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Abstract

A growing body of scientific evidence suggests that visual working memory and statistical learning are intrinsically
linked. Although visual working memory is severely resource limited, in many cases, it makes efficient use of its
available resources by adapting to statistical regularities in the visual environment. However, experimental evidence
also suggests that there are clear limits and biases in statistical learning. This raises the intriguing possibility that
performance limitations observed in visual working memory tasks can to some degree be explained in terms of limits

and biases in statistical-learning ability, rather than limits in memory capacity.
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Visual working memory is an extremely limited form of
information storage. At present, the precise nature of the
limit on memory capacity remains controversial, with
competing theories favoring either discrete or continuous
memory resources (for a review of this debate, see Brady,
Konkle, & Alvarez, 2011). However, given the importance
of visual working memory in myriad natural tasks
(Hollingworth, Richard, & Luck, 2008), the existence of
any form of strong limit suggests that the available capac-
ity or resources should be used in an efficient manner.
That is to say, visual working memory can be simultane-
ously limited and yet efficient, in the sense that it makes
the most of its limited resources. The focus of the present
article is to explore the subtle and important implications
of this point, rather than focus on the exact nature of the
capacity limit.

In nearly all cases, “efficiency” in visual working mem-
ory can be understood as the ability to learn and exploit
the statistical structure of the visual environment.
Mathematical results on information coding and transmis-
sion from the field of information theory (Shannon &
Weaver, 1949) demonstrate that efficient information stor-
age and transmission is intrinsically linked to accurate
knowledge of the statistics of the information source. This
means that the structure of the visual world has strong
implications for how information should be encoded in

visual memory, and suggests that memory encoding and
decoding processes should be sensitive and adaptive to
this statistical structure. This perspective points to a deep
and surprising connection between visual working mem-
ory and statistical-learning ability. An intriguing and open
question is to what extent performance limits in visual
working memory are caused by limits in statistical-learning
ability, as opposed to capacity limits.

Efficient Coding and Statistical
Learning in Visual Working Memory

Visual working memory can be conceptualized as an infor-
mation channel that receives visual signals from the envi-
ronment and stores this information for further processing
at a later moment in time. This process is illustrated sche-
matically in Figure 1. As shown at the left side of Figure 1,
the statistical structure of the visual world can be described
by a probability distribution over visual signals, indicated
by p(x). The input to visual memory is some set of features
drawn from this distribution, labeled x.
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Fig. 1. A model of visual working memory as an adaptive and efficient communication channel (based
on a model by Shannon & Weaver, 1949, Fig. 1). The input to visual memory, shown at the left side of the
tigure, has a probability distribution p(x), such that individual visual features, labeled x, are samples from
this distribution. The internal memory representation, y, can be viewed as a noise-corrupted encoding of
the afferent sensory signal. The goal of visual memory is to attempt to decode this noisy signal and arrive at
a “best guess” of the original signal. This estimate is labeled X in the figure. Efficient memory performance
requires that both the encoding and decoding stages are sensitive to the statistics of visual features in the

current context.

Visual working memory is subject to noise, which fun-
damentally limits the precision of memory representa-
tions (Palmer, 1990; Wilken & Ma, 2004). Indeed, the
presence of noise is unavoidable for any physical com-
munication channel, but an efficient communication
channel can adapt the encoding mechanism to minimize
the negative consequences of this noise. In sensory neu-
roscience, this idea forms the basis of the efficient-coding
bypothesis (Barlow, 1961; Geisler, 2008; Simoncelli &
Olshausen, 2001). One basic prediction of this hypothe-
sis is that if certain signals are more likely than others in
an environment, the encoding mechanism should be
optimized to convey more information about the signals
that occur most frequently. For example, auditory neu-
rons in the frog are extremely efficient—in fact, close to
the theoretical bounds—at encoding naturalistic stimuli
such as other frogs’ calls, but are much less efficient at
coding unnatural stimuli such as white noise (Rieke,
Bodnar, & Bialek, 1995).

We have recently shown that efficient encoding also
plays an important role in human visual working mem-
ory (Sims, Jacobs, & Kanill, 2012). According to results
from rate—distortion theory (a subfield of information
theory; Shannon & Weaver, 1949), the minimal capacity
needed to store a visual feature in memory depends on
two factors: the precision of the memory representation
and the distribution of feature values in the current con-
text (Fig. 2). Intuitively, storing a visual feature with lower
precision requires less memory than storing the same

feature with a higher precision (Fig. 2a). Less obvious is
the fact that if memory capacity is fixed, increasing the
variance of a visual feature in the environment should
lead to an increase in the memory error for that feature
(Fig. 2b). The intuitive explanation is that as the variance
of a distribution increases, an encoding system with a
fixed response range must be prepared to encounter a
wider range of feature values, leading to a decrement in
memory precision. Exactly this result was obtained in an
experimental test of the framework (Sims et al., 2012).
Efficient information storage in visual working mem-
ory requires that the properties of the information chan-
nel adapt to the statistics of visual information in the
current context. By adapting to statistical regularities in
the visual environment, more information can be stored
or transmitted in such a communication channel while
using a fixed capacity. Brady, Konkle, and Alvarez (2009)
demonstrated this by having participants store bicolored
objects in visual working memory. When the objects’ col-
ors contained statistical regularities, participants were
able to store more objects. Brady et al. demonstrated that
this improvement in performance was likely attributable
not to an increase in the total capacity of visual working
memory but, rather, to more efficient use of available
memory resources, exactly as would be predicted from a
data-compression standpoint. Similarly, Anderson, Vogel,
and Awh (2013) demonstrated that the presence of per-
ceptual grouping cues such as collinearity among visual
features also leads to an increase in memory
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Fig. 2. Rate—distortion theory defines the minimum memory capacity necessary for storing visual features from a given
distribution (here, a Gaussian distribution with a mean of 0 and a standard deviation of 30) at a given level of memory error
(a). The accuracy of memory depends on available capacity, as well as on the variance of the features in the current context
(b). Human visual working memory has been shown to be consistent with both of these effects (Sims, Jacobs, & Knill, 2012).

performance, in terms of both the number of items stored
and their precision. From an information-theoretic stand-
point, perceptual features such as collinearity introduce
statistical redundancy between neighboring items and,
hence, reduce the overall demand on memory.

Another prominent line of research shows that sub-
jects are quite successful at extracting summary statistics
from visual displays, such as mean orientation or mean
size of a number of items (Chong & Treisman, 2003,
Dakin & Watt, 1997). The ability to perceive and adapt to
the statistical properties of the visual world is a funda-
mental precursor to having efficient memory representa-
tions. Chong and Treisman (2003) argued that storing
summary statistics, rather than individual items in a dis-
play, might be one way to make efficient use of limited
memory capacity. However, the research reviewed in this
section suggests that sensitivity to visual statistics also
enables more efficient storage of each individual item in
memory.

Other research has shown that more complex statistical
regularities (e.g., hierarchical dependencies between
objects based on ensemble statistics; Brady & Alvarez,
2011; Brady & Tenenbaum, 2013; visual chunks defined
by higher-order dependencies between a set of primitive
shapes; Fiser & Aslin, 2005; Orbin, Fiser, Aslin, & Lengyel,
2008) can also be learned both in visual working memory
tasks and other behavioral tasks. Figure 3 gives examples
of different kinds of statistical regularities that can be
learned and exploited by subjects to form efficient

representations. In general, any statistical property of the
input distribution can be regarded as a statistical
regularity.

Much of the work described in this section can be
viewed as extending a long line of research on the role
of chunking in working memory (Miller, 1956). As noted
by Miller, more information can be stored in working
memory when it is reorganized or recoded into familiar
units—a single chunk in working memory can serve as a
pointer to a much richer memory representation in long
term memory. The contribution of the work reviewed in
this section is that it suggests that statistical regularities of
visual stimuli in the environment can serve as the rich
structure that is encoded in long-term memory; hence,
statistical learning enables chunking of perceptual
information.

Although statistical-learning ability plays a key role in
defining the efficiency of visual working memory, as we
discuss below, there are also clear limits to what types of
statistical regularities can be successfully learned by indi-
viduals. This suggests that visual working memory capac-
ity, as a theoretical construct, may not be easily separable
from statistical-learning ability. Indeed, statistical learning
may play a key role in explaining developmental effects
in visual working memory. It has previously been shown
that both the effective number of items stored (Cowan,
AuBuchon, Gilchrist, Ricker, & Saults, 2011) and the pre-
cision of visual memory representations (Burnett-Heyes,
Zokaei, van der Staaij, Bays, & Husain, 2012) increase
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Fig. 3. Schematic illustration of a variety of statistical regularities that
can be learned and exploited by subjects to form efficient represen-
tations of stimuli. Panel (a) shows example stimulus displays that
illustrate different kinds of statistical regularities. In the left plot, the ori-
entations of line segments are generated independently, but the mean
and the variance of the stimulus distribution can be learned to increase
the encoding efficiency, as in Sims, Jacobs, and Knill (2012). In the
middle plot, the orientations are generated such that the entire con-
figuration forms a smooth contour. This can be achieved by a stimulus
distribution with statistical dependencies between the orientations of
adjacent line segments. In the right plot, the stimuli are generated in
clusters. This, again, corresponds to a stimulus distribution with sta-
tistical dependencies between different stimuli. Panel (b) shows an
alternative way of visualizing different types of statistical regularities in
the stimulus distribution. The three contour plots show three possible
stimulus distributions, p(x;, x,), for a hypothetical experiment with two
visual features or objects. The left plot corresponds to a stimulus distri-
bution with no statistical dependencies between the two stimuli. How-
ever, subjects can adapt to the mean and the variance of the stimulus
distribution to increase their encoding efficiency. The remaining two
plots show stimulus distributions with statistical dependencies between
the two stimuli: In the middle plot, the dependency is a simple, linear
correlation between the two stimuli, whereas in the right plot, it is a
more complex relationship.

with age in children. However, it remains to be seen how
much of this increase can be accounted for by improve-
ments in statistical-learning ability. Similarly, the empiri-
cal finding that experts in a visual domain, such as
identifying cars or birds, have a higher visual working
memory capacity than do nonexperts (Curby, Glazek, &
Gauthier, 2009; Sgrensen & Kyllingsbaek, 2012) may also
be explainable from a statistical-learning standpoint.

Visual Working Memory as
Probabilistic Inference

Visual sensory signals are inherently noisy and ambigu-
ous. The rational response to this fact is to treat visual
perception as a problem of probabilistic (or Bayesian)
inference. A large body of research has demonstrated
that the human visual system exhibits key properties
that are consistent with near-optimal probabilistic

p(targetlmemory)

Hand/Gaze
Location

_I_

Optimal
Aiming Point

p(target|vision)

Fig. 4. In a task used by Brouwer and Knill (2007, 2009), the goal is
to reach toward and touch a target located in the visual periphery. Two
noisy sources of information regarding the target’s location are avail-
able: the location stored in visual working memory and information
available in the visual periphery. Both information sources are uncer-
tain, leading to probability distributions regarding the true target loca-
tion given memory and vision (indicated by the red and blue ellipses).
The optimal aiming location is a weighted combination of these two
sources.

inference (for reviews, see Kersten, Mamassian, & Yuille,
2004; Ma, 2012). For example, Bayesian inference sug-
gests that when multiple information sources are avail-
able, they should be combined and weighted according
to their relative reliabilities. In many perceptual tasks,
the brain appears to achieve this optimal benchmark
(e.g., Alais & Burr, 2004; Ernst & Banks, 2002; Jacobs,
1999; Knill & Saunders, 2003; Trommershiuser, Kording,
& Landy, 2011).

Just as optimal cue combination in visual perception
requires knowledge of the reliabilities of different infor-
mation sources, humans are also capable of learning and
exploiting the uncertainty inherent to their own visual
memories. Brouwer and Knill (2007, 2009) conducted a
series of experiments that required participants to reach
and touch targets located in the visual periphery (llus-
trated in Fig. 4). In these experiments, participants had
two sources of information to guide their hand move-
ments: information about the target’s location stored
previously in visual working memory, and sensory infor-
mation available from the visual periphery. Each of these
two information sources was uncertain, given sensory
noise and imperfect memory, and therefore the optimal
strategy was to aim for a location given by a weighted
combination of the two signals (Fig. 4). Exactly this
behavior was observed. Critically, computing the optimal
motor plan required that participants possess (implicit)
knowledge of both the reliability of the sensory informa-
tion and the reliability of their visual working memory.
Thus, even in simple tasks such as pointing to a target,
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visual working memory is part of a complex statistical-
inference process.

Limits to Adaptation in Visual Working
Memory

As indicated above, efficient coding of information in
visual working memory requires an accurate model of
the input distribution to memory. In standard laboratory
studies, the input distribution corresponds to the distribu-
tion used by the experimenter to generate the stimuli. An
adaptive observer can learn a good model of the input
distribution by simply observing samples from it during
the course of an experiment. Indeed, the observer’s learn-
ing of statistical regularities in the input distribution leads
to more efficient use of his or her limited memory
resources (Brady et al., 2009; Sims et al., 2012). But are
people capable of learning and adapting their memory-
encoding process to arbitrary input distributions? A large
body of evidence suggests that this is not the case. Certain
types of statistical regularities are easier to learn for sub-
jects than others (Backus, 2011; Fiser & Aslin, 2005;
Michel & Jacobs, 2007; Schwarzkopt & Kourtzi, 2008;
Seydell, Knill, & Trommershiuser, 2010). In general, sub-
jects tend to learn more natural or ecologically valid sta-
tistical regularities more successfully.

This may be because subjects already have a well-
developed model or template for more natural statistical
regularities (Michel & Jacobs, 2007); whereas ecologically
unrealistic statistical regularities require the learning of
new models from scratch. For example, in natural images,
collinearity of oriented elements is a strong cue to the
presence of contours (as in Fig. 3a, middle). Schwarzkopf
and Kourtzi (2008) showed that subjects were very sensi-
tive to collinearity as a cue to the presence of contours,
whereas learning to detect contours based on ecologi-
cally unrealistic regularities that contained the same
amount of statistical information about the presence of
contours required a significant amount of training. Even
after training, subjects’ contour-detection performance
for collinear arrangements was superior, suggesting a
clear bias in favor of the more ecologically realistic cue.

Conversely, sometimes the actual input distribution
may contain no statistical structure (as is generally the
case in standard visual working memory studies), but the
subject’s internal model of the input distribution may
incorrectly assume such structure (Brady & Tenenbaum,
2013; Orhan & Jacobs, 2013). For example, subjects may
assume a model in which feature values of different items
inatrial are dependent or correlated (Brady & Tenenbaum,
2013; Jiang, Olson, & Chun, 2000; Orhan & Jacobs, 2013)
when, in fact, they are generated independently. We have
recently demonstrated in both continuous-recall and

change-detection tasks that subjects’ responses are con-
sistent with an internal model that exhibits statistical
dependencies between feature values of different items
whose strength increases with the similarity between the
feature values (Orhan & Jacobs, 2013). The use of an
internal model with statistical dependencies that does not
match the independent and uniform input distribution
used by the experimenter to generate the stimuli results
in characteristic biases and dependencies in subjects’
estimates. Similarly, subjects may assume a model in
which feature values of items presented in different trials
are dependent (Huang & Sekuler, 2010) when, in fact,
there are no such dependencies in the actual input
distribution.

These types of mismatches between the actual input
distribution used by the experimenter and the internal
model used by the subject can have significant detrimen-
tal consequences for performance in visual working
memory tasks (Orhan & Jacobs, 2014). Why, then, can
the subject not always adapt his or her internal model to
more closely reflect the actual input distribution used in
the experiment? Again, a plausible explanation of this
mismatch is that the subject’s model is “contaminated” by
lifelong adaptation to a rich set of statistical regularities
present in the natural visual environment that may be
difficult to change during the course of an experiment.
For example, orientations of nearby line segments tend
to be highly correlated in natural images (Geisler, 2008).
If the subject’s internal model partly reflects such statisti-
cal regularities observed in the natural visual environ-
ment, any input distribution used in a visual working
memory task that does not display such statistical regu-
larities will cause a mismatch with the subject’s internal
model.

This suggests that experiments using more natural
stimulus statistics might yield qualitatively and quantita-
tively different results from standard visual working
memory experiments, which typically use unnatural stim-
ulus statistics. For example, if the subject’s internal model
is at least partly adapted to natural stimulus statistics,
using unnatural stimulus statistics would underestimate
the capacity of visual working memory, because any
input distribution that does not match the distribution
that visual working memory is adapted to underutilizes it.
It is also possible that some prominent phenomena
reported in the literature, such as the decline in memory
precision with set size or the variability in encoding pre-
cision, would either disappear or be much less promi-
nent with more natural stimulus statistics (Orhan &
Jacobs, 2014). Hence, researchers should be cautious
about formulating general theories of the organization
and capacity of visual working memory solely on the
basis of experiments using unnatural stimulus statistics.
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Conclusion

The study of visual working memory has historically
focused on understanding and measuring capacity lim-
its. However, this narrow focus obscures the fact that
visual memory performance is a much richer phenom-
enon. In particular, memory capacity, as a theoretical
construct, is of little value without the simultaneous
consideration of memory efficiency, or how well the
available capacity is utilized in a given setting. In many
cases, memory makes efficient use of its available
resources by adapting to statistical regularities in the
input. However, there are also clear limitations to what
types of statistical regularities, or lack thereof, can be
successfully learned by subjects. This leads to inefficient
use of available resources relative to what can be
achieved optimally under a fixed-capacity limit. Thus,
capacity or resource limitations and the efficiency with
which the available resources are used are two indepen-
dent factors that jointly determine performance in visual
working memory tasks.

The second factor is determined by the subject’s
statistical-learning ability—in other words, how well he or
she can adapt to statistical properties of the input
distribution—and yet it is relatively neglected as a poten-
tially significant contributor to performance in visual work-
ing memory tasks. Individual differences in visual working
memory performance among the general population, dif-
ferences in visual working memory performance between
normal adults and individuals with cognitive disorders,
and developmental and age-related changes in visual
working memory may partly reflect differences or changes
in how efticiently the available resources can be used (i.e.,
differences or changes in statistical-learning ability), in
addition to any differences or changes in capacity or the
amount of available resources.

To what extent these two factors (resource limitations
and how efficiently the resources are used) contribute to
performance limitations in visual working memory is an
open empirical question. This question must be answered
with sufficiently powerful experimental paradigms and
computational models that carefully consider the role of
statistical learning, as well as the relationship between
stimulus statistics in the laboratory and visual statistics of
the natural environment.
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