition Challenge, and
was in large part responsible for the recent surge of interest in
deep neural networks for computer vision. To compute our dis-
tance function, we first used AlexNet to obtain a visual representa-
tion of our objects. For each object, we provide an image of that
object to the input of the network. We then extract a vector repre-
sentation of that image from the activations of the units in the net-
work’s last fully-connected layer before the output layer (layer fc7
in the notation of Krizhevsky et al. (2012)). The distance between
two objects was then calculated as cosine distance, or 1 minus
the normalized dot product, between the vectors representing
the objects. This technique of using visual features from deep CNNs
for classification tasks has recently been shown to be equal to or
better than other commonly used techniques (Razavian,
Azizpour, Sullivan, & Carlsson, 2014).
4. Comparison of models and human generalizations

When simulating the HLOT model, we treated it as if it was a
subject in our experiment: for each experimental condition, we
provided it with the same three training exemplars as observed
by our subjects, and we tested it using the same set of twenty-
four test items as used to test our subjects.
4.1. Inferred hypotheses

We start by reporting the hypotheses to which the model
assigned the highest posterior probability for each experimental
condition (see Fig. 4). For the condition using concept ABA, the
model assigned the largest probability to a hypothesis that follows
the ABA pattern except that the set of possible object parts is
restricted to the parts that appear in the training exemplars. The
same hypothesis but without this restriction was assigned a simi-
lar probability. To us, these are both sensible hypotheses given the
observed training exemplars. For the condition using concept xBB,
the model assigned the highest probability to the hypothesis stat-
ing that objects consist of the specific part represented by the
string ‘a’ followed by any two identical parts. Here, the model cor-
rectly inferred a relatively ‘‘narrow” hypothesis stating that all
objects belonging to the concept have part ‘a’ as their leftmost part.
For concept ABC, the model correctly inferred a hypothesis that all
three parts differ. Lastly, for concept Ring, the model inferred a
hypothesis that follows the Ring pattern except that the set of pos-
sible object parts is restricted to the parts appearing in the exem-
plars. This hypothesis is analogous to the one that it inferred in the
ABA condition, verifying that the model is capable of operating
with stimuli that go beyond short, linear strings. Overall, we find
that the model, using only the data subjects observed, infers pro-
grams that are much like those we had intuitively expected when
constructing the experiment.

4.2. Comparison with subjects’ responses

Next we compare the HLOT model’s responses with subjects’
responses in our experiment. For test item k, we computed the
model’s marginal probability (marginalizing over hypotheses) that
k would be in the concept by summing the posterior probabilities
for all hypotheses that produce k:

Pðrk ¼ ‘yes’jx1; x2; x3Þ ¼
X
h; h
!
Pðh; h

!
jx1; x2; x3Þ Iextðh; h!ÞðkÞ

where rk is the response to test item k; extðh;~hÞ is the extension of
(i.e., the set of objects generated by) hypothesis h and generaliza-

tion variables h
!
, and I is the indicator function equal to 1 if test item

k is in the extension and equal to 0 otherwise. The results are shown
in Fig. 5. Taken as a whole, the HLOT model captures the qualitative
trends in subjects’ generalizations. For example, in all conditions,
both the model and subjects assigned the highest probabilities to
test items that follow the target concept and the lowest probabili-
ties to items that were strongly inconsistent with the target con-
cept. This suggests that subjects learned an underlying abstract
rule even with just three training exemplars.

The HLOT model also captures some of the finer gradations in
subjects’ generalizations. For example, in the ABA condition, sub-
jects rated test items that have all the same parts (e.g.,
a ! a ! a) as more likely than items such as e ! a ! a and
c ! d ! b. The model captures this trend via hypotheses like the
one shown in Program 2 which lacks the constraint that the middle
part differs from the outer parts. This program generates all items
that follow an ABA pattern, but additionally generates items in
which all three parts are the same. This hypothesis has a lower
likelihood score than that of Program 1 because it generalizes more
widely, but it has a higher prior probability because it is less com-
plex. The model correctly predicts that, due to hypotheses like Pro-
gram 2, people will more readily generalize to items that have all
the same parts than to items where the first and third parts differ.



Fig. 5. HLOT model’s and subjects’ probabilities of responding ‘yes’ to each test item in the ABA; xBB; ABC, and Ring conditions, respectively. Test items are listed along the
horizontal axis, and probability of responding ‘yes’ is plotted along the vertical axis. Subjects’ probabilities are given by the gray bars, and the model’s probabilities are given
by the red diamonds. Error bars show 95% confidence intervals given by the exact binomial test (Clopper & Pearson, 1934). (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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Fig. 6. Correlations with human responses for the HLOT model and the two
similarity-based models. The best score in each condition is shown in bold.
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These finer aspects of subjects’ generalization trends would not
be captured by a simpler formulation of model response, such as
the hypothesis or program with the largest posterior probability
(the maximum a posteriori or MAP estimate, as in Stuhlmüller
et al. (2010)). This is because even though hypotheses such as Pro-
gram 2 are non-optimal, they still represent a notable portion of
the total posterior mass and therefore play an important role in
overall generalization trends. For another example, note that the
MAP hypothesis in the xBB condition (Fig. 4) does not have the
parameter for orientation invariance set to true. Nonetheless, test
item d ! d ! a, which would most plausibly be generated by an
orientation-invariant hypothesis, was chosen by people more than
half of the time (Fig. 5). These examples suggest that, given limited
evidence, people are able to discover a diverse range of plausible
hypotheses, and therefore it is crucial for models to explore the full
posterior and to use this posterior to average over all hypotheses.

Although the model gives a good account of subjects’ responses,
it sometimes generalizes in ways that differ from our subjects’ gen-
eralizations. For instance, in the xBB condition, the model gives a
lower probability than people to items that follow an ABB pattern
but do not have an ‘a’ in the first position. As expected based on the
data of Gerken (2006), people give lower scores to those items than
they do to those with an ‘a’ in the first position, but the model gives
near-zero probability, a much stronger effect. This is due to the
much lower likelihood given to hypotheses that allow any part in
the first position.
4.3. Comparison with alternative models

As described above, we also applied two competing models,
GCM-String and GCM-CNN, to our experimental task. Fig. 6 shows,
for all models and experimental conditions, the correlation
between each model’s predicted probability of responding ‘yes’
to a test item and subjects’ actual probability. The HLOT model
achieves the highest score in all conditions (indicated by the bold
font). In all conditions, the difference between HLOT and the
GCM models was statistically significant at the p < :05 level by a
two-tailed t-test on the Fisher’s z-transformed correlations.6

These correlations show that the HLOT model provides an
excellent account of subjects’ responses, with most correlations
above 0:9. Despite the sophistication of the GCM-String and
GCM-CNN models, they provide relatively poor accounts of sub-
jects’ responses in all conditions, explaining roughly half of the
variance that the HLOT model accounts for.

To further characterize the differences in performances
between the HLOT, GCM-String, and GCM-CNN models, we exam-
ined their responses to three groups of test items: (1) in_restricted:
items that follow the intended pattern and have no parts other
than those seen in the exemplars; (2) in_novel: items that follow
the intended pattern but have one or more parts that were not seen
in the exemplars; and (3) other: items that do not follow the exam-
ple pattern. These results are shown in Fig. 7. In all experimental
conditions, subjects’ probabilities were highest for items that fol-
lowed the given pattern and had only parts that were present in
exemplars. The probabilities took an intermediate value for items
that followed the given pattern but contained novel parts not seen
in exemplars. Lastly, the probabilities were lowest for items that do
not follow the given pattern. These results indicate that subjects
did indeed learn a close approximation to the intended rule.

The responses of the HLOT model capture subjects’ generaliza-
tion trends, with high probability given to test items that follow
the structural pattern of the exemplars and low probability given
6 We accounted for the dependency induced by calculating correlations with
respect to the same target (subjects’ responses) by modifying the z-transform as per
Steiger (1980).
to items that do not. This pattern of generalization is markedly dif-
ferent from that of the GCM-String and GCM-CNN exemplar mod-
els. The GCM-String model prefers items that have the same parts
in the same positions as the exemplars, and the GCM-CNN model
prefers items that have the most shared visual features with the
exemplars (where the features were determined by the deep
convolutional neural network AlexNet). Since neither of their sim-
ilarity functions are sensitive to the abstract, relational structure of
the objects, these models do not generalize in the same way as
people.

In particular, the similarity-based models tend to underpredict
‘‘yes” responses for the in_novel set of test items, those that follow
the same pattern as the exemplars but contain novel parts. For
example, in the ABA condition, given exemplars
d ! e ! d; e ! a ! e, and a ! d ! a, the HLOT model assigns a
high probability to test items such as b ! c ! b which, although
it is solely made up of parts that were not seen in the exemplars,
reflects the exemplars’ abstract structure. Roughly half of the sub-
jects responded ‘yes’ to this test item in this condition. The
similarity-based models, however, assign that item a low probabil-
ity, as it requires many edits to transform to a training exemplar
and also shares few visual features with the exemplars. Thus, this
test item shares its abstract, second-order structure with the
exemplars, but it differs in its concrete and particular features.

This difference in model responses can go in the other direction
as well. The similarity-based models tend to overpredict ‘‘yes”
responses for out-of-pattern items, since these can have similar
surface characteristics to the examples without following the
abstract pattern. Continuing with the ABA condition, test item
d ! e ! a does not reflect the abstract, relational structure of the
training exemplars, since all three of its parts are different from
each other, but it does share at least some parts (and also visual
features) with all of the exemplars. Therefore, the HLOT model
gives it a low probability but the GCM models give it a high prob-
ability. The results of the experiment show that, as predicted by
the HLOT model, subjects responded ‘yes’ to this test item with a
low probability, suggesting that people can and do learn abstract,
relational concepts when these concepts provide good accounts
of the data.
4.4. Discussion

These results show that not only is the HLOT model able to infer
programs with variables, it does so in a way that better matches
human generalizations than standard existing models. We believe
that the overall superior performance of the HLOT model is primar-
ily due to its ability to infer the abstract compositional (or rela-
tional) structure underlying the training exemplars. Moreover,
because the model does not infer a single hypothesis regarding this
structure—it infers a distribution over all possible hypotheses—the
model simultaneously considers multiple hypotheses, albeit each
one to a lesser or greater extent (based on a hypothesis’s posterior
probability). These results suggest that subjects, even when
exposed to only three training exemplars, generalize in a way that,
like the HLOT model, reflects objects’ abstract structure rather than
their surface-level similarities.



Fig. 8. The grammar for the optional-abstraction model variant. See Fig. 2 for details of the syntax.

Fig. 7. Total subject and model probabilities of responding ‘yes’ across all test items in each of the three groups (see text for a description of the items in each group). (In the
ABC condition, all five possible parts were present in the training exemplars and, thus, there are no test items in the in_novel group.) Shown are the HLOT model and the two
models based on the GCM. Error bars show 95% confidence intervals given by the exact binomial test (Clopper & Pearson, 1934).
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5. The nature of abstraction

An advantage of the HLOT model is that it uses computational
primitives and grammatical structures that are psychologically
interpretable. This gives us the ability to use the model to reason
about psychological phenomena by implementing different
assumptions and then investigating the effect that those assump-
tions have on the models’ performances. We leveraged this feature
to investigate the nature of abstraction in people’s learned
concepts.

For example, the basic HLOT model’s grammar implements the
constraint that the output string must be made up of previously
bound variables (e.g., ‘‘x1 ! x2 ! x1”). To probe the question of
whether this assumption accurately reflects people’s mental repre-
sentations, we implemented a variant of the HLOT model in which
this restriction is relaxed. That is, the model variant can produce
strings, such as ‘‘x1 ? sample(R)? sample(R� x1)”, containing
terms that are not bound variables (e.g., sample(R)). By endowing
this model variant with a different prior structure, it obtains differ-
ent biases, thereby favoring and disfavoring different hypotheses.
Even though the basic model and its variant have different prior
structures, both still impose an overall simplicity bias. This model
variant, which we call the optional-abstraction variant, imple-
ments a sampling procedure of the following form:
1. Generate and store zero or more parts
2. Output a string representation of an object (using parts repre-

sented by bound variables or ones computed on the fly)

We defined the grammar in Fig. 8 to output such expressions.
A summary of the performance of the basic HLOTmodel and the

optional-abstraction variant is shown in Fig. 9. While these
performances are largely the same in the ABA; xBB, and Ring
conditions, the differences between the versions are pronounced
in the ABC condition. Here, both versions predict roughly the same
high probabilities for test items consistent with the ABC pattern.
For other test items, however, the optional-abstraction
variant assigns higher probabilities than both people and the basic
model.

Why does making abstraction (i.e., variable binding) optional
result in broader generalization? The answer is illustrated by
examining the hypotheses with the highest posterior probabilities
inferred by each version. In the basic model, the maximum-a pos-
teriori hypothesis generates the ABC pattern (bottom left of Fig. 4).
For the optional-abstraction version, however, the maximum-a
posteriori hypothesis is

output sample(R)? sample(R)? sample(R)



Fig. 9. Total subject and model probabilities of responding ‘yes’ across all test items in each of the three groups. (In the ABC condition, all five possible parts were present in
the training exemplars and, thus, there are no test items in the in_novel group.) Shown are the basic HLOT model and its optional-abstraction variant. Error bars show 95%
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which generates all possible three-part items. The reason the

optional-abstraction version prefers this hypothesis is because it
can be expressed using exactly zero abstraction operations. Since
it imposes no constraints on an object’s parts, it does not require
any self-reference and, therefore, does not require any variables
to refer to individual parts. Although this hypothesis has a lower
likelihood score than the ABC hypothesis, that factor is offset by
the much greater prior probability it obtains by avoiding the addi-
tional complexity of abstractions. Conversely, when abstraction
happens automatically (as in the basic HLOT model), all valid
hypotheses include those variable-binding operations. Conse-
quently, the cost in the prior of that additional complexity is com-
mon to all hypotheses, and therefore this cost does not contribute to
distinguishing between hypotheses (technically, this cost gets fac-
tored out in normalization).

A prior structure in which abstractions happen automatically
has the unintuitive result of making abstraction operations appear
to be ‘‘free” in the prior. Indeed, when looking at the results in the
ABC condition, it appears that people very readily form hypotheses
with three distinct parts, and that they give very low scores to all
other hypotheses. This suggests that they impose very little prior
penalty on hypotheses with additional variables, indicating that
variable binding in people seems to be virtually free. This result
is compatible with a simplicity prior over hypotheses only when
variable binding happens automatically, as in the basic HLOT
model.

Another way to characterize the difference between the
hypothesis spaces of the two model variants is in terms of whether
cognitive variables are local or global. The prior structure of the
optional-abstraction variant allows for expressions that include
computations but no abstractions (e.g., output sample(R)?
sample(R)? sample(R)). Here, the result of an individual sam-
ple(�) operation is effectively local to its corresponding slot in the
string. However, it seems intuitive that a cognitive system would
prefer to make the results of any sub-computations globally avail-
able for reasons of efficiency, thereby avoiding redoing work. The
basic HLOT model effectively implements this assumption by
requiring that subcomputations be saved before they are used, just
in case the results of those subcomputations are subsequently
needed (as in output x1 ! x2 ! x1).

5.1. Discussion

Our use of a formal computational model allows us to test vari-
ants that impose different assumptions on the nature of abstrac-
tion. We find that the best HLOT model is one in which

confidence intervals given by the exact binomial test (Clopper & Pearson, 1934).
abstraction happens automatically, meaning that any subcomputa-
tions performed in the construction of a rule are globally available
to the rest of the rule. This suggests that even though hypothesis
complexity is a major influence on rule-based concept learning
(Feldman, 2000), the automatic nature of abstraction may essen-
tially ‘‘cancel out” its contribution toward complexity, making it
appear as if abstraction is ‘‘free”. If so, this may explain why people
fluidly and eagerly learn abstractions from simple data sets like a
few instances of ABA strings.
6. General discussion

In summary, we have formalized the HLOT model, an inductive
model of probabilistic rule and variable learning. Our approach fol-
lows the emerging framework known as the probabilistic language
of thought (pLOT), which has sought to account for human percep-
tion and cognition through models that combine symbolic and sta-
tistical approaches (Erdogan et al., 2015; Goodman et al., 2008;
Kemp, 2012; Piantadosi et al., 2012, 2016; Ullman et al., 2012;
Yildirim & Jacobs, 2015). Due to its symbolic nature, the model
can learn abstract rules containing variables. Due to its statistical
nature, the model can use Bayesian inference and programs with
stochastic primitives to learn distributions over rules indicating
which rules are relatively likely or unlikely to underlie a set of data
items.

To evaluate the HLOT model, we conducted an experiment in
which human subjects viewed training items and then judged
which test items belong to the same concept as the training items.
We found that the model provides a close match to human gener-
alization patterns, significantly outperforming two variants of the
GCM model, one variant making judgments based on string simi-
larity and the other based on visual similarity using features from
a deep convolutional neural network. Although GCM models per-
form well in other tasks, our experiment highlights a key limitation
of these systems: they do not have adequate mechanisms for han-
dling variables. Our task was constructed to encourage variable use
precisely because we hypothesized that, when given the opportu-
nity, people would use variables in a way that cannot be captured
by previous accounts. In combination, our results formalize, test,
and strongly support the view that the ability to define and use
variables is a central capacity in human thinking (Marcus, 2003).
Moreover, by using variable assignment, a learner can account
for rules that go beyond the concrete features in the stimuli and
reflect abstract or second-order relationships.
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To our knowledge, ours is one of the first models using the pLOT
framework to infer probabilistic programs—programs with
stochastic primitives—from data. The use of probabilistic programs
has the benefit of generalizing some assumptions built into previ-
ous models. For example, with deterministic rules, in order to
define a likelihood function it is common to assume uniformity
over all items consistent with the rule (e.g. Goodman et al.
(2008)). This simple assumption is clearly insufficient in any situ-
ation where people are sensitive to the underlying distribution of
data. Stochastic rules, however, naturally define a distribution over
data. This output distribution also generalizes the ‘‘size principle”,
as that effect emerges as a consequence of the likelihood.

Another benefit of our representation is that we connect the
pLOT literature with emerging work on probabilistic program
induction (where statistical inference is used to learn a probability
distribution over programs). Our model is closely related to pro-
gram induction models such as that of Lake et al. (2015). We build
on such work by demonstrating how to learn not only the param-
eters of probabilistic programs, but also their structure.7 Whereas
the programs induced by Lake et al. (2015) had a fixed structure,
our model discovers the best structure from the space of possible
ones as defined by the grammar. The model of Stuhlmüller et al.
(2010) also featured hypotheses of varied structure, but in that work
they eschewed a true inference procedure and simply compared
people’s results to the known, true hypothesis. As discussed in Sec-
tion 4.2, our experimental results showed that people can learn var-
ied and diverse hypotheses from the same data, and therefore
modeling a true posterior over structures is crucial. Although struc-
ture learning is computationally challenging, it has the benefit of
being flexible and domain general. For instance, we could extend
our model to new domains simply by incorporating more or different
primitives and providing new grammar rules.

For example, we could, in principle, extend our model to
account for ‘‘category-based” rules. The rule learning literature dis-
tinguishes between ‘‘pattern-based” rules, which are defined by
perceptual similarities, and ‘‘category-based” rules, which are
defined by similarities between abstract, unobservable properties
(Gomez & Gerken, 2000). The ABA-like rules studied in this work
are instances of the former, since the same/different relationship
between the parts in our objects can be discerned purely perceptu-
ally. Category-based rules, however, are based on abstract or unob-
servable properties. For example, such a rule might be based on
grammatical categories, such as when ‘‘Children throw food” and
‘‘Beatrix drives cars” are linked as instances of noun-verb-noun.
Here, even though ‘‘Children” and ‘‘Beatrix” are not perceptually
similar, they fulfill the same role in the rule due to their abstract
property of being nouns. Of course, category-based rules pose a
much harder learning problem. Assuming a same-as predicate,
as in the Frank and Tenenbaum (2011) model, for a category-
based rule-learning task would be begging the question, as it
would be hiding all of the interesting work. As many have noted
(Murphy & Medin, 1985), similarity (or sameness) is no longer a
satisfying explanatory tool in contexts where the relevant features
are abstract or latent. In this case, the interesting theoretical ques-
tion becomes how the learning system discovers which features to
compare from the infinitely many possible. However, a generative
approach based on program induction offers alternate possibilities.

For example, in our model we assumed a fixed, deterministic
mapping from an object’s string representation to its image. How-
ever, if we instead assume that a symbol in the string represents a
7 The structure of the program itself is distinct from the structure of the objects
generated by the program. While both models can output objects of varied structure
(i.e., with different numbers of parts in different configurations), our model learns the
structure of the program itself (i.e., which functions are called and how they are
composed).
category of shapes rather than a single shape, then the model could
be applied to category-based rules. In this setup, we could provide
primitives and grammar rules that enable a stochastic mapping
from symbols to images, and it could then be a learned part of
the inductive process (similar to the ‘‘token-level” subprogram in
Lake et al. (2015)). Such a model could represent ABA-like rules
where the A’s and B’s are whole classes of parts rather than percep-
tually identical ones. For example, the parts in our stimuli were all
the same size and orientation (Fig. 1). But it is reasonable to
assume that people could learn analogous concepts that are (at
least partially) invariant to parts’ sizes and orientations. A model
with a learned, stochastic mapping from an abstract representation
to concrete instances would be capable of doing so.

An alternative computational approach—deep neural net-
works—has recently become popular in the Machine Learning com-
munity and is likely to become increasingly popular for cognitive
modeling. Although we appreciate the many strengths of deep
neural networks, we also believe that our work reiterates an
important challenge for advocates of this approach. As pointed
out by others with respect to an earlier generation of neural net-
works (Fodor & Pylyshyn, 1988; Marcus, 2003), although tradi-
tional neural networks such as multilayer-perceptrons can
perform some forms of abstraction, they do not present a natural
way to account for variables. Consequently, they do not perform
variable binding, and they do not show human-like patterns of
generalization. In our work, this is precisely why the GCM-CNN
model, which computes visual similarity based on features from
a deep convolutional neural network, did not provide an adequate
account of our experimental data. This remains a difficulty even for
the new generation of neural networks such as deep convolutional
networks. A critical challenge for advocates of deep neural net-
works is to modify them so that they can perform additional forms
of abstraction, including variable binding. Promising approaches in
this direction include models with some form of writeable memory
(Graves, Wayne, & Danihelka, 2014; Graves et al., 2016; Gregor,
Danihelka, Graves, & Wierstra, 2014; Reed & de Freitas, 2016).

Lastly, the HLOT model’s account of our experimental results
suggests a novel view of psychological simplicity. While it is true
that simplicity—as measured by a PCFG-based prior distribution
(Goodman et al., 2008; Piantadosi et al., 2016) or by counting oper-
ations (Feldman, 2000)—is an important driver of generalization in
concept learning, full psychological simplicity may not be so sim-
ple. As Section 5 showed, a PCFG prior for which abstraction hap-
pened automatically fared better in predicting human judgments
than a model in which abstraction was optional. This had the effect
of making abstraction appear to be free, at least with respect to our
stimuli. This provides quantitative, empirical evidence that
abstractions in the form of variables are special as logical opera-
tions—because they happen automatically, they may make seem-
ingly unintuitive contributions to conceptual complexity. This
fact is only discoverable by using the tools that we employed: an
experiment where subjects learn concepts that use variables, and
models that can formalize both people’s inferences and their use
of representations that include variable abstractions.

Understanding these properties of cognition will be important
for moving beyond simple program-induction models of concepts.
Abstraction—through variables, subroutines, or libraries—is an
important capacity in computational systems because it extends
the reach of short, simple programs. For instance, if a function or
a variable can be defined once and re-used, that permits a much
shorter program than if the function or variable must be re-
described each time it is used (Dechter, Malmaud, Adams, &
Tenenbaum, 2013). This means that abstractions increase the
effective power of any resource-bounded computational system,
making them an important target for cognitive theories. Here,
the variables that we have studied are very simple. This is both a



Fig. 10. Fitted values for the HLOT model’s free parameters as well as for the
abstraction-optional variant. The parameters are the production probabilities psingle

and pminus , and parameters poi (oi stands for orientation invariance) and prp (rp
stands for restricted parts).
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strength and a weakness of our approach. By examining the simple
case of ABA-style rules, we are able to conduct a detailed
investigation that reveals basic properties of how variables are
handled. At the same time, the variables required for these are very
simple; more complex cognitive phenomena will require richer
types of abstractions and rules. In principle, our approach can be
extended to other choices of cognitive primitives and abstraction
mechanisms in order to study increasingly complex types of repre-
sentational systems with variables. Thus, this work provides an
early step for understanding how probabilistic inference, logical
complexity, and abstraction interface in human conceptual
representation.

Appendix A. HLOT model posterior inference

The HLOT model has four free parameters. Two parameters are
production probabilities for grammatical rules (see Fig. 2): psingle is
the production probability for choosing a specific object part as
opposed to randomly sampling one, and pminus is the production
probability of removing a part from a set. In addition, the parame-
ter poi is the probability that the extension of a hypothesis is orien-
tation invariant (e.g., if a? d? d is part of the extension, then d?
d? a is also part of the extension), and prp is the probability that a
hypothesis considers the full set of object parts versus a restricted
set limited to just the parts that occur in the training exemplars.

The posterior distribution over hypotheses was inferred in two
stages. In the first stage, the four free parameters were fixed to
default values, and a Markov chain Monte Carlo (MCMC) procedure
(in particular, a Metropolis-Hastings algorithm) was used to search
through the space of hypotheses. MCMC is a form of random walk
that visits each state (or hypothesis, in our case) a number of times
that is proportional to a target posterior distribution (in the limit as
the number of iterations goes to infinity).

We initialized each random walk with the ‘‘widest” or most
general hypothesis for each concept. In the ABA; xBB, and ABC con-
ditions this was

let x1 = sample(R)
let x2 = sample(R)
let x3 = sample(R)
output x1 ! x2 ! x3

and in the Ring condition it was the equivalent program for five-part
objects. At each iteration of the random walk, the algorithm modi-
fied the current hypothesis to generate a new sample. We used a
mixture of two proposal functions: one was a variant of the tree-
regeneration proposal function from Goodman et al. (2008) that
only regenerates a subset of non-terminals (in order to preserve
the structure of the string), and the other randomly flipped the val-
ues of hoi and hrc.

Because the hypothesis space is discrete, we can use MCMC to
identify viable hypotheses (i.e., hypotheses with non-negligible
probabilities). We constructed a set of viable hypotheses and their
un-normalized posterior probabilities. In our simulations, we
stored the top 2000 unique hypotheses, where uniqueness was
defined by the hypotheses’ extensions. If two hypotheses had the
same extension, we stored only the simplest hypothesis (the one
with the highest prior probability). We found that the set of viable
hypotheses was large enough to capture all of the reasonable
hypotheses as well as many others (i.e., those with low, albeit
non-zero, probability). We ran each MCMC chain until the viable
set remained unchanged (no new hypotheses were found) for
2000 iterations. Once we had obtained the viable set, we computed
an accurate approximation to the full posterior distribution by nor-
malizing the un-normalized posteriors by dividing each by the sum
of all stored un-normalized posteriors.

During the second stage, we fit the values of the four free
parameters based on our experimental data. This was accom-
plished using gradient descent to minimize (across all conditions)
the sum of squared error between subjects’ responses and model
prediction as reported in Section 4.2:

q
!� ¼ argmin

q
!

X
k

ðbPðrkÞ � Pðrkjx1; . . . ; xnÞÞ
2

where q
!

is a vector representing the four fitted parameters, and
bPðrkÞ is the observed proportion of subjects who responded ‘yes’
to test item k. Fig. 10 shows the four fitted values for each model.
Lastly, we recomputed the posteriors of the viable hypotheses using
these fitted values.
Appendix B. Supplementary material

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.cognition.2017.
07.005.
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