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Experimental evidence suggests that the content of a memory for even a simple display encoded in visual
short-term memory (VSTM) can be very complex. VSTM uses organizational processes that make the
representation of an item dependent on the feature values of all displayed items as well as on these items’
representations. Here, we develop a probabilistic clustering theory (PCT) for modeling the organization
of VSTM for simple displays. PCT states that VSTM represents a set of items in terms of a probability
distribution over all possible clusterings or partitions of those items. Because PCT considers multiple
possible partitions, it can represent an item at multiple granularities or scales simultaneously. Moreover,
using standard probabilistic inference, it automatically determines the appropriate partitions for the
particular set of items at hand and the probabilities or weights that should be allocated to each partition.
A consequence of these properties is that PCT accounts for experimental data that have previously
motivated hierarchical models of VSTM, thereby providing an appealing alternative to hierarchical
models with prespecified, fixed structures. We explore both an exact implementation of PCT based on
Dirichlet process mixture models and approximate implementations based on Bayesian finite mixture
models. We show that a previously proposed 2-level hierarchical model can be seen as a special case of
PCT with a single cluster. We show how a wide range of previously reported results on the organization
of VSTM can be understood in terms of PCT. In particular, we find that, consistent with empirical
evidence, PCT predicts biases in estimates of the feature values of individual items and also predicts a
novel form of dependence between estimates of the feature values of different items. We qualitatively
confirm this last prediction in 3 novel experiments designed to directly measure biases and dependencies
in subjects’ estimates.
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Questions about the capacity and precision of visual short-term
memory (VSTM) have attracted much attention in recent years
(Bays & Husain, 2008; Luck & Vogel, 1997; Rouder et al., 2008;
Wilken & Ma, 2004; Zhang & Luck, 2008). Understanding these
properties is important due to their theoretical (Cowan, 2001) and
practical implications (Fukuda, Awh, & Vogel, 2010). However,
there is a more fundamental and often neglected issue that bears
directly on memory capacity and precision, namely, the content

and organization of VSTM (Brady, Konkle, & Alvarez, 2011;
Jiang, Olson, & Chun, 2000; Vidal, Gauchou, Tallon-Baudry, &
O’Regan, 2005).

When subjects are presented with a display containing multiple
items for a brief period of time, what exactly do they encode in
VSTM? What would a complete description of the content of their
visual memory for the display include and how is this content
organized in VSTM? Do subjects only encode information about
individual items or do they also encode more global information
about the ensemble of items in the display? Is the information
encoded about an item independent of the information encoded
about other items? These and other questions about the content and
the organization of VSTM are, in a sense, more fundamental than
questions about the capacity and precision of VSTM because how
much information can be encoded in VSTM (capacity) and how
precisely it can be encoded (precision) depend on exactly what
information is encoded. For instance, the finding that subjects
encode information about ensemble statistics of items in a display
(Brady & Alvarez, 2011) could have a significant impact on our
estimate of how much information subjects encode about individ-
ual items in VSTM.

Here, we introduce a probabilistic modeling approach that at-
tempts to address these questions about the content and the orga-
nization of VSTM. Although, as we discuss in the section titled
General Discussion, our approach has implications for the nature
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of capacity limitations in VSTM, it is intended to be a more
general theory of the content and organization of VSTM. We call
our approach the probabilistic clustering theory (PCT) of the
organization of VSTM. PCT states that VSTM infers probability
distributions over partitions or clusterings of visual items. Proba-
bilistic clustering of items gives rise to biases in, and dependencies
among, VSTM representations. Representations of items belong-
ing to the same cluster share parameters and thus are dependent.
Representations of items belonging to different clusters do not
share parameters, and thus are independent. However, VSTM does
not infer a single partition. Rather, it infers a probability distribu-
tion over all possible partitions. As we discuss below, this property
allows it to represent items at multiple granularities or scales.

The article is organized as follows. The next section, titled
Biases and Dependencies in VSTM, lays out the general framework
and reviews experimental evidence for biases and dependencies in
VSTM representations. The phenomena reviewed in this section
are the type of phenomena our theory is primarily intended to
explain. Hierarchical Encoding of Items in VSTM discusses pre-
vious attempts at explaining some of these phenomena, focusing,
in particular, on hierarchical encoding schemes. Although these
schemes have many attractive properties, we argue that they also
have important shortcomings. Probabilistic Clustering Theory in-
troduces PCT. We motivate PCT as a natural generalization of
hierarchical encoding approaches in VSTM that addresses the
shortcomings of these approaches discussed in Hierarchical En-
coding of Items in VSTM. We then discuss the relationships be-
tween PCT and previous works on hierarchical encoding in human
memory. Models describes the computational models that will be
used in the remainder of the article. As we discuss in this section,
these models can all be regarded as specific implementations of
PCT with varying degrees of generality. Simulations demonstrates
that PCT accounts for a variety of phenomena observed in previ-
ous visual short-term recall and recognition experiments. Experi-
ments presents three new experiments designed to directly measure
dependencies and biases in subjects’ VSTM representations. These
experiments reveal a hitherto unrecognized form of dependence
between VSTM representations of different items that is qualita-
tively predicted by PCT. Finally, the General Discussion section
provides a summary, discusses connections with related ideas, and
suggests avenues for future research.

Biases and Dependencies in VSTM

In this section, we first lay out the general framework and the
mathematical notation that we use throughout the article and then
review experimental evidence for biases and dependencies in
VSTM.

Probabilistic Encoding in VSTM

Consider an observer that briefly views a display containing N
visual items. The observer is asked to remember the feature values
of these items and, after a brief delay interval, to report one or
more of them. We denote the actual feature values of the items by
the random variables �1, . . .,�N. We assume that the observer only
has access to noisy internal observations of these features, denoted
by the variables x1, . . ., xN, that are assumed to be corrupted by
both sensory and memory noise. The generation of these noisy
observations can be described by a likelihood function

p��xi�i�1
N ���i�i�1

N �,

which we assume to be a normal distribution in this article. In
addition, the observer might have prior assumptions about the
feature values of the items. These assumptions can be described by
a prior distribution p���i�i�1

N �. Given the likelihood and the prior,
the observer’s goal is to compute the posterior distribution over the
feature values �1, . . .,�N in accordance with Bayes’ rule:

p���i�i�1
N ��xi�i�1

N � � p��xi�i�1
N ���i�i�1

N �p���i�i�1
N � (1)

In a recall task, the observer then makes point estimates of the
feature values of the items based on the posterior distribution. We
denote the observer’s estimates of the feature values by the random

variables �̂1,. . .,�̂N. Note that �̂1,. . .,�̂N are random variables (i.e.,
they are stochastic) even when conditioned on a specific �1, . . .,
�N, because they depend on the noisy observations x1, . . ., xN. In
this article, we use the posterior mean as the observer’s estimate of
the feature values of the items in recall tasks, although we found
that the results presented here were robust to the choice of a
specific estimator so long as the estimator was reasonable. If, for
example, the observer is asked to report the feature value of a
single target item t, the marginal posterior corresponding to that
item, p��t��xi�i�1

N �, is computed from the joint posterior in Equation
1 and the observer’s estimate is taken to be the mean of the

marginal posterior: �̂t � E��t��xi�i�1
N �.

Next consider the joint probability distribution over the esti-
mates given the feature values of the visual items:

p���̂i�i�1

N ���i�i�1
N �

� � p���̂i�i�1

N ��xi�i�1
N �p��xi�i�1

N ���i�i�1
N �d�xi�i�1

N , (2)

where the noisy internal observations �xi�i�1
N are now integrated

out. This joint distribution provides a complete characterization of
how the observer represents the specific set of items �1, . . ., �N in
his or her VSTM. We note that most of the previous works in the
VSTM literature were mainly concerned with elucidating the en-
coding of individual items and how it changes with set size (e.g.,
how the encoding precision for individual items decreases with the
number of displayed items). In our framework, this corresponds to
characterizing only the marginals of the full joint distribution (e.g.,
the precision of the marginals and how it changes with set size). In
contrast, we develop experimental and computational methods to
characterize the properties of the full joint distribution (thereby
focusing on the joint encoding of all items), instead of emphasizing
only the marginals (i.e., focusing on the encoding of individual
items).

For a given set of feature values �1, . . ., �N, the joint distribution
in Equation 2 can be determined empirically by presenting the
same set of feature values over a number of trials and recording the

observer’s estimates �̂1,. . .,�̂� for each presentation. A contribu-
tion of this article is that we design novel short-term recall and
recognition tasks to determine the properties of the joint distribu-

tion p���̂i�i�1
N ���i�i�1

N � experimentally. We say more about how to
measure this distribution experimentally in the section titled Ex-
periments below. For now, our discussion of the experimental
results reviewed in the current section will limit the range of
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suitable forms for the joint distribution p���̂i�i�1
N ���i�i�1

N � by ruling
out some simple proposals.

Figure 1 schematically illustrates biases and dependencies that
may arise in the joint estimates of the feature values of multiple
items. The phenomena reviewed in the next subsection (Biases in
VSTM) provide evidence for biases in VSTM and, hence, suggest

that p���̂i�i�1
N ���i�i�1

N � should have a form similar to the example
shown in Figure 1A. The phenomena reviewed in the following
subsection (Dependencies in VSTM) provide evidence for depen-
dencies among VSTM representations of multiple items and,

hence, suggest that p���̂i�i�1
N ���i�i�1

N � should have a form similar to
the example shown in Figure 1B. Together, these biases and

dependencies paint a picture of p���̂i�i�1
N ���i�i�1

N � that has a form
similar to the example shown in Figure 1C.

Biases in VSTM

A simple suggestion for the form of the joint distribution of the
estimates is to assume that feature values of different items are
represented independently in VSTM and that estimates of individ-
ual items are only affected by the actual feature values of the
corresponding items. This corresponds to the assumption that the

distribution can be factorized as p���̂i�i�1
N ���i�i�1

N � � �i�1
N p��̂i��i�.

This simple proposal is implicitly assumed in many studies on the
capacity and precision of VSTM (Bays & Husain, 2008; Zhang &
Luck, 2008). Assuming this factorized form for the joint distribu-

tion, one can then model individual distributions p��̂i��i� using, for
example, univariate Gaussian distributions (Bays & Husain, 2008)
or mixtures of Gaussian and uniform distributions (Zhang & Luck,
2008). However, there is extensive evidence against this simple
factorized proposal. Here, we briefly review some of the evidence
against it (for a more comprehensive review, see Brady et al.,
2011).

Kahana and Sekuler (2002) showed that interitem similarity
between stimuli influences subjects’ performances in an old/new
recognition task. In their Experiment 1, subjects were shown a set
of study items consisting of a series of sinusoidal gratings with
different spatial frequencies. After a blank interval, they were then
shown a test grating that, on half of the trials, had the same spatial
frequency as one of the study items (old) and, on the other half of
the trials, had a novel spatial frequency (new). The task was to
decide if the spatial frequency of the test probe was old or new.
The authors fit subjects’ data using a simple “noisy exemplar”
model that included terms for the effects of both the probe-item
similarity between the test probe and each of the study items and
the interitem similarity among the study items. They found that
interitem similarity had a significant effect on subjects’ old/new
decisions. In particular, when probe-item similarities were fixed,
larger interitem similarities increased the likelihood of a “new”
response. This result suggests that the estimate of each individual

item �̂i depends on the interitem similarity among all study items
[contrary to the assumption that memories for individual items
depend only on the feature values of their corresponding items;

i.e., p��̂i���j�j�1
N � � p��̂i��i�]. In a later section (Simulations), we

show how PCT explains the interitem similarity effect.
Kahana, Sekuler and colleagues replicated the interitem sim-

ilarity effect in later works (Kahana, Zhou, Geller, & Sekuler,
2007; Viswanathan, Perl, Visscher, Kahana, & Sekuler, 2010;
Zhou, Kahana, & Sekuler, 2004) and showed that the same
qualitative interitem similarity effect can be observed in visual
short-term memory for realistic-looking synthetic face stimuli
(Yotsumoto, Kahana, Wilson, & Sekuler, 2007) as well as in
auditory short-term memory (Visscher, Kaplan, Kahana, &
Sekuler, 2007).

Huang and Sekuler (2010) showed that visual short-term recall
memory for the spatial frequency of a sinusoidal grating is

Figure 1. Schematic illustration of biases and dependencies that may arise in the joint estimates of two items
based on their visual short-term memory representations. A. Biases manifest themselves as shifts of the

distribution p���̂i�i�1
N ���i�i�1

N � (represented here by a single contour) from the actual feature values of the items.

In this example, the mean of p��̂1, �̂2��1, �2� (represented by the black dot) is shifted away from the actual feature
values of the items (�1, �2) (represented by the square) and toward the main diagonal, indicating that the
estimates of the feature values of both items are biased toward the mean of �1 and �2. Note, however, that the
distribution is spherical; hence, assuming a Gaussian distribution for simplicity, there are no dependencies

between �̂1 and �̂2. B. Dependencies manifest themselves as statistical dependencies among ��̂i�i�1
N . In this

example, representations of the two items, �̂1 and �̂2, are correlated. Note, however, that there are no biases in

the representations, as p��̂1, �̂2��1, �2� is centered on (�1, �2). Also note that this example depicts only a simple

form of dependence between �̂1 and �̂2, namely, second-order correlation. More complex or higher order

dependencies between �̂1 and �̂2 are also possible. C. A hypothetical example where there are both biases and
dependencies in the joint estimates of the two items.
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biased toward both the nontarget gratings shown on the same
trial and the average frequency of the gratings shown on all
previous trials. On each trial of their Experiment 2, a subject
was successively shown a pair of Gabor stimuli. One of the
Gabors was then cued, and the subject reported the spatial
frequency of the cued Gabor by adjusting the spatial frequency
of a comparison Gabor using a computer mouse. The recall
error (the difference between the actual spatial frequency of the
target Gabor and the subject’s reproduction) was measured on
each trial. Over trials, this yielded an error distribution that
reflected the precision of, and potential biases in, a subject’s
short-term memory for spatial frequency. It was found that
there were two distinct biases influencing subjects’ recall of the
spatial frequencies of target Gabors: a bias toward the spatial
frequency of the nontarget Gabor shown on the same trial, and
a bias toward the average spatial frequency of stimuli shown on
previous trials in the experiment. A similar bias toward mean
spatial frequencies was observed in Experiment 9 of Wilken
and Ma (2004). Again, these results indicate that the estimate of
a target item t depends on the nontarget items presented on the
same trial, as well as on items shown on previous trials, and not

solely on the feature value of the target item itself [i.e., p��̂t�

��i�i�1
N � � p��̂t��t�].

Specifically (and assuming, for example, N � 2 items), the
biases observed in Huang and Sekuler (2010) and in Wilken and

Ma (2004) suggest that p��̂1��1,�2� is biased (or shifted) toward �2

and, conversely, p��̂2��1,�2� is biased toward �1 (see Figure 1A). In
a later section (Simulations), we show that our PCT satisfies this
property and explains the biases observed in Experiment 9 of
Wilken and Ma (2004).

Dependencies in VSTM

The biases in VSTM reviewed in the previous subsection indi-
cate that estimates of individual items depend not just on the actual
feature values of their corresponding item but also on the feature
values of other items presented in the display. Consequently,
VSTM cannot be characterized using a simple joint probability

distribution of the form p���̂i�i�1
N ���i�i�1

N � � �i�1
N p��̂i��i�. However,

these biases do not rule out slightly more complex joint probability

models of the form p���̂i�i�1
N ���i�i�1

N � � �i�1
N p��̂i���j�j�1

N �. Here, the

estimates of individual items �̂i depend on the feature values of all
visual items, but these estimates are independent of each other
given the feature values of all items. A series of elegant experi-
ments by Jiang, Olson, and Chun (2000), however, ruled out this
latter form of joint probability model as an accurate description of
the organization of VSTM.

In each trial of their Experiment 1, Jiang, Olson, and Chun
(2000) briefly presented a display consisting of colored squares.
Following a blank interval, subjects were shown a test display.
There were two test conditions. In the single probe condition, only
one of the squares (called the target probe) reappeared, either with
the same color as in the original display or with a different color.
In the minimal color change condition, the target probe (again with
the same color or with a different color) reappeared together with
distracter squares, which always had the same colors as in the
original display. In both conditions, the task was to decide whether

a color change occurred in the target probe. It was found that
subjects’ performances were significantly better in the minimal
color change condition than in the single probe condition. This
result suggests that the color for the target square was not encoded
independently of the colors of the distracter squares, because,
otherwise, the absence or presence of the distracter squares would
not have affected change detection performances for the target. In
Experiment 2, the authors observed a similar result for location
memory. Location memory for a target was better in the minimal
change condition than in the single probe condition or in a max-
imal change condition in which all distracters were presented but
at locations differing from their original locations.

These results are easy to understand in terms of a joint proba-

bility model for the estimates p���̂i�i�1
N ���i�i�1

N � (in what follows, we
omit the dependence on ��i�i�1

N for brevity of notation, but all
distributions should be considered to be implicitly conditioned on
��i�i�1

N ). Intuitively, the single probe condition taps into the mar-
ginal probability distribution of a subject’s estimate of the target

item p��̂t� where t indexes the target item, because in the single
probe condition distracters are not shown to the subject during test,
and thus he or she has to marginalize over his or her uncertainty
regarding the feature values of the distracter items. In contrast, the
minimal color change condition taps into the conditional proba-
bility distribution of the estimate of the target given that the
estimates of the distracters are set to the actual feature values of

their corresponding items (i.e., p��̂t��̂�t � ��t), where �t is the set
of indices of the distracter items) because the actual distracters ��t

are shown to the subject during test. If the target probe has high
probability under these distributions, then the subject will be more
likely to respond “no-change,” whereas if it has low probability,
then the subject will be more likely to respond “change.” Impor-
tantly, if the items are represented independently in VSTM, the

marginal and conditional distributions are the same [i.e., p��̂t� �

p��̂t��̂�t�]. Because subjects’ performances in the single probe and
minimal color change conditions were different, subjects’ marginal
and conditional probability distributions must have been different
(see Figure 1B for a graphical illustration of a simple form of
dependence between estimates of different items). Hence, the
results of Jiang, Olson, and Chun (2000) provide evidence against
the independence assumption.

It is also easy to understand why subjects performed better in the
minimal color change condition than in the single probe condition.

The conditional distribution p��̂t��̂�t� is, in general, a lower vari-

ance distribution than the marginal distribution p��̂t�. Although this
is not exclusively true for the Gaussian distribution, it can be

analytically proven in the Gaussian case. If p��̂1,�̂2,. . .,�̂N� is
modeled as an N-dimensional multivariate Gaussian distribution:

[�̂t, �̂�t]
T � �	[a, b]T, 
 A C

CT B ��, (3)

then the conditional distribution p��̂t��̂�t� has mean

a 	 CB�1��̂�t � b�
and variance A � CB�1 CT, whereas the marginal distribution p

��̂t� has mean a and variance A, which is always greater than A �
CB�1CT.
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Using three novel experiments, Experiments provides additional
experimental evidence for dependencies in VSTM and discusses
how these dependencies are accounted for by our PCT.

Hierarchical Encoding of Items in VSTM

The phenomena reviewed in the previous section restrict the
range of suitable joint probability distributions for characterizing
VSTM, but they do not completely determine the exact form of
this distribution. In this section, we discuss a proposal for the joint
distribution recently put forward by Brady and Alvarez (2011). We
first review their experimental results and their hierarchical encod-
ing models. The discussion of their work will help us motivate
PCT as a natural generalization of hierarchical encoding models,
as we believe that PCT addresses some of the shortcomings of
their hierarchical modeling approach.

Brady and Alvarez (2011)

It has recently been argued that VSTM is organized hierarchi-
cally where items are simultaneously encoded at multiple levels of
abstraction (Brady & Alvarez, 2011). At a fine scale, each item
might be represented individually. Items might also be represented
at a coarser scale through summary or ensemble statistics of the
feature values of all items in a display. Brady and Alvarez (2011)
formalized this idea using a hierarchical modeling approach. We
show below that, in our framework, this corresponds to using a
specific hierarchical form for the prior distribution over the feature
values, p(�1, . . ., �N), in Equation 1.

Similar to the interitem similarity effect shown by Kahana and
Sekuler (2002), Brady and Alvarez (2011) demonstrated that mem-
ory for individual items in a display is influenced by ensemble
statistics of all presented items. In their Experiment 1, subjects
were presented with blue, red and green circles of different sizes
for a brief duration. Subjects were explicitly instructed to ignore
the green circles but to remember the sizes of the red and blue
circles. After a delay interval, a comparison circle appeared at the
location of a red or blue circle in the original display. Subjects’
task was to indicate the size of the original circle that was at that
location, referred to as the target circle, by using the mouse to
resize the comparison. The authors found that the reported size of
the target circle was biased toward the average size of the circles
having the same color as the target.

Brady and Alvarez (2011) hypothesized that the fact that color
was a task-relevant feature in Experiment 1 (subjects had to
remember only the red and blue circles and ignore the green
circles) might have increased the salience of this feature, thereby
inducing subjects to use a color-based encoding for the items. If so,
then the observed bias toward the mean size of the same-colored
circles should disappear when performing a task that is similar
except that color is task-irrelevant. In their Experiment 2, the
authors tested this prediction by removing the green circles from
the display and presenting only red and blue circles in each trial.
Subjects were asked to remember the sizes of all circles in the
display. Therefore, color was no longer a task-relevant feature.
Consistent with their hypothesis, the authors found that subjects
did not show a bias toward the mean size of the same-colored
circles. Instead, subjects’ estimates showed a bias toward the mean
size of all circles in a display. The results of Experiments 1 and 2

suggest that subjects employ a flexible strategy, encoding stimuli
at different levels of abstraction in VSTM in different task con-
texts.

To explain the distinctive pattern of biases when color was a
salient feature versus when it was not, Brady and Alvarez (2011)
used a two-level hierarchical model to account for subjects’ data in
Experiment 2 and a three-level hierarchical model to account for
data from Experiment 1. The two-level model assumes that sub-
jects encode the items at two different levels of abstraction: the
level of individual circles (individual encoding) and the ensemble
mean and variance of the feature values (sizes) of all circles in a
display. The model also assumes that the feature values of indi-
vidual items are conditionally independent given the ensemble
statistics (though they are still marginally dependent due to the
shared ensemble statistics). Using our notation, their two-level
model corresponds to choosing the following prior over the feature
values of the items in Equation 1:

p(�1, �2, . . . , ��) � � p(�1, . . . , ���
)p(
)d


� � p(�1�
) . . . p(���
)p(
)d
, (4)

where 
 denotes the ensemble statistics for the feature values of
all items in a display. Since the color-based grouping of circles is
not taken into account in this model, only a bias toward the overall
mean size is predicted when estimating the sizes of individual
circles (Gelman, Carlin, Stern, & Rubin, 2004, p. 117), in accord
with the results of Experiment 2.

In the three-level model, the three levels were (a) the level of
individual circles (individual encoding), (b) the group-level means
of the sizes of the red circles and of the blue circles, and (c) the
ensemble mean size of all circles in the display. Similar to Equa-
tion 4, the three-level model corresponds to using the following
prior in Equation 1:

p(�r,1, . . . , �r,Nr
, �b,1, . . . , �b,Nb

)

� ��� p(�r,1, . . . , �r,Nr
�
r)p(�b,1, . . . , �b,Nb

�
b)p(
r, 
b�
)

p(
)d
rd
bd
, (5)

where �r,i and �b,j are the feature values of individual red and blue
circles at the finest level, 
r and 
b are the summary statistics at
the group or color level, 
 is the global ensemble statistics of all
circles, and Nr and Nb are the number of red and blue circles,
respectively. Since the color-based grouping of circles is explicitly
incorporated into the model, biases toward group-level means and
toward the global ensemble mean are predicted by this model,
mostly consistent with the results of Experiment 1 (whether the
authors observed a bias toward the global mean in addition to the
group-level bias in Experiment 1 is unclear).

The hierarchical encoding framework of Brady and Alvarez
(2011) provided an elegant way of accounting for biases in VSTM
by assuming that subjects simultaneously encode items at multiple
levels of abstraction in VSTM. As such, their framework furthers
our understanding of the organization of VSTM. However, we
believe that it also has important disadvantages that are illustrated
by considering the specific models proposed by the authors. The
two-level and three-level models allow for the representation of
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items at multiple levels of abstraction, but there are at least two
problems with the way they do so. First, the use of hierarchical
models with different numbers of levels to account for different
patterns of results observed in different experiments is ad hoc. In
general, it is not clear what determines the number of levels that
should be used for a given experiment or the appropriate “grain” of
those levels. Second, the number of groups (the number of relevant
colors) and the assignment of each circle to a group was explicitly
specified in an a priori manner when formulating the three-level
model (see Equation 5). Although it is easy to do so for the
purposes of modeling Experiment 1, it is generally not clear how
to define groups or how to assign items to groups in more natu-
ralistic cases. Grouping of visual items is often highly ambiguous
both with respect to the number of groups and the assignment of
items to groups. A model that could automatically determine these
properties and also take into account the uncertainty about them
would provide significant explanatory power.

We illustrate these issues within the context of a hypothetical
VSTM experiment. Consider an experiment in which subjects are
asked to remember the horizontal locations of a number of briefly
presented colored squares. A representative display from a single
trial of such an experiment is shown in Figure 2 where the vertical
locations of the squares are linearly spaced and fixed (represented
by the six horizontal lines), whereas their horizontal locations are
assigned randomly. Each of the squares in the display can be
represented at multiple scales (or levels of abstraction) in VSTM.
Consider, for instance, the square that lies on the fifth line from the
top. At the finest scale, this square can be represented individually.
At a slightly coarser scale, it can be encoded together with the
square that lies on the sixth line from the top (whose horizontal
location is closest to that of the fifth square). At a still coarser
scale, it can be encoded together with the first, second and the sixth
squares from the top, and at the coarsest scale, all squares can be
represented together.

Once the possibility of encoding items at multiple scales in
VSTM is established, three important questions arise: (a) How

many scales should be used to represent a set of items, (b) how are
the appropriate scales for the representation of items determined,
and (c) how much weight should be given to representations at
different scales? With respect to the example shown in Figure 2,
the previous paragraph mentioned four possible scales for the
representation of the fifth square from the top. But why these
scales in particular? Instead of representing this square together
with the sixth square at an intermediate scale, why not group it
with the fourth square and encode them together, or why not
introduce a different scale and represent the fifth square together
with, say, the third and the fourth squares? Note that the hierar-
chical modeling approach of Brady and Alvarez (2011) cannot
give satisfactory answers to these questions, as the specific scales
and groups for representing an item are explicitly specified in
advance, and not inferred by the theoretical model. In contrast, as
discussed more extensively below, our proposed PCT provides
answers to these questions.

PCT is based on describing a set of items in terms of a proba-
bility distribution over all possible partitions where each partition
might have a different “granularity.” Since PCT considers multiple
possible partitions, it can represent an item at multiple scales
simultaneously (see the next section). Through standard probabi-
listic (Bayesian) inference, PCT automatically determines the ap-
propriate partitions for the particular set of items at hand and the
probabilities or weights that should be allocated to each partition.

Probabilistic Clustering Theory (PCT)

Just as Brady and Alvarez’s (2011) two- and three-level hierar-
chical models can be expressed as specific choices for the prior
distribution over the feature values of items (i.e., p(�1, . . ., �N);
Equations 4–5), PCT also corresponds to a specific choice for the
prior distribution. In this section, we describe the properties of the
prior assumed by PCT in an informal way. Mathematical details
will be provided in a later section (Models).

Intuitively, the prior assumed by PCT imposes a probabilistic
clustering structure on the feature values. According to PCT, an
observer’s internal model of the generative process for �1, . . ., �N

assumes that these feature values are generated in clusters, even if
the actual generative process does not involve any clusters, as is
the case in all experiments considered in this article. In other
words, the observer assumes that the world has a “clumpy” struc-
ture. In estimating the feature values of a set of items based on
noisy observations of these feature values, the observer takes into
account (or integrates over) his or her uncertainty about the clus-
tering structure of the set of items. This uncertainty might concern
both the number of clusters and the assignment of items into
clusters.

More specifically, PCT assumes that VSTM automatically in-
fers a probability distribution over all possible partitions of a set of
items. Consider a set of three items with feature values denoted by
�1, �2, and �3. There are five possible partitions of these items: (a)
{�1}, {�2}, {�3} (each item belongs to its own group or cluster);
(b) {�1, �2, �3} (all items belong to the same cluster); (c) {�1, �2},
{�3}; (d) {�1}, {�2, �3}; and (e) {�1, �3}, {�2}. Based on the
similarities among the items’ feature values, VSTM infers a dis-
tribution over these five possibilities. If, for example, the items are
highly similar, VSTM will tend to assign a large probability to the
partition that places all items in the same cluster: {�1, �2, �3}. If

Figure 2. Single trial of a hypothetical visual short-term memory exper-
iment in which subjects are asked to remember the horizontal locations of
six colored squares.
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items are highly dissimilar, a large probability will be assigned to
the partition that places each item in its own cluster: {�1}, {�2},
{�3}. And if �1 and �2 are somewhat similar (and somewhat
dissimilar), but they are both highly dissimilar from �3, then
moderate probabilities will be assigned to partitions {�1, �2}, {�3}
and {�1}, {�2}, {�3}.

Why might it be rational to group items? As we discuss in more
detail in the General Discussion, grouping items reduces the
variances of the estimates of the feature values of individual items,
by effectively sharing information between the estimates of the
feature values of items belonging to the same group. Although
grouping also introduces biases in the estimates, the reduction in
variance might outweigh the increase in bias to reduce the overall
expected error of the estimates.

We note that if the number of clusters is constrained to be 1
(i.e., all items are necessarily grouped into a single cluster),
then PCT reduces to the two-level hierarchical model (see
Equation 4) of Brady and Alvarez (2011). Thus, the latter model
can be seen as a special case of PCT, where the one-cluster
partition, where all items are assigned to the same cluster, is
given a probability of 1, and the other partitions are given a
probability of 0. However, in the general case, PCT does not set
any a priori bounds on the number of clusters but, instead,
determines this automatically from the data. According to PCT,
VSTM does not infer a single partition of visual items; rather,
it infers a probability distribution over all possible partitions of
these items. This enables the representation of items at multiple
scales as in the hierarchical modeling approach of Brady and
Alvarez (2011). However, unlike the Brady and Alvarez ap-
proach, the appropriate scales for the representation of items
and their weights are determined automatically from the data
(i.e., from the noisy observations of the feature values of items).

Importantly, PCT predicts that observers’ VSTM representa-
tions will display biases and dependencies. PCT predicts biases in
the estimates of feature values of items toward the cluster means of
the clusters that they are assigned to. Because PCT does not infer
a single clustering, but a probability distribution over many clus-
terings, in general, there will be biases at multiple scales (toward
the means of all clusters that an item might be assigned to), the net
effect of which will depend on the posterior probabilities, or the
weights, of different clusterings.

PCT also predicts dependencies between the estimates of feature
values of different items assigned to the same cluster. Two items
that are never assigned to the same cluster will not share param-
eters and hence their estimates will be independent. In contrast,
items assigned to the same cluster share parameters and thus their
estimates are dependent. PCT predicts that the magnitude of the
dependence between the estimates of the feature values of two
items should increase with the similarity between the feature
values of the items. This is because, according to PCT, the more
similar two items are, the more likely they are to be assigned to the
same cluster, hence to share parameters. In a later section (Exper-
iments), we provide experimental evidence supporting this crucial
prediction of PCT.

A more detailed discussion of the predictions of PCT regard-
ing biases and dependencies in VSTM are given in Models
below.

Relationship Between PCT and Previous Works on
Hierarchical Encoding in Human Memory

Prior to Brady and Alvarez (2011), several other researchers
argued that human memory is organized hierarchically, thereby
accounting for categorical effects in memory (Hemmer &
Steyvers, 2009a, 2009b; Huttenlocher, Hedges, & Duncan, 1991).
Consistent with the predictions of a hierarchical Bayesian model,
Hemmer and Steyvers (2009b) showed that in an episodic recall
task, subjects’ estimates were biased toward both the mean feature
value of the presented object category (e.g., mean size of apples)
and the mean feature value of the superordinate category (e.g.,
mean size of all fruits). Hemmer and Steyvers (2009a) extended
this result to unfamiliar objects and developed a hierarchical
Bayesian model that could account for the distinct pattern of biases
observed for familiar and unfamiliar objects. For familiar objects,
the model predicted, in accord with experimental results, that the
recalled size of an object would be biased more toward
the mean size of the objects of that kind. For unfamiliar objects,
the recalled size was be biased toward the superordinate-level
mean (e.g., mean size of fruits).

These biases are similar to the biases observed in VSTM ex-
periments. PCT accounts for these analogous biases in VSTM, not
as an effect of preexisting categories in memory but, rather, as an
effect of encoding displayed items at multiple scales. To make the
similarity to the work of Hemmer and Steyvers (2009b) clearer,
one can argue that in VSTM experiments, subjects spontaneously
form clusters or “categories” at multiple scales when shown multi-
item displays. These categories influence short-term memories for
visual items in a way that is similar to the way categories in
long-term memory affect episodic recall performance of individual
items.

Huttenlocher et al. (1991) demonstrated that people show sys-
tematic biases even in the simple task of estimating the spatial
location of a single dot presented within a circle. Subjects showed
a bias toward the centers of the four quadrants dividing the circle
in their judgments of the angular locations of single dots presented
for a brief duration. Huttenlocher et al. (1991) conceived of the
four quadrants as categories and the centers of the quadrants as
prototypical examples of those categories. Their model of how
subjects estimated spatial locations was essentially the same as
Brady and Alvarez’s (2011) two-level hierarchical Bayesian model
reviewed above, with “categories” or quadrants providing the
higher level representations. Similar to the model of Hemmer and
Steyvers (2009a), their model also assumed preexisting knowledge
of categories (in this case, quadrants). Huttenlocher, Hedges, and
Vevea (2000) extended these results by showing that similar biases
were evident when subjects estimated other perceptual features of
objects belonging to inductively defined categories and that the
observed biases were influenced by properties of the distributions
describing these categories.

Brady and Tenenbaum (2010) developed a discrete slot-based
model of VSTM that encodes both high-order structure about a
simple display of dot patterns and detailed information about
specific dots. They formalized the concept of high-order structure
in terms of a correlation parameter, called the “gist” parameter, in
a Markov random field such that larger values of this parameter
corresponded to images that tended to have similarly colored
neighbors, whereas smaller values corresponded to images that
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tended to have differently colored neighbors. In addition, the
model assumed the encoding of detailed information about K
specific dots in such a way that “outlier” dots (dots that did not
conform to the overall gist of the image) were more likely to be
encoded. Brady and Tenenbaum (2010) presented evidence sug-
gesting that the performance of this “gist � exception” model of
encoding correlated well with human performance on an image-
by-image basis.

Brady and Tenenbaum’s (2010) gist representation applies only
to images sampled from a Markov random field, whereas the
representations in PCT can be applied more generally. The indi-
vidual encoding mechanism in their model is biased toward ex-
ceptions to the gist. It is interesting that PCT implements a similar
bias because the further the feature value of an item is from feature
values of other items in a display, the more likely that the item will
be assigned to a cluster of its own, meaning that the item will be
encoded individually.

The hierarchical models described in this section are significant
because they advance our understanding of how hierarchical repre-
sentations can account for biases and categorical effects observed in
human memory. A fundamental difference between the previously
proposed hierarchical models and PCT is that the hierarchical models
assume prespecified and fixed levels of abstraction to represent items.
Hemmer and Steyvers (2009a, 2009b) assumed two levels of abstrac-
tion: an object-based level (e.g., apples) and a categorical level (e.g.,
fruits). Huttenlocher et al. (1991) also assumed two fixed levels of
abstraction: a fine-grained representation of the location of a dot and
a more global, coarse-grained prototype representation based on pre-
specified prior knowledge. Brady and Tenenbaum’s (2010) model
represents a display at two fixed levels of abstraction, and Brady and
Alvarez’s (2011) hierarchical modeling framework assumes an ap-
propriate prespecification of the levels of abstraction for the represen-
tation of items.

In contrast, an innovation of our approach is that it automatically
determines multiple scales or levels of abstraction that are appropriate
for the representation of an item in VSTM and how to weight the
different scales without assuming prespecified and fixed levels of
abstraction. It does so by inferring multiple partitions with different
granularities that are appropriate for a given set of items along with
the posterior probabilities of those partitions. Our focus is on VSTM,
but we speculate that studies of other human memory systems would
benefit from our approach which emphasizes the use of multiscale
representations without prespecified, fixed hierarchies.

Models

This section describes the specific computational models that will
be used in the following sections. Three models are described. The
first model is a Dirichlet process mixture model (DPMM), also known
as an infinite mixture model. The second model is a Bayesian finite
mixture model (BFMM). Both models automatically infer posterior
distributions over multiple partitions of a set of items. The only
difference between these two models is that they make different
assumptions about the maximum number of clusters that the data can
be grouped into. The DPMM does not set any a priori limit on the
maximum number of clusters, whereas a BFMM assumes that the
data can be grouped into at most K clusters, for a finite K specified
in advance. Because of this difference, the DPMM can infer a
probability distribution over all possible clusterings or partitions of

a set of items but a BFMM with too few clusters cannot. For this
reason, we regard the DPMM as an exact implementation of the
PCT, whereas the BFMM can be regarded as an approximation to
the DPMM (where the quality of approximation will be deter-
mined by K). The last model we describe is the two-level hierar-
chical Bayesian model (HBM) proposed by Brady and Alvarez
(2011). As discussed below, the HBM can be regarded as a special
case of BFMMs where the number of components K is constrained
to be 1. A graphical representation of the models considered in this
article is shown in Figure 3.

Dirichlet Process Mixture Models (DPMMs)

DPMMs are commonly used in statistics and machine learning
(Görür & Rasmussen, 2010; Neal, 2000). In cognitive science,
they are gradually becoming popular in the study of perception and
cognition where they have been used as normative models of word
segmentation (Goldwater, Griffiths, & Johnson, 2009), causal
learning (Gershman, Blei, & Niv, 2010) and categorization (San-
born, Griffiths, & Navarro, 2010). Excellent introductions to these
models can be found in Goldwater et al. (2009) and Navarro,
Griffiths, Steyvers, and Lee (2006).

Here, we describe the application of the DPMM to the problem
of encoding multiple items in VSTM. Consider a single trial of a
hypothetical VSTM experiment in which an observer is asked to
remember the feature values (e.g., horizontal locations of squares
or orientations of Gabor gratings) of N items in a display. For the
moment, we consider items defined by a single feature (e.g.,
position, orientation, color, shape). We denote the actual feature
value of item i by �i. As laid out in an earlier section, we assume
that the observer does not have access to the actual feature values
of the items, but to noise-corrupted observations thereof, denoted
by xi. In addition, the observer’s internal model of the generative
process for �is assumes that these feature values are generated in
clusters (even if the actual generative process does not involve any
clusters). In estimating the feature values of a set of items based on
the corresponding noisy observations, the observer integrates out
its uncertainty about the clustering structure of the set of items.
Mathematically, the full model can be specified as follows (see
Figure 3):

G � DP(G0, �) (6)

G0(�i, i) � �(�i; a, b)�(i;�, �) (7)

�i, i�G � G (8)

�i��i, i � �(�i;�i, i) (9)

xi��i � �(xi;�i, obs) (10)

Here, xi � N(xi; �i, �obs) means that xi is distributed according to
a normal distribution with mean �i and precision �obs. The preci-
sion �obs is meant to capture the combined effects of both sensory
and memory noise in generating noisy internal observations of the
actual feature values. However, sensory noise is likely to be
negligible compared with memory noise. We assume that �obs may
depend on set size, but otherwise it is identical for all items in a
given trial and across different trials with the same set size. Recent
results suggest that introducing variability in �obs across trials and
across items in a given trial can lead to better models of capacity
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limitations in VSTM (van den Berg, Shin, Chou, George, & Ma,
2012). We found that variability in �obs was not essential for
accounting for the phenomena we consider in this article (i.e.,
biases and dependencies in VSTM); therefore, for simplicity, we
decided to assume identical �obs across trials and across items. �i

and �i represent the mean and the precision of the cluster to which
item i belongs, and they are jointly distributed according to a
countably infinite discrete distribution denoted by G. G is itself
distributed according to a Dirichlet process with base distribution
G0 and concentration parameter �. The base distribution G0 is the
product of a uniform distribution for mean �i defined over the
interval [a, b] and a gamma distribution for precision �i with scale
parameter �� and shape parameter 	�.

In a given trial, the observer’s goal is to infer the feature values
of the items, or the feature value of a single target item, given the
noisy observations �xi�i�1

N . This problem can be formalized as
the inference of the joint posterior distribution p���i�i�1

N ��xi�i�1
N � if

the feature values of all items are to be estimated, or the marginal
posterior p��t��xi�i�1

N � if only the feature value of a single target
item t is to be estimated. In the simulations reported below, these
posterior distributions were computed using a Markov chain
Monte Carlo (MCMC) sampling algorithm with auxiliary variables
(Algorithm 8 of Neal, 2000; see Görür, 2007, and Appendix A for
additional details). For recall tasks, we then use the mean of the
marginal posterior distribution as the observer’s estimate of the
feature value of the target item in that trial. For old/new recogni-

tion tasks, on the other hand, the posterior distribution is trans-
formed into probabilities of responding “old” or “new” to a given
probe item (see the next section for details).

We now describe the clustering properties of the DPMM, given
by Equations 6–9, in more detail. Let p denote a vector or “atom”
in (�, �) space (i.e., p is a possible set of values for mean � and
precision �). It can be shown that a single draw, G, from a Dirichlet
process is a countably infinite discrete distribution over atoms p
(Ferguson, 1973). That is, G is a weighted sum of an infinite
number of discrete atoms �pk�k�1

� :

G(p) � 
k�1

�

�k�(p � pk). (11)

The base distribution of the Dirichlet process, G0, is a prior
distribution over the (�, �) space. G0 determines the locations of
the atoms because �pk�k�1

� are independent samples from G0. The
concentration parameter � to the Dirichlet process determines the
weights of the atoms 
k in Equation 11. For small values of �, a
small number of atoms are given large weights, and the rest are
assigned very small weights. For large values of �, weights are
distributed more broadly across atoms.

A clearer understanding of the concentration parameter � emerges
when one considers the relationship between � and the clustering
properties of the DPMM. Recall that the mean �i and the precision �i

are the parameters of the cluster to which item i is assigned. When
performing inference, �i and �i for different items i are assigned

Figure 3. A graphical representation of the models considered in this article. All models have a common
structure represented by the graphical model shown on the left. We illustrate this graphical model using plate
notation, where the nodes inside the plate are meant to be replicated N items. The shaded node represents the
observable variables (i.e., the noisy observations xi). The other variables are latent or unobservable. The
remaining plots illustrate the generative processes defining the models. Each row illustrates the generation of
variables at the corresponding level in the graphical model on the left. The only difference between the models
is in the variable G. For the Dirichlet process mixture model (DPMM), G is a discrete distribution with an infinite
number of “atoms”; for the Bayesian finite mixture models (BFMMs), it is a discrete distribution with K atoms;
and for the hierarchical Bayesian model (HBM), it is a single atom. In the example shown here, the DPMM uses
three clusters to generate the four items represented by �is, the BFMM uses two clusters, and the HBM uses a
single cluster. �i (mean) and �i (precision) represent the cluster parameters for item i. The distributions at the
bottom two rows illustrate the distributions from which the variables at the corresponding levels were drawn.
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identical values if these items are assigned to the same component.
The concentration parameter � acts as a bias on this assignment
process by influencing the probability that two items will be grouped
together. Roughly, � controls the observer’s tendency to group items.
For small values of this parameter, the model is biased toward a small
number of clusters or groups of similar items (“chunks”). For large
values, it tends to assign each item to its own cluster.

As indicated above, the base distribution of the Dirichlet process
G0 is the product of a uniform distribution over �i and a gamma
distribution over �i. Since we apply the model to small data sets
(typically displays with two to eight items), it is important to use
a relatively noninformative base distribution for �i. Otherwise its
posterior distribution would be strongly affected by the base dis-
tribution, creating large biases due to the choice of this distribution
alone. Consequently, we use a uniform base distribution over �i

defined over a sufficiently large interval (thereby making the
model nonconjugate; see Görür & Rasmussen, 2010). We set the
range of the uniform distribution, [a, b], to a sufficiently large
interval that includes the minimum and maximum possible values
for the relevant variable in each experiment considered below. For
the parameters of the gamma distribution on �i, we put a �(1, 1)
prior on scale parameter 	� and set �� � 1. Last, we put a �(�c,
1) prior on the Dirichlet process concentration parameter � and
treat �c as a free parameter. For a given set size, this reduces the
number of free parameters to just two, namely, �c (a prior param-
eter for concentration parameter �) and �obs (memory precision).
The same values of �c and �obs were used for all trials of a
simulated experiment.

We illustrate the working of the model with a simple example in
Figure 4. Figure 4A shows three noisy observations, x1, x2, and x3

(represented by the vertical lines), and the three marginal posteri-
ors, p(�1|x1, x2, x3), p(�2|x1, x2, x3), and p(�3|x1, x2, x3) (represented
by the solid curves), for four different settings of the parameters.

Figure 4B shows the posterior distributions over the number of
clusters for each setting of the parameters in Figure 4A. The
marginal posteriors in Figure 4A display biases (i.e., their means
are not centered on the xis). This is because an item is often
grouped with one or both other items, shifting the marginal pos-
teriors toward the xis associated with those items. This is essen-
tially the mechanism by which the DPMM accounts for the biases
reviewed in Biases and Dependencies in VSTM above (also see
Simulations below). Increasing �c forces the model to use a larger
number of clusters. This has the effect of reducing biases in the
marginal posteriors, because each item is now more likely to be
assigned to its own cluster. Increasing �obs, on the other hand,
reduces the variance of the marginal posteriors and also reduces
the biases, because when �obs is high, the model relies more
heavily on the observations, xi, in computing the posteriors over
�is, and less on the prior over �is induced by the DPMM.

The DPMM also predicts dependencies between the estimates of
feature values of different items encoded in VSTM. These depen-
dencies arise in the model when different items are grouped into
the same normal component. Specifically, the representations cor-
responding to these items become dependent due to the shared
parameters of the normal component. Importantly, the model fur-
ther predicts that the dependency between the memory represen-
tations of two items should decrease with the distance between
their feature values. Intuitively, this is because the probability that
two items will be assigned to the same component decreases
with the distance between their feature values. In the extreme case,
if two items are highly dissimilar, they will never be assigned to
the same component by the model and there should be no depen-
dency between the representations of those items. Conversely, if
two items are highly similar and, thus, consistently assigned to the
same component, there should be a high degree of dependency
between their representations, the exact magnitude of which de-

Figure 4. A. Three noisy observations—x1, x2, and x3 (vertical lines)—and the three marginal posteriors—
p��1�x1, x2, x3�, p��2�x1, x2, x3�, and p��3�x1, x2, x3� (solid curves)—for four different settings of the parameters, �c

and �obs. B. Posterior distributions over the number of clusters for each of the corresponding subplots in A.
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pends on other factors, such as the precision of the component that
they are both assigned to. In Experiments below, we present
experimental evidence supporting this prediction.

Figure 5 illustrates this prediction of the model with a simple
example. The leftmost plot in Figure 5 shows three items with
feature values �1, �2 and �3 (vertical lines) and the marginal

distributions of the estimates [i.e., p��̂i��1,�2,�3�] (solid curves)
computed over 1,000 simulated presentations of the same set of
feature values. The remaining plots show each of the three two-

dimensional marginals of the estimates [i.e., p��̂i,�̂j��1,�2,�3�].
(Note that the distributions shown here are different from the ones
shown in Figure 4A. The distributions in Figure 4A depict p(�i|x1,
x2, x3) for a specific set of noisy observations x1, x2, x3. For the
data plotted in Figure 5, noisy observations are integrated out. The
relationship between the distributions depicted in Figures 4A and
5 is as follows: The posterior mean of the distribution depicted in
Figure 4A would correspond to a single point in Figure 5 [also see
Equation 2].) The two-dimensional marginals of the estimates in
Figure 5 show that the estimates are correlated and the correlations
decrease with the difference between the actual feature values of
the items. The biases in the estimates are also apparent in this
figure. Note, for example, that the means of the two-dimensional
marginals (represented by the circles) are closer to the diagonal
than the actual feature values of the items (represented by the
crosses), indicating that the estimates are biased toward the mean
of the feature values.

Multivariate extension. We also consider a multivariate ver-
sion of the DPMM presented above, where items are now defined not
by a single feature dimension, but by multiple feature dimensions. In
this case, the univariate normal components are replaced by multi-
variate normal components. In detail, the multivariate DPMM is
defined by the following equations (see Görür & Rasmussen, 2010):

G � DP(G0, �) (12)

G0(�i, �i) � �(�i;a, b)��(�i;�, �) (13)

�i, �i�G � G (14)

�i��i, �i � ���i;�i, �i� (15)

xi��i � �(xi;�i, �obs), (16)

where �i, �i and xi are now d-dimensional vectors, �(�i; �i, �i) is
a multivariate normal distribution with mean �i and covariance

matrix �i. �obs is the common covariance matrix of the noisy
observations, xi. We assume �obs to be a diagonal matrix in
accordance with recent findings that recall errors are largely inde-
pendent across different stimulus dimensions in VSTM (Bays, Wu,
& Husain, 2011; Fougnie & Alvarez, 2011). The uniform base
distribution for �i, �(�i; a, b), is defined over a d-dimensional
hypercube. Similar to the univariate case, we set the region over
which the uniform base distribution for �i is defined to a large
volume that includes the minimum and maximum possible values
of each component of �i. The base distribution for �i is an
inverse-Wishart distribution with inverse scale parameter � and
degrees-of-freedom parameter �. We place a vague inverse-
Wishart prior on � and treat the degrees-of-freedom parameter �
as a free parameter. The concentration parameter � is given a �(1,
1) prior. As in the univariate case, posterior inference is performed
via an MCMC algorithm with auxiliary variables (Algorithm 8 in
Neal, 2000).

Bayesian Finite Mixture Models (BFMMs)

In a finite mixture model, each �i is assumed to be generated by one
of K Gaussian components, where K is a fixed, finite positive integer.
Formally, a Bayesian finite mixture of Gaussians is very similar to the
DPMM introduced above (Equations 6–10). The only difference
between the DPMM and a BFMM comes from the discrete distribu-
tion G over the component parameters (see Figure 3). In the DPMM,
G is distributed according to a Dirichlet process with base distribution
G0 and concentration parameter � and can be expressed as a weighted
sum of an infinite number of discrete atoms, where atoms represent
component parameters (see Equation 11). In a finite mixture model,
on the other hand, G is a weighted sum of a finite number of atoms
only (reflecting the assumption that the data were generated by a
fixed, finite number of components):

G(p) � 
k�1

K

�k�(p � pk). (17)

As in the DPMM, the atoms (i.e., the component parameters)
are drawn independently from a base distribution G0. The
component weights 
, on the other hand, are drawn from a
symmetric Dirichlet prior with concentration parameters �/K:

� � Dirichlet �� ⁄ K, . . . , � ⁄ K�, (18)

whereas the weights 
 in the DPMM are distributed according to
what is known as a GEM (or stick-breaking) process with concen-

Figure 5. The leftmost plot depicts three items with feature values �1, �2, and �3 (vertical lines) and the

marginal distributions of the estimates (i.e., p��̂i��1,�2,�3�; solid curves) computed over 1,000 simulated
presentations of the same set of feature values. The remaining plots show each of the three two-dimensional

marginals of the estimates (i.e., p��̂i, �̂j��1,�2,�3�). The means of the marginals are represented by the circles and
the actual feature values of the items are represented by the crosses. The numbers inside the plots are the
correlation coefficients between the estimates of each pair of items.
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tration parameter � (
 � GEM(�)). The close similarity between
the DPMM and the BFMM is not accidental. Indeed, it can be
shown that the DPMM is mathematically equivalent to a BFMM in
the limit K ¡  (Rasmussen, 2000).

We use the same base distribution and hyper-priors for the
BFMM as for the DPMM. Specifically, for the base distribution,
we use G0(�i, �i) � �(�i; a, b)�(�i; ��, 	�) (we put a �(1, 1) prior
over 	� and set �� � 1). We put a �(�c, 1) prior over the precision
parameter � of the BFMM and treat �c as a free parameter. Thus,
the DPMM and BFMM have the same number of free parameters.
As with the DPMM, it is also straightforward to extend the BFMM
to multivariate components. In what follows, we consider BFMMs
with K � 2 and K � 4 components.

BFMMs predict qualitatively similar biases and dependencies in
VSTM as DPMMs, using essentially the same mechanisms. How-
ever, the quantitative details of the biases and dependencies pre-
dicted by a BFMM might depend on K. In general, for larger and
larger K, the predictions of a BFMM will be more and more similar
to the predictions of a DPMM. Indeed, a popular algorithm for
performing efficient approximate inference in the DPMM trun-
cates the infinite sum in Equation 11 at a finite but sufficiently
large level, thus making the model identical to a BFMM (Ishwaran
& James, 2001).

Hierarchical Bayesian Model (HBM)

In the following sections, we also consider the two-level hier-
archical Bayesian model (HBM) used in Brady and Alvarez
(2011). The model assumes the following generative process for a
single trial of a VSTM experiment (Brady & Alvarez, 2011):

�,  � �(�;a, b)�(;�, �) (19)

�i��,  � �(�i;�, ) i � 1, . . . , N (20)

xi��i � �(xi;�i, obs) i � 1, . . . , N. (21)

As in the DPMM and BFMMs, ��i�i�1
N (as well as the ensemble

statistics � and �) are treated as latent or unobserved variables that
the observer does not have access to. Instead, the observer only has
access to noisy observations �xi�i�1

N each generated from a corre-
sponding Gaussian distribution with mean �i and some constant
variance representing the memory noise (or the combined effect of
sensory and memory noise). Given these noisy observations
�xi�i�1

N , the observer then infers the joint posterior distribution over
��i�i�1

N . The group-level mean � is given a uniform prior over a
sufficiently large range. To make the two-level HBM truly a
special case of BFMM (with K � 1), we use the same prior over
the group-level precision � as in the BFMM, namely, a �(��, 	�)
prior where 	� is, in turn, given a �(1, 1) prior and �� is set to 1.
Brady and Alvarez (2011) use a different prior over � (they use a

uniform prior over the group-level standard deviation 1⁄�), but
we found that this difference did not significantly affect the sim-
ulation results reported below. The individual memory precision
�obs is treated as the only free parameter of the model.

As the specification of the model in Equations 19–21 makes
clear, the two-level HBM can be regarded as a special case of
BFMMs where the number of components K is constrained to be
1 (see also Figure 3).

Simulations

This section studies the DPMM, two versions of the BFMM,
and the HBM in the context of three experiments from the visual
short-term recall and recognition memory literatures. Our focus
will be on the DPMM. Although a BFMM with a sufficiently large
K performs as well as a DPMM, we focus on the DPMM because
it is an exact implementation of PCT and, as discussed at the end
of this section, has conceptually appealing properties not shared by
BFMMs (e.g., not setting an a priori limit on the number of clusters
into which a set of items can be grouped). We model experimental
results from two short-term recall tasks (Brady & Alvarez, 2011;
Wilken & Ma, 2004) and a short-term recognition task (Viswana-
than, Perl, Visscher, Kahana, & Sekuler, 2010). We also quanti-
tatively compare the fits of the DPMM with those of the BFMMs
and the two-level HBM, using the Bayesian information criterion
(BIC) measure (Schwarz, 1978). Bayesian model comparison de-
pends on the calculation of the marginal log-likelihood of the data
under different models. BIC provides only an approximation to the
marginal log-likelihood of the data under a given model. We opted
for the BIC measure primarily due to computational considerations
(it was relatively easy to compute the BIC values given the
optimization procedure we adopted in our simulations; see Appen-
dix B). Given the similarity of the structures of the models com-
pared in this article (see Figure 3), it is difficult to see how BIC
would unfairly favor one model over the others.

Biases in VSTM: Wilken and Ma (2004)

As briefly mentioned before, Wilken and Ma (2004) found that
subjects displayed systematic biases in their judgments in a VSTM
experiment that used spatial frequency as the relevant feature. In
each trial of their Experiment 9, subjects briefly viewed a number
of Gabor stimuli with different spatial frequencies randomly drawn
from 16 frequency values uniformly spaced between four and eight
cycles/degree. Different set sizes used in the experiment were N �
2, 4, 6, 8. After a delay interval, one of the N Gabors, called the
target Gabor, was cued, and subjects adjusted the frequency of a
comparison Gabor using the arrow keys to indicate their estimate
of the frequency of the target Gabor in the original display. Wilken
and Ma (2004) found that subjects tended to overestimate the
spatial frequencies of low frequency Gabors, but tended to under-
estimate the spatial frequencies of high frequency Gabors (i.e.,
subjects showed a bias toward the mean spatial frequency in their
judgments). These authors also showed that the magnitude of this
bias depended on the set size with smaller set sizes leading to
smaller biases (see Figure 8 in Wilken & Ma, 2004; also repro-
duced in Figure 6 here).

We sought to determine whether the DPMM could explain the
biases observed by Wilken and Ma (2004). We first generated a
data set according to the procedure described above. For each
simulated trial, we randomly selected N spatial frequency values
from 16 frequencies uniformly spaced between four and eight
cycles/degree. We then generated noisy observations of each of
the N items from Gaussian distributions with mean equal to the
true spatial frequency of the item and precision �obs. For each
set size N, 4,000 such trials were simulated. We then ran the
univariate version of the DPMM on noisy observations from these
simulated trials. In each trial, we used the mean of the marginal
posterior over the target spatial frequency as the model’s response:
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�̂t � E��t��xi�i�1
N �. We confirmed that using the posterior mode

instead of the posterior mean yielded similar results.
To demonstrate that the ability of the DPMM to qualitatively

explain the pattern of biases observed by Wilken and Ma (2004)
did not critically depend on the optimization of the free parame-
ters, we first arbitrarily set �c � 1 and �obs � 1 for all set sizes and
did not optimize these free parameters. Figure 6 illustrates the
behavior of the DPMM with this fixed setting of the parameters.
The DPMM was able to capture the two main qualitative patterns
in the observed biases: a linear relationship between the bias and
frequency of the target Gabor for all set sizes, and an increase in
the magnitude of the bias with set size. We emphasize that the
DPMM was able to explain the latter phenomenon without having
to use different parameter values for different set sizes.

Model comparison. For the purposes of model comparison,
we calculated the maximum likelihood (ML) estimates of the free
parameters of the models introduced in the previous section: the
DPMM, BFMMs with K � 2 and K � 4 components, and the
HBM. An alternative approach would be to put noninformative or
vague priors over these parameters and perform Bayesian infer-
ence to compute their posteriors. Computational infeasibility pre-
vented us from taking this approach. The free parameters of the
models were optimized via simple grid searches to find the pa-
rameter values that maximized the log-likelihood given the mean
observed biases of 15 subjects (details of the model evaluation and
optimization procedures are provided in Appendix B). When fit-
ting the DPMM and BFMMs to observed biases, �obs was allowed
to vary across different set sizes, but �c was fixed across different
set sizes. Although fixing both free parameters across different set
sizes produced biases that increased with set size (consistent with
the biases observed in the experimental data), the differences
between biases for different set sizes were less dramatic for the
models than in the experimental data (see, for example, Figure 6

where �obs was fixed at 1 for all set sizes). Allowing �obs to vary
across different set sizes helped the models achieve better fits to
the observed biases. This is consistent with existing hypotheses
about relationships between task demands and precision of repre-
sentations. Wilken and Ma (2004) and Bays and Husain (2008)
reported a monotonic decline with set size in the precision with
which individual items can be encoded. When we fit the DPMM to
data from Wilken and Ma (2004), we found that the best fits were
obtained if we allowed �obs (which controls the precision of
memory noise) to vary across set sizes such that the precision of
memory noise monotonically decreased with set size. For the
BFMMs and the HBM, the memory precision parameter �obs was
allowed to vary across different set sizes in a similar manner.
Model fits were compared using the BIC measure (see Appendix
B for details).

Results. Overall, all four models were able to capture the
linear relationship between the bias and target frequency for all set
sizes and the increase in the magnitude of the bias with set size.
Table 1 documents the BIC values of the models relative to the
BIC value of the DPMM. The two-level HBM was slightly favored
over the other models due to its smaller number of parameters.
However, the differences between the BIC scores of different
models were small. For the DPMM (as well as for BFMMs) the
posterior distributions were dominated by partitions with small
numbers of clusters (typically one or two clusters), suggesting that
subjects tended to group items into a small number of clusters.

All four models account for the biases by assuming that subjects
spontaneously encode a given display at multiple scales. However,
an alternative explanation of the observed biases would be that
subjects might simply have a bias toward reporting the overall
mean of the range of presented frequencies and that this bias
increases with set size. We believe that this latter explanation is
unlikely for two reasons. First, in a similar experiment, Huang and

Figure 6. A. The observed biases (from Wilken & Ma, 2004) and biases predicted by a nonoptimized Dirichlet
process mixture model (DPMM) with �c � 1 and �obs � 1 for four different set sizes. Lighter colors represent
larger set sizes. Error bars represent �1 SEM across subjects. B. Posterior distributions over the number of
clusters inferred by the DPMM averaged over all trials for different set sizes.
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Sekuler (2010) teased apart the contributions to the observed
biases of the overall mean of the frequencies presented to the
subject on previous trials versus the frequencies presented on the
current trial and found that both make significant contributions to
the observed biases, suggesting that the biases cannot be com-
pletely attributed to a general bias toward reporting the overall
mean frequency. Second, as discussed below, in a carefully con-
trolled experiment, Brady and Alvarez (2011) showed that subjects
displayed a specific bias toward the mean size of the same-colored
circles presented on the same trial as a target circle that, because
of the way their experiment was designed, could not be attributed

to a general bias toward the overall mean size of the circles of a
given color.

Inter-Item Similarity Effect: Viswanathan et al. (2010)

As discussed above, Kahana and Sekuler (2002) showed that
interitem similarity between stimuli influences subjects’ judg-
ments in a standard old/new recognition task. Assuming fixed
probe-item similarities, they found that a smaller interitem simi-
larity (i.e., a less homogeneous set of stimuli) increases the like-
lihood that subjects will judge a probe to be an old or familiar item.

The interitem similarity effect has been replicated in several
other studies. Here, we consider a study by Viswanathan et al.
(2010). The design of their experiment was, for our purposes,
equivalent to the design of the experiments in Kahana and Sekuler
(2002) described in a previous section (Biases and Dependencies
in VSTM). On each trial, a subject viewed three Gabor gratings,
referred to as study gratings, followed by a probe grating. The
subject then judged whether the spatial frequency of the probe was
“old” (the same as the frequency of one of the study gratings) or
“new” (a novel frequency).

The experiment used both medium and high homogeneity con-
ditions. Representative trials for these two conditions are schemat-
ically depicted in the left and middle plots of Figure 7. In this
figure, the spatial frequencies (in just-noticeable-difference or JND
units) of study gratings are represented by solid vertical lines (at 1,
4, and 8 JND in the medium homogeneity condition, and at 3, 4,
and 8 JND in the high homogeneity condition), and the frequencies

Figure 7. Predictions of a nonoptimized Dirichlet process mixture model (DPMM) with parameters set to
�c � 1 and �obs � 1. A. Representative trials from the medium- and high-homogeneity conditions of
Viswanathan et al. (2010). For purposes of illustration, the noisy observations were set to the actual spatial
frequencies of the study gratings in the two conditions (i.e., xi � �i). These observations are indicated by solid
vertical lines, and the frequency of the lure probe at 2 just-noticeable-difference (JND) units is represented by
the dashed line. The solid black and gray curves show the combined posterior densities p����xi�i�1

N � in the
medium- and high-homogeneity conditions, respectively. Lower panel shows the posterior distributions over the
number of clusters in the two conditions. B. Probabilities of responding “old” in the two conditions as a function
of probe frequency. C. The observed and predicted probabilities of responding “old” to the probe at 2 JND units
in the two conditions. The model prediction was estimated over 1,800 simulated trials.

Table 1
BIC Values of the BFMMs (K � 2 and K � 4) and the Two-
Level HBM Relative to the BIC Value of the DPMM on Three
Previous Studies That Reported Biases in VSTM

Study
BFMM
(K � 2)

BFMM
(K � 4) HBM

Wilken & Ma (2004) 0.0951 0.0644 �2.8290
Viswanathan et al. (2010) 61.3027 1.3165 177.3836
Brady & Alvarez (2011) 0.2810 0.1692 1.7824

Note. BIC � Bayesian information criterion; BFMM � Bayesian finite
mixture model; HBM � hierarchical Bayesian model; DPMM � Dirichlet
process mixture model; VSTM � visual short-term memory. Negative
values indicate better fits than the DPMM, positive values worse fits.
Smaller values indicate better fits.
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of probe gratings are represented by dashed vertical lines (at 2 JND
in both conditions). In this figure, the probe is a “new” item (or a
lure) in both conditions. The experiment was designed so that the
individual probe-study item similarities were identical in the two
conditions, meaning that the only difference between these condi-
tions was the interitem similarity of the study items, with the high
homogeneity condition having a higher interitem similarity than
the medium homogeneity condition. The interitem similarity effect
refers to the finding that subjects had a significantly higher prob-
ability of responding “old” in the medium homogeneity condition
than in the high homogeneity condition (mean P(old) � 0.69 vs.
mean P(old) � 0.57).

Since the task in Viswanathan et al. (2010) is an old/new
recognition task, we cannot use the mean of the marginal posterior
of the target item to simulate the model’s responses. Unlike other
tasks considered in this section which are recall tasks, there is no
single target item in an old/new recognition task. Consequently,
we constructed a combined posterior density from the marginal
posteriors over each �i by marginalizing over the indices of the
items and assuming each item was equally likely:

p����xi�i�1
N � � �j�1

N p�� � �j��xi�i�1
N �.

This density can be roughly thought of as a nonparametric density
estimate of the spatial frequencies presented on this trial based on
the noisy observations of the frequencies, and it quantifies the
posterior density of � being the value of any one of the study items.

To model the experimental results, p����xi�i�1
N � needs to be

transformed into a probability of responding “old.” We did this by
mapping p����xi�i�1

N � between 0.2 and 0.8 so that the minimum
probability of responding “old” was 0.2 and the maximum prob-
ability of responding “old” was 0.8. We did not map the proba-
bilities between 0 and 1 because subjects tend to have relatively
high probabilities of responding “old” even for very dissimilar
probes in these types of experiments, and relatively low probabil-
ities of responding “old” even for perfect matches between probes
and study items. The specific values of 0.2 and 0.8 were chosen
based on a similar previous study by Kahana et al. (2007).1 Finally,
the model’s response was drawn from a Bernoulli distribution with
success probability equal to the probability of responding “old.”
One thousand eight hundred trials each of medium and high
homogeneity conditions were simulated.

We first demonstrate the behavior of a nonoptimized DPMM
with the free parameters set to �c � 1 and �obs � 1. Figure 7A
shows the combined posterior densities p����xi�i�1

N � in a single
representative trial of the medium and high homogeneity condi-
tions (solid black and gray curves, respectively). For purposes of
illustration, the noisy observations were set to the actual feature
values of the items in these examples (i.e., xi � �i). The nonopti-
mized DPMM was able to reproduce the interitem similarity effect
without fitting its parameters to the observed data. This can be seen
in Figure 7A by noting that the black curve, representing the
combined posterior density in the medium homogeneity condition
intersects the dashed vertical line at a higher point than the gray
curve, representing the combined posterior density in the medium
homogeneity condition. Figure 7B shows the probabilities of re-
sponding “old” in the two conditions as a function of probe
frequency, which were obtained simply by normalizing the com-
bined posterior densities shown in Figure 7A between 0.2 and 0.8.

Although the nonoptimized DPMM with �c � 1 and �obs � 1
explained the interitem similarity effect, it did not provide an
excellent quantitative fit to the experimentally observed probabil-
ities of “old” responses in the two conditions (Figure 7; P(old) �
0.68 vs. P(old) � 0.49 in the medium and high homogeneity
conditions, respectively, compared with the observed mean prob-
abilities of P(old) � 0.69 and P(old) � 0.57 for the respective
conditions in the actual experiment).

Intuitively, the reason that the DPMM successfully accounts for
the interitem similarity effect is that the posterior distributions over
the number of clusters have significant masses at one- and two-
cluster partitions for both medium and high homogeneity condi-
tions (see the bottom row in Figure 7A). In one-cluster partitions,
all items are grouped into a single cluster, and in two-cluster
partitions, the leftmost two items are typically grouped into a
single cluster and the rightmost item is assigned to its own cluster.
Relative to the medium homogeneity condition, the spatial fre-
quencies of items in the high homogeneity condition have a lower
variance. Therefore, a single cluster fit to the spatial frequencies of
all items in a trial has a lower variance in the high homogeneity
condition. Similarly, in two-cluster partitions, the cluster contain-
ing the leftmost two items has a lower variance in the high
homogeneity condition. This, combined with the fact that the
probe at 2 JND is closer to the means of these clusters in the
medium than in the high homogeneity condition, makes the probe
more similar to the study items in the medium homogeneity
condition.

Model comparison. We applied the univariate version of the
DPMM, BFMMs and the HBM to simulated trials of the medium
and high homogeneity conditions, and computed the ML estimates
of the free parameters by searching for the parameter values that
maximized the log-likelihood given the experimentally observed
probabilities of “old” responses in the two conditions under each
model (details of the optimization procedure are provided in Ap-
pendix B). Models fits were again compared using the BIC mea-
sure.

Results. BIC values of the models are given in Table 1.
Qualitatively, all four models were successful at capturing the
main interitem similarity effect. The BIC values for the DPMM
and the BFMM with four components were similar. For these
models, the posterior distributions over the number of clusters
were dominated by three-cluster partitions. However, one- and
two-cluster partitions also had significant probabilities. The BIC
values for the HBM and the BFMM with two components indi-
cated a significantly worse fit for these models.

1 We tried several different ways of transforming p����xi�i�1
N � into a

probability of responding “old”: using different values for the minimum
and maximum probabilities of responding “old,” normalizing the combined
posterior densities separately for the medium and high homogeneity con-
ditions, as well as normalizing them together (i.e., using the same
max�p����xi�i�1

N ��) value in normalizing the combined posterior densities in
both cases). Although these manipulations in general affected the model’s
quantitative fit, the ability of the model to qualitatively explain the interi-
tem similarity effect, as well as the relative order of the quantitative fits of
different models, were not sensitive to the specific choice of the transfor-
mation method.
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Encoding at Multiple Levels of Abstraction: Brady
and Alvarez (2011)

We now show that the multivariate version of the DPMM
accounts for the results of both Experiments 1 and 2 in Brady and
Alvarez (2011). Recall from our earlier discussion that in Exper-
iment 1, subjects were presented with blue, red and green circles of
different sizes. Subjects were instructed to ignore the green circles.
After a brief delay, a comparison circle appeared at the location of
a red or blue circle in the original display. Subjects’ task was to
indicate the size of the original circle that was at that location,
referred to as the target circle, by using the mouse to resize the
comparison. It was found that the reported size of the target circle
was biased toward the average size of the circles having the same
color as the target. Experiment 2 was identical to Experiment 1
except that displays did not include green circles. Brady and
Alvarez hypothesized that color is an irrelevant feature in this case,
and thus subjects would not use a color-based encoding scheme.
Consistent with this hypothesis, subjects did not show a bias
toward the mean size of the same-colored circles in their size
estimates. Instead, subjects’ estimates showed a bias toward the
mean size of all circles in a display.

Brady and Alvarez (2011) accounted for their results using two-
level (to account for the results of Experiment 2) and three-level (to
account for the results of Experiment 1) hierarchical models (see
Equations 4–5, respectively). Our goal here is to show that the same
DPMM explains the results of both experiments in a way that does not
require the modeler to stipulate different numbers of levels of abstrac-
tion for the encoding of items in the two experiments.

In our simulations, we represented circles as points in a two-
dimensional feature space defined by color and size. Following
Brady and Alvarez (2011), we assumed that the removal of the
green circles in Experiment 2 reduced the salience or weight of the
color dimension, thereby shrinking distances along the color di-
mension in the two-dimensional space. This is illustrated in the top
row of Figure 8A where blue and red circles are separated along
the color dimension for Experiment 1 (color is a relevant feature)
but not for Experiment 2 (color is an irrelevant feature). We used
arbitrary numerical values for red and blue (red � 125, blue � 25
in Experiment 1; red � 75, blue � 75 in Experiment 2). Simula-
tions with different numerical values confirmed that our results did
not depend on the choice of specific numerical values for the
colors. As long as the salience of the color dimension was suffi-
ciently reduced in Experiment 2, we were always able to get
similar results, albeit with different parameter values. Sizes of the
blue and red circles in each simulated trial were generated in
accordance with the procedures described in Brady and Alvarez
(2011). Noisy observations of the sizes and colors of the circles
were then generated from multivariate Gaussian distributions with
mean equal to the true feature values of the circle and covariance
matrix �obs, which we assumed to be a diagonal matrix with equal
variances along the diagonal, denoted by �obs

2 . The models were
then applied to these noisy observations in each simulated trial.2

For all models, in each simulated trial, the mean of the marginal

posterior of the target item, �̂t � E��t��xi�i�1
N �, was computed and

the size dimension of this estimate was taken to be the model’s
response in that trial.

Model comparison. As in previous examples, we determined
the ML estimates of the parameters of the four models using grid

searches (see Appendix B for details) and compared the model fits
using the BIC measure. The multivariate DPMM and BFMMs
have two free parameters, � and �obs

2 . The two-level HBM has a
single free parameter, �obs

2 .
Results. BIC values of the models are provided in Table 1.

The DPMM and BFMMs were able to qualitatively capture the
differing pattern of biases observed in Experiment 1 and Experi-
ment 2 of Brady and Alvarez (2011). The DPMM and the BFMM
with K � 4 components yielded similar BIC scores, whereas the
BFMM with K � 2 components provided a slightly worse fit (as
evidenced by its higher BIC score). This was because the BFMM
with K � 2 components tended to overestimate the bias toward the
mean size of the same-colored circles in Experiment 1, as it almost
always favored two-cluster, color-based partitions where the red
circles are assigned to one cluster and the blue circles to a separate
cluster. The DPMM and the BFMM with four components, on the

2 To control for potential artifacts, Brady and Alvarez (2011) designed
their experiments to use matched pairs of trials. Subjects’ biases were
computed based on their responses to these pairs. In our simulations, we
followed the same procedures. For brevity, we do not explain these
procedures here. The interested reader is referred to Brady and Alvarez
(2011).

Figure 8. Simulation results for the optimized multivariate Dirichlet
process mixture model (DPMM) with � and �obs

2 set to their maximum-
likelihood estimates (� � 6, �obs

2 � 225). A. Left and right columns show
simulation results for representative trials from Experiments 1 and 2,
respectively. Top row shows the visual stimuli used in each trial in
color-size space. Bottom row shows the posterior distributions over the
number of clusters for the corresponding trials. B. Posterior probabilities
over the number of clusters averaged over all trials in the two simulated
experiments. C. Predicted biases for the DPMM in Experiment 1 (gray) and
Experiment 2 (black) of Brady and Alvarez (2011) as a function of � and
�obs

2 (D). Horizontal lines represent the observed mean biases of subjects in
these experiments, and gray areas represent �1 SEM around the mean
biases. The dashed gray and black lines represent the mean predicted biases
for the DPMM in Experiment 1 and in Experiment 2, respectively, and the
error bars correspond to �1 SEM around the mean predicted biases over 25
simulations of both experiments, with 50 simulated trials in each experi-
ment. In C, �obs

2 was fixed at 225 and � was varied, whereas in D, � was
fixed at 6 and �obs

2 was varied.
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other hand, frequently favored more fine-grained partitions with a
larger number of clusters, which had the effect of reducing the
magnitude of biases predicted by these models. Predictably, the
two-level HBM only generated a bias toward the mean size of all
circles in a display and was unable to explain the color-based bias
observed in Experiment 1. As discussed earlier, Brady and Alvarez
(2011) used a three-level HBM to explain the bias toward the mean
size of the same-colored circles observed in Experiment 1 and a
two-level HBM to explain the bias toward the mean size of all
circles observed in Experiment 2. Our results, however, demon-
strate that it is not necessary to postulate hierarchical models with
different numbers of levels of abstraction to account for the ob-
served pattern of biases in the two experiments. We applied the
same DPMM and BFMMs to both experiments. Despite changes in
experimental conditions across experiments, these models suc-
ceeded at automatically determining the appropriate scales for
representing stimuli in each experiment as well as the weights that
should be allocated to each scale.

The left and right columns of Figure 8A show simulation results
for the optimized DPMM for a representative trial from Experi-
ment 1 and for the corresponding trial from Experiment 2 (where
the sizes of the circles remained the same and only the numerical
values associated with the colors changed). Also shown are the
posterior distributions over the number of clusters for these two
trials. For Experiment 1 in which color is a salient dimension,
color-based partitions where red circles are grouped into a single
cluster and blue circles into another cluster, are highly probable
(note the high probability of two-cluster partitions in the posterior
distribution), thereby producing a bias toward the mean size of the
same-colored circles. For Experiment 2 in which color is no longer
salient, color-based partitions are not probable under the model.
Single-cluster partitions where all stimuli are grouped into a single
cluster are highly probable, producing a bias toward the overall
mean size of all circles, consistent with the results from Experi-
ment 2 of Brady and Alvarez (2011). Although two-cluster parti-
tions are also highly probable, most of the likely two-cluster
partitions are size-based, not color-based, partitions. Figure 8B
shows the posterior probabilities over the number of clusters
averaged over all trials in the two simulated experiments. In
Experiment 1, as in the representative trial shown in Figure 8A,
two-cluster partitions are the most probable, and the overwhelming
majority of these partitions are color-based partitions where blue
circles are grouped into one cluster and red circles are grouped into
another. In Experiment 2, one-cluster partitions in which all items
are grouped together has significant probability (unlike Experi-
ment 1). Again, although two-cluster partitions are also highly
probable, most of these two-cluster partitions are size-based. We
emphasize that the same values of the parameters � and �obs

2 were
used for both experiments. Therefore, the models applied to the
two simulated experiments were identical.

To demonstrate that the ability of the DPMM to explain the
specific pattern of biases observed in Brady and Alvarez (2011)
did not critically depend on the optimization of the free parameters
� and �obs

2 to fit the particular numerical values of these biases
observed in their experiments, we varied each one of these two free
parameters over a broad range of values while keeping the other
parameter fixed and computed the model’s predicted biases in
Experiment 1 and Experiment 2. Figures 8C and 8D show the

predicted biases in Experiment 1 and Experiment 2 as a function of
� and �obs

2 , respectively. Note that with the specific bias measure
used in Brady and Alvarez (2011), a bias value of 1 indicates that
there is no bias toward the mean size of the same-colored circles,
whereas a bias value significantly greater than 1 indicates a bias
toward the mean size of the same-colored circles. Figure 8C
demonstrates that the ability of the DPMM to qualitatively explain
the pattern of biases observed in Brady and Alvarez (2011) is not
very sensitive to the choice of �. Except for very large or very
small � values, the model was able to capture the experimentally
observed pattern of biases. The model preferred a larger number of
clusters for larger � values and thus underestimated the bias in
Experiment 1. Figure 8D shows the predicted biases as a function
of �obs

2 while � was fixed at 6. For larger values of �obs
2 , the

predicted biases were more variable. For small �obs
2 values, on the

other hand, the model again tended to underestimate the bias in
Experiment 1, as it relied more heavily on the noisy observations
and less on the prior induced by the DPMM.

Discussion of Simulation Results

In summary, the simulation results provide evidence in favor of
our proposed Probabilistic Clustering Theory (PCT). The
DPMM—the exact implementation of PCT—provided good fits,
both qualitatively and quantitatively, to the experimental data of
Wilken and Ma (2004), Viswanathan et al. (2010), and Brady and
Alvarez (2011). Unsurprisingly, the two-level HBM was unable to
explain the main result of Brady and Alvarez (2011), and it also
yielded significantly worse quantitative fits than other models to
the results from Viswanathan et al. (2010). To account for the
different pattern of results in their two experiments, Brady and
Alvarez (2011) used HBMs with different numbers of levels for
the two experiments (three levels for Experiment 1 and two levels
for Experiment 2), where the number of levels for each model was
specified in advance. In contrast, the DPMM and the BFMMs
succeeded at accounting for the different pattern of results in the
two experiments without any changes in the structure or parame-
ters of the models across the experiments and without any speci-
fication of the appropriate levels of abstraction in advance.

The BFMM—an approximate implementation of PCT—with
four components yielded similar results to the DPMM. The BFMM
with two components yielded a significantly worse fit than the
DPMM and the BFMM with four components in the simulation of
the Viswanathan et al. (2010) study, and it overestimated the
magnitude of the bias toward the mean size of the same-colored
circles in Experiment 1 of Brady and Alvarez (2011). This dem-
onstrates the danger of setting an a priori limit on the number of
components and, hence, provides indirect support for a more
flexible nonparametric approach such as the DPMM that automat-
ically determines the appropriate number of components in each
specific case without assuming an a priori limit on this number.
Because of people’s tendency to spontaneously group items in a
display (Woodman, Vecera, & Luck, 2003; also the studies re-
viewed in this section) and the relatively small set sizes used in
VSTM experiments, a mixture model would typically not need
more than four to five components to account for the contents of
people’s memories for simple multi-item displays, thereby ex-
plaining the success of the BFMM with four components in
modeling the data considered in this section. However, in some

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

313PROBABILISTIC CLUSTERING THEORY OF VSTM



cases, subjects might not have a strong tendency to group items in
VSTM (which corresponds to a large �c in the DPMM). Requiring
that the items be grouped into four components, as the BFMM with
four components does, might lead to the prediction of biases and
dependencies in the estimates of the feature values of items that do
not fit such “nongrouping” subjects’ responses well enough. In any
case, it is conceptually more appropriate to avoid making unwar-
ranted a priori assumptions about the maximum number of com-
ponents that would be needed for modeling different subjects’ data
in VSTM experiments (or equivalently about the grouping ten-
dency of different subjects). Rather, it is preferable to automati-
cally determine this from the data itself.

Experiments

As discussed above, our main goal in this article is to characterize the
organization of VSTM in terms of the joint probability distribution of the
estimates of the feature values of multiple items,

p���̂i�i�1

N

���i�i�1
N �.

This joint distribution allows for the possibility of rich and highly
complex dependencies between the feature values of the visual
items and their estimates, as well as among the estimates them-
selves. It also replaces informal notions of dependence or inde-
pendence in encoding multiple items that are prevalent in the
VSTM literature with well-defined notions of statistical depen-
dence or independence. In earlier sections, we showed how various
behavioral phenomena in the VSTM literature constrain the range
of appropriate forms for this joint distribution. We also proposed
a specific theory of the organization of VSTM, probabilistic clus-
tering theory (PCT), which states that the joint distribution p�
��̂i�i�1

N ���i�i�1
N � should be characterized in terms of a probability

distribution over all possible clusterings or partitions of the items
(see Models). An advantage of this theory is that it postulates that
VSTM represents items at multiple granularities or scales without
the need for a prespecified, fixed hierarchy. An implementation of
the theory, the DPMM, was shown in the previous section to
account for a number of findings in previous research on VSTM.

In this section, we take an empirical approach and try to deter-

mine the properties of the joint distribution p���̂i�i�1
N ���i�i�1

N � di-
rectly. We report the results of three novel experiments specifically
designed to uncover potential dependencies between the actual
feature values of different items and their estimates, as well as
dependencies among the estimates themselves. These novel tasks
rely on the idea of probing subjects’ estimates of the feature values
of all presented items in each trial, rather than probing their
estimates of the feature value of a single target item, as is custom-
ary in standard VSTM tasks. We also compare subjects’ experi-
mentally determined joint probability distributions with the joint
distributions predicted by the models considered in this article
(DPMM, BFMMs, and the two-level HBM).

Experiment 1

We first designed a VSTM recall experiment where subjects
were asked to remember the horizontal locations of a number of
briefly presented squares. We then asked subjects to report their
estimates of the horizontal locations of all presented squares. This

contrasts with previous approaches where only the feature value of
a single target item is probed in each trial. Over trials, this
procedure allowed us to uncover potential dependencies between
joint estimates of the feature values of different items.

Method.
Procedure. Subjects were seated 57 cm from a CRT monitor

with a screen resolution of 1,280 � 1,024 pixels and a refresh rate
of 85 Hz. Each trial began with the display of a fixation cross at a
random location within an approximately 12° � 16° region of the
screen for 1 s. In separate experiments, subjects were then pre-
sented with N � 2 (Experiment 1A) or N � 3 (Experiment 1B)
colored squares (1.4° � 1.4°) on uniformly spaced dark and thin
horizontal lines for 100 ms (see Figure 9). After a delay interval of
1 s (during which the horizontal lines remained visible, but not the
squares), a probe screen was presented. Initially, the probe screen
contained only the horizontal lines. Subjects used the computer
mouse to indicate their estimate of the horizontal location of each
of the colored squares presented on that trial. Unlike other VSTM
experiments, in which subjects are asked to report their estimate of
the feature value of a single probed item from a display, our task
required subjects to indicate the feature values of all displayed
items. This procedure allowed us to study the dependencies be-
tween VSTM representations of all items. Subjects were allowed
to adjust their location estimates as many times as they wished.
When they were satisfied with their estimates, they proceeded to
the next trial by pressing the space bar. Figure 9 shows the
sequence of events on a single trial of the experiment.

We used different combinations of horizontal locations: � �

��i�i�1
N for the squares. We call each combination � a particular

“display configuration.” To cover a diverse range of possible display
configurations, we first defined a regular grid in the N-dimensional
configuration space (where each dimension represents the horizontal
location of a different square), and then added a small amount of
Gaussian jitter (SD � 0.5°) to each �i in each grid node. In Experi-
ment 1A (N � 2), the grid was 6 � 6, yielding a total of 36 different

Figure 9. The sequence of events in a single trial of Experiment 1B: (a)
a small fixation cross is presented at a random location for 1 s; (b) the
target configuration is flashed briefly (100 ms); (c) a delay interval of 1 s
follows the target configuration; (d) the probe display (initially containing
only the dark horizontal lines) remains on until the subject indicates the
horizontal locations of all items using the computer mouse.
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configurations. In Experiment 1B (N � 3), the grid was 3 � 3 � 3,
yielding a total of 27 different display configurations.

To uncover potential dependencies in p���̂i�i�1
N ���i�i�1

N �, we pre-
sented the same configuration � multiple times, and collected a
subject’s estimates each time. The estimates of the feature values
of all items collected in each presentation of a particular display
configuration can be thought of as a single sample from the joint

distribution p���̂i�i�1
N ���i�i�1

N � for that particular configuration. In
Experiment 1A, each of the 36 display configurations was pre-
sented 24 times (yielding a total of 864 trials) with the presentation
of different configurations randomly interleaved during the course
of the experiment. In Experiment 1B, each of the 27 display
configurations was presented 26 times (yielding a total of 702
trials). All subjects participating in the same experiment saw the
same set of display configurations. The correlation between

�̂i and �̂j for each pair of items i, j in each configuration was
estimated by calculating the correlation coefficient between the
subject’s estimates of �i and their estimates of �j over all presen-
tations of that particular configuration.

Participants. Eight naive subjects participated in Experiment
1A, and 11 naive subjects participated in Experiment 1B. Subjects
were undergraduate or graduate students at the University of
Rochester. All subjects reported normal or corrected-to-normal
vision, and they were compensated at a rate of $10 per hour for
their time. Subjects completed the experiment in two sessions.

Model comparison. For each subject, we determined the ML
estimates of the free parameters of each of the four models
(DPMM, BFMMs with two and four components, and the two-
level HBM) by searching for the parameter values that maximized
the subject’s trial-by-trial responses under the distribution

p���̂i�i�1
N ���i�i�1

N � induced by the model. In other words, each setting
of the free parameters of a model yields a slightly different

distribution p���̂i�i�1
N ���i�i�1

N �. Since these distribution do not have
an analytic form, they were computed by sampling, as in previous
cases in this article (see Equation 2). The likelihood of the sub-
ject’s trial-by-trial responses was then computed under these dis-
tributions (note that the distributions are dependent on the display
configuration ��i�i�1

N ). The parameter values maximizing this like-
lihood were chosen as the ML estimates of the parameters. The
models were then compared using the BIC measure as usual (see
Appendix B for additional details).

Results. The joint distributions p���̂i�i�1
N ���i�i�1

N � estimated from
subjects’ responses displayed notable dependencies between esti-
mates of different items. In particular, there were positive pairwise

correlations between �̂i and �̂j for different items i and j and the
magnitude of these correlations decreased with the distance
|�i � �j| between the actual feature values of the corresponding items.

The leftmost plot in Figure 10A shows the results for a repre-
sentative subject (RD) in Experiment 1A. In this figure, the crosses
represent the 36 stimulus configurations � � ��1,�2� presented to
the subject, the dots represent the subject’s mean estimates for
each configuration [i.e., the mean of the joint distribution

p��̂1,�̂2,��1,�2� for each configuration (�1, �2)], and the contours
represent the shapes of bivariate Gaussian distributions fitted to
the subject’s responses for each configuration (i.e., contours of
bivariate Gaussian approximations to the joint distributions p

��̂1,�̂2,��1,�2� for all configurations (�1, �2); red contours show

cases where �̂1 and �̂2 were significantly and positively corre-

lated, whereas blue contours show cases where �̂1 and �̂2 were
significantly and negatively correlated). For stimulus configu-
rations where the two items have similar horizontal locations,
the subject’s responses tended to be correlated (note the pre-
dominance of red contours near the main diagonal representing
�1 � �2), whereas for configurations where the two items have
dissimilar horizontal locations, this tendency was gradually
reduced. This pattern was apparent in most of the subjects.
Figure 10B (left) shows, for subject RD, the correlations be-

tween �̂1 and �̂2 as a function of the distance |�1 � �2| between
the actual horizontal locations of the two items. In this plot, the 36
stimulus configurations (�1, �2) presented to the subject were divided
into 6 equal-length bins based on |�1 � �2|, and the mean correlation

between �̂1 and �̂2 as well as the standard error of the mean were
calculated for each bin. Figure 11A (left) shows the correlations as a
function of |�1 � �2| for combined data from all eight subjects in
Experiment 1A. We also performed linear regressions of the correla-

tion between �̂1 and �̂2 on the distance |�1 � �2| for each subject
separately as well as for combined data from all subjects. For seven of
the eight subjects in the experiment with N � 2 (as well as for
combined data from all subjects), the linear regression was significant,
i.e., the 95% confidence interval for the slope excluded zero (p � .05),
and the slope was negative, suggesting that correlations decreased
with the distance |�1 � �2|.

Another notable pattern in subjects’ responses was the bias
toward the mean horizontal locations for many of the configura-
tions presented to them (this can be seen in Figure 10A by noting
that the mean estimates of the subject are closer to the main
diagonal than the actual stimulus configuration for many config-
urations). This bias is consistent with similar biases previously
reported in the literature for other feature dimensions as reviewed
earlier in this article (see the subsection titled Biases in VSTM).

Results for Experiment 1B (N � 3) were qualitatively similar.

There were again positive pairwise correlations between �̂i and �̂j

for different items i and j, and the magnitude of these correlations
decreased with the distance between the actual horizontal locations
of the corresponding items. Figure 11A (right) shows the pairwise

correlations between �̂i and �̂j as a function of the distance be-
tween the actual horizontal locations of the two items for com-
bined data from all 11 subjects in Experiment 1B. In this figure, all
{�i, �j} pairs for all stimulus configurations (27 � 3 � 81 pairs in
total) were divided into three equal-length bins based on the
distance |�i � �j| between the horizontal locations of items i and j.
As in the analysis of data from Experiment 1A, we also performed

linear regressions of the correlation between �̂i and �̂j on the dis-
tance |�i � �j| for each subject separately as well as for combined
data from all subjects. For all 11 subjects in the experiment with
N � 3 (as well as for combined data from all subjects), the linear
regression was significant (p � .05), and the slope was negative,
suggesting that correlations decreased with the distance |�i � �j|.

Overall, subjects exhibited a smaller number of significant

��̂1,�̂3� correlations than ��̂1,�̂2�, or ��̂2,�̂3� correlations. This is
probably due to the fact that the {�1, �3} pair had a larger
vertical distance than the other pairs. We also carried out a
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similar analysis using the two-dimensional locations of the
items (considering both horizontal and vertical locations of the
items in computing the Euclidean distance between two items
rather than considering only their horizontal locations). This
analysis yielded qualitatively similar results. As in Experiment
1A, subjects also displayed a bias toward the mean horizontal
locations in their estimates.

We also looked at the standard deviation of subjects’ estimates,

Std(�̂i), as a function of the standard deviation of the actual feature
values of items in a configuration, Std(��i�i�1

N ) (Figure 11B). This
function had an inverse U shape both in Experiment 1A and in
Experiment 1B. Subjects’ estimates had small standard deviations
for configurations with homogeneous or low-variance feature val-

ues. Std(�̂i) increased for configurations with more heterogeneous
or high-variance feature values but decreased again for the most
heterogeneous or highest-variance configurations. We note that a
similar increase in the variance of encoding for individual items
with increased heterogeneity of the actual feature values of items
has been recently reported in Sims, Jacobs, and Knill (2012). The

decrease in Std(�̂i) for the most heterogeneous configurations is
attributable to edge effects, because the most heterogeneous con-
figurations (i.e., configurations for which Std(��i�i�1

N ) has the high-

est value) are configurations where one of the items is close to the
left or the right edge of the screen and the other item or items are
close to the opposite edge. For these configurations, subjects’
estimates had low variance, because their estimates were con-
strained on one side by the edge of the screen.

Interestingly, the DPMM and, to a lesser extent, the other
models were able to qualitatively explain this inverse U-shaped

relationship between Std (��i�i�1
N ) and Std(�̂i). Intuitively, this

can be understood as follows. By grouping items together, the
DPMM reduces the variance of encoding for individual items,
because information about an individual item can be gained
from other items in the same group. This reduction in the
variance of encoding for individual items is largest for the most
homogeneous configurations, because the group has the lowest
possible variance in such configurations, increasing the amount
of information one can get about an individual item from other
items in the same group. For more heterogeneous groups, one
can get less information about an individual item from other
items. For the most heterogeneous groups, since we used a
uniform distribution over the horizontal length of the screen as
the base distribution over �, the edge effect mentioned above
acts to reduce the variance in the model’s estimates. We note

Figure 10. A. Results from a representative subject (RD) in Experiment 1A (left). Crosses represent the 36
stimulus configurations presented to the subject, dots represent the subject’s mean estimates for each configu-
ration and contours represent single-level contours of bivariate Gaussian distributions fitted to the subject’s
responses for each configuration (red contours show cases where the subject’s estimates of the horizontal
locations of the two presented items were significantly and positively correlated, whereas blue contours show
cases where the subject’s estimates were significantly and negatively correlated). The middle and the right panels
show the predictions of the best fitting Dirichlet process mixture model (DPMM) and the best fitting hierarchical
Bayesian model (HBM), respectively (colors and line styles same as in subject’s data). B. Correlations between

�̂1 and �̂2 as a function of the distance |�1 � �2| for subject RD (left) and the corresponding predictions from the
best fitting DPMM (middle) and the best fitting HBM (right). Error bars represent standard errors of the mean.
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that the models were only fit to the subjects’ trial-by-trial
responses and were not optimized to display this inverse

U-shaped relationship between Std(��i�i�1
N ) and Std(�̂i).

The models overestimated the standard deviations of subjects’
estimates (Figure 11B). This is because subjects’ estimates dis-
played significant biases. To be able to explain these biases, �obs

had to be sufficiently small. But such small �obs values led to
feature estimates with higher variances than observed in the data.
Larger �obs values led to relatively unbiased estimates and did not
fit subjects’ estimates well enough. On the other hand, very small
�obs values led to estimates with much higher variances than
observed in the data and did not fit subjects’ estimates well either.

How did the models do in explaining the biases and dependen-
cies in subjects’ estimates? Qualitatively, the models were able to
capture the major aspects of the biases and dependencies observed

in the empirical joint distributions p���̂i�i�1
N ���i�i�1

N � determined
from subjects’ responses. In particular, as shown in Figures 10A
and 10B for the DPMM (middle column) and the HBM (right
column), respectively, the models were able to generate correlated
estimates for the horizontal locations of different items when their
horizontal locations were very similar. However, a common failure
of all four models was that they underestimated the magnitude of
pairwise dependencies between estimates of different items. The
correlations predicted by the models decayed faster than the actual
correlations observed in subjects’ responses. Note that the models

were fit to the trial-by-trial responses of the subjects and not
directly to the observed pattern of correlations or biases.

The models were, in principle, capable of generating correla-
tions that resembled the correlations observed in subjects’ re-
sponses (i.e., correlations that decayed more slowly). However,
this required using fewer clusters and/or noisier memory observa-
tions in the case of the DPMM (a smaller �c and/or a smaller �obs)
or noisier memory observations in the case of the HBM (a smaller
�obs) than warranted by subjects’ trial-by-trial responses.

In a similar vein, the models also underestimated the magnitude of
subjects’ biases. Again, to be able to generate biases that matched
subjects’ biases in their magnitude, the models had to use noisier
representations than warranted by subjects’ trial-by-trial responses.

In Experiment 1A (N � 2), the DPMM had the best BIC score
for six out of eight subjects and the HBM had the best BIC score
for the remaining two subjects. The HBM tended to provide better
fits for subjects with broader error distributions. However, the
differences between the BIC scores of the four models were not
very large and all four models made qualitatively similar predic-
tions. In Experiment 1B (N � 3), the DPMM had the best BIC
score for seven out of 11 subjects, the BFMM with four compo-
nents had the best BIC score for two subjects, and the HBM had
the best BIC score for the remaining two subjects. Again, the
differences in the BIC scores of these three models were not very
large. In contrast, the BFMM with two components provided
consistently worse fits than the other models. The reason for this
is illustrated in Figure 12, which shows the posterior distributions
over the number of clusters inferred by the DPMM and the BFMM
with two and four components for two representative subjects in
Experiments 1A and 1B, respectively. The posterior distributions
for the DPMM and the BFMM with four components give sub-
stantial probability to three-cluster partitions (where each item is
represented individually with no grouping). Because the BFMM
with two components could use, at most, two clusters, it was not
able to account for these “nongrouping” partitions, and conse-
quently could not fit subjects’ responses well. A similar problem
arises in the HBM, but in BIC calculations, the HBM benefits from
having one less parameter than the other models.

Discussion. Our main contribution in Experiment 1 was that
we designed a novel experimental task allowing us to empirically
determine the form of the joint probability distribution

p���̂i�i�1

N

���i�i�1
N �

characterizing a subject’s estimates of the feature values of mul-
tiple items based on VSTM. The basic idea in our task is to ask
subjects to report their estimates of the feature values (horizontal
locations) of all presented items in each trial, rather than asking
them to report the feature value of a single target item as is
customary in more standard VSTM tasks. The estimates of the
feature values of multiple items collected in each trial can be
thought of as a single sample from the joint distribution

p���̂i�i�1
N ���i�i�1

N �. Over several presentations of the same configu-
ration, this procedure allows us to determine the dependencies
between the estimates of the feature values of different items.

Using this novel paradigm with horizontal location as the rele-
vant feature dimension, we found a hitherto unrecognized form of
dependence between estimates of the feature values of different
items, namely, the existence of positive pairwise correlations be-

Figure 11. A. Pairwise correlations between �̂i and �̂j as a function of the
distance |�i � �j| between the horizontal locations of pairs of items for
combined data from all eight subjects in Experiment 1A (left) and for
combined data from all 11 subjects in Experiment 1B (right). (B) Standard

deviations of �̂i as a function of the standard deviation of the actual feature
values of items for combined data from all eight subjects in Experiment 1A
(left) and for combined data from all 11 subjects in Experiment 1B (right).
Also shown are the predictions of the best fitting Dirichlet process mixture
models (DPMMs) and the best fitting hierarchical Bayesian models
(HBMs). Error bars represent standard errors of the mean.
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tween �̂i and �̂j for different items i, j that decrease with the
distance |�i � �j| between the feature values of the corresponding
items. In addition, consistent with previously reported biases in
VSTM for spatial frequency (Wilken & Ma, 2004; Huang &
Sekuler, 2010) and size (Brady & Alvarez, 2011), we found biases
toward mean horizontal locations in subjects’ estimates.

Among the four models we consider in this article, the Bayesian
finite mixture model with two components (BFMM-2) can be
ruled out because it yielded poor fits in Experiment 1B due to its
inability to account for three-cluster partitions where each item is
assigned to its own cluster. This shows the importance of not
setting an a priori limit on the number of components, and hence
favors a flexible nonparametric approach such as the DPMM that
automatically infers the granularity of groups or clusters that is
appropriate for each subject in an experiment. In our experiments,
we used at most three items, therefore in a sense, one does not need
more than three components for modeling the representations of
the items. Consequently, it could be argued that the Bayesian finite
mixture model with four components (BFMM-4) can be safely
used in place of the nonparametric DPMM. However, in experi-
ments that use larger set sizes, some subjects might not have a
strong tendency to group items in VSTM. In such cases, requiring
that the items be grouped into four components might lead to the
overestimation of biases and/or dependencies in such “nongroup-
ing” subjects’ responses. Therefore, it would be safest to avoid
making any a priori assumptions about the maximum number of
components that would be needed to characterize different sub-
jects’ behaviors in a VSTM experiment, or equivalently about the
grouping tendency of different subjects. This is the approach taken
by the nonparametric DPMM.

Although the remaining three models (DPMM, BFMM-4 and

HBM) were able to generate pairwise correlations between �̂i

and �̂ j for different items i and j, as observed in our subjects’
responses, the correlations predicted by these models decayed
significantly faster than the observed correlations. Similarly,
these models also underestimated the magnitude of the biases in
subjects’ responses. These discrepancies suggest that further
modeling efforts are needed to better capture these aspects of
the experimental data.

Experiment 2

A potential concern about Experiment 1 is that subjects were
asked to indicate their responses using the computer mouse, and
thus the experimental task had a significant motor component.
Therefore, the correlations observed between the estimates of the
horizontal locations of different items might have been caused by
subjects’ hand movements, rather than by their VSTM represen-
tations of the items. Consider, for instance, a hypothetical trial
where two squares have similar horizontal locations. Suppose that
when the probe screen comes up, a subject first indicates his or her
estimate h of the horizontal location of the upper square using the
computer mouse. To minimize his or her vertical hand movement,
the subject might simply move the cursor with a straight down-
ward movement and indicate a horizontal location very similar to
h for the lower square. This minimum vertical movement strategy
would generate correlated estimates for the horizontal locations of
different squares when their actual horizontal locations are similar,
exactly as observed in Experiment 1.

To rule out this possibility, we designed a change-detection
variant of Experiment 1 that minimizes the motor component of
the task. The basic idea behind this change-detection task is
schematically illustrated in Figure 13. Figure 13A shows a target
configuration (i.e., a specific setting of the feature values of two

Figure 12. Posterior distributions over the number of clusters inferred by the Dirichlet process mixture model
(DPMM) and the Bayesian finite mixture model (BFMM) with two and four components for two representative
subjects in Experiment 1A (subject RD; A) and in Experiment 1B (subject DK; B), respectively.

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

318 ORHAN AND JACOBS



items) represented by the black square and a number of “lure”
configurations represented by the black circles. The lure configu-
rations are equally spaced along two axes referred to as the parallel
axis (because it is parallel to the main diagonal) represented by
the gray line, and the orthogonal axis (because it is orthogonal
to the main diagonal) represented by the black line. In Figure 13A,
the two items in the target configuration have similar feature values
(the black square representing the target configuration is close to the
main diagonal), and therefore the difference

� � �1 � �2

between the feature values of the two items in the target config-
uration is small. Figure 13B is similar to Figure 13A, except that
the two items in the target configuration in Figure 13B have
dissimilar feature values, and therefore � is large. The ellipses in
Figures 13A and 13B indicate the predicted shapes of the distri-

butions p��̂1,�̂2��1,�2� characterizing subjects’ estimates of the fea-
ture values of the two items in the target configurations (these can be
compared to the contours in Figure 10). Results from Experiment 1

suggest that �̂1 and �̂2 are positively correlated when � � �1� �2 is
small (as in Figure 13A) and that this correlation decreases with � and
ultimately vanishes when � becomes too large (as in Figure 13B).

If this is indeed the case, then when � is small, the lure configu-
rations along the parallel axis should be judged to be more “similar”
to, and therefore be more confusable with, the target configuration
than equidistant (using the Euclidean metric) lure configurations
along the orthogonal axis. This is illustrated in Figure 13C where the

(unnormalized) cross-sections of p��̂1,�̂2��1,�2� along the parallel and
orthogonal axes are shown by gray and black lines, respectively. The
lure configurations along the parallel axis have higher probability

under p��̂1,�̂2��1,�2� than equidistant lure configurations along the
orthogonal axis. Therefore, in a same/different change-detection task,
when the target configuration is presented successively with a lure
configuration, the lure configurations along the parallel axis should
elicit a higher probability of “same” responses than equidistant lure
configurations along the orthogonal axis.

In contrast, when � is large, representations �̂1 and �̂2 should be
less correlated, and ultimately uncorrelated as � becomes suffi-
ciently large (as in Figure 13C). In this case, lure configurations
along the parallel axis and equidistant configurations along the
orthogonal axis should have more or less the same probability

under p��̂1,�̂2��1,�2�, as shown in Figure 13D. Thus, they should be
equally confusable with the target configuration, and therefore

Figure 13. A and B. Target and lure configurations are represented by open squares and circles, respectively.
Lure configurations are defined along two perpendicular axes (parallel and orthogonal axes, represented by the
gray and black lines, respectively). The contour lines represent the shapes of the joint distributions

p��̂1, �̂2��1,�2� describing the contents of a subject’s memory of the target configurations. In A, items in the target
configuration have similar feature values (small �), whereas in B, they have different feature values (large �).
C and D. Unnormalized cross-sections of the joint distributions along the parallel (gray line) and orthogonal axes
(black line). If the joint distribution is positively correlated for small � values, but uncorrelated for large �
values, then for small �, lure configurations along the parallel axis should have higher probability under the joint
distribution than equidistant lure configurations along the orthogonal axis (C). In contrast, when � is large, lure
configurations along the parallel axis and equidistant configurations along the orthogonal axis should have more
or less the same probability under the joint distribution (D).
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elicit more or less the same proportion of “same” responses when
successively presented with the target configuration in a change-
detection task. In Experiment 2, we tested these predictions using
a simple change-detection task.

Method.
Procedure. Subjects were seated 57 cm from a CRT monitor

with a screen resolution of 1,280 � 1,024 pixels and a refresh rate
of 85 Hz. Subjects’ heads were stabilized with the help of a chin
rest. The sequence of events in a single trial of the experiment is
shown in Figure 14. In each trial, a small fixation cross was
presented at the center of the display for 1 s. As in Experiment 1A,
subjects were then presented with a target configuration consisting
of two differently colored squares (1.4° � 1.4°) placed on two dark
and thin horizontal lines (spaced approximately 10° apart) for 100
ms. Subjects were asked to remember the horizontal locations of
the two squares in the target configuration. We used five different
target configurations with � � �5.6°, �2.8°, 0°, 2.8°, 5.6°. Target
configurations were presented at random on each trial either com-
pletely on the right side or completely on the left side of the
fixation cross (as in Bays & Husain, 2008). Therefore, the stimuli
were always presented in the visual periphery. A small amount of
jitter (uniform between �0.7° and 0.7°) was added to the horizon-
tal locations of both squares in each trial so that the subjects never
saw the exact same target configuration twice (the same jitter was
used for both squares, so that the difference � remained the same).

After a 1-s delay interval (during which only the horizontal lines
remained visible), a probe configuration was presented that re-
mained on the display until the subject responded. On half of the
trials, the probe configuration was exactly the same as the target
configuration. On the other half of the trials, the probe configura-
tion was a lure configuration. The lure configurations were gen-
erated as schematically illustrated in Figure 13. Specifically, we
first defined two orthogonal axes passing through the target con-
figuration in the two-dimensional space of (�1, �2) where �1 is the
horizontal location of the first square and �2 is the horizontal
location of the second square. The parallel axis is defined to be the

line passing through the target configuration that is parallel to
the main diagonal (the line �1 � �2) and the orthogonal axis is the
line passing through the target configuration that is orthogonal to
the main diagonal. Six lure configurations were generated on each
of these two axes (these are represented by the open circles in
Figures 13A and 13B and the target configuration is represented by
the open square). On the parallel axis, the horizontal locations of
the squares in the six lure configurations differed from the hori-
zontal locations of the squares in the target configuration by
(�1.32°, �1.32°), (�0.88°, �0.88°), (�0.44°, �0.44°), (0.44°,
0.44°), (0.88°, 0.88°), or (1.32°, 1.32°). As a matter of notation,
these six lure configurations along the parallel axis are given the
numeric labels �3, �2, �1, 1, 2, 3, respectively (the target
configuration was given the label 0). On the orthogonal axis, the
horizontal locations of the squares in the six lure configurations
differed from the horizontal locations of the squares in the target
configuration by (�1.32°, 1.32°), (�0.88°, 0.88°), (�0.44°,
0.44°), (0.44°, �0.44°), (0.88°, �0.88°), or (1.32°, �1.32°). Sim-
ilarly, these six lure configurations along the orthogonal axis are
given the numeric labels �3, �2, �1, 1, 2, 3, so that the lure
configurations along the parallel and orthogonal axes with the
same numeric label are equidistant to the target configuration.

Subjects were asked to remember the horizontal locations of the
squares in the target configuration and to detect any changes in
these horizontal locations when the probe configuration came on.
Subjects responded by pressing one of two designated keys: “f” for
“same” (or no change) and “j” for “different” (or change). Subjects
were given auditory feedback after each trial. In addition, written
feedback was presented on the screen after every 30 trials. Each
subject completed a total of 600 trials (120 trials for each of the
five target configurations; half of these 120 trials were “same”
trials and the remaining 60 “lure” trials were equally divided
between the 12 lure configurations).

Participants. Twenty naive subjects participated in the experi-
ment. Subjects were undergraduate students at the University of
Rochester. All subjects reported normal or corrected-to-normal vision,
and they were compensated at a rate of $10 per hour for their time.
Subjects completed the experiment in a single session.

Results. The average accuracy in Experiment 2 was 68.7%
correct. Figure 15 shows the probability of “same” responses as a
function of the position along the parallel/orthogonal axis (recall
that “0” denotes the target configuration itself, i.e., no-change
trials, whereas the other numeric labels represent different lure
configurations) for the five different target configurations with
different � � �1 � �2 values (the curves shown in the figure were
called “mnemometric functions’ in Zhou, Kahana, & Sekuler,
2004). When the magnitude of � was small, the proportion of
“same” responses to a lure configuration along the parallel axis
was higher than the proportion of “same” responses to an equidis-
tant lure configuration along the orthogonal axis. This difference
between the proportion of “same” responses to lure configurations
along the parallel axis versus the proportion of “same” responses
to equidistant lure configurations along the orthogonal axis was
largest for the smallest � (� � 0°) and became smaller and smaller
as the magnitude of � increased. As argued earlier in this subsec-
tion, this pattern of results is exactly as one would predict if VSTM
representations of the two items in the target configurations were
correlated and the correlations decreased with the distance be-

Figure 14. The sequence of events in a single trial of Experiment 2: (a)
a small fixation cross is presented at the center of the screen for 1 s, (b)
the target configuration is flashed briefly, (c) a delay interval of 1 s follows
the target configuration, (d) the probe configuration is presented until the
subject responds either “same” or “different” (in this example, the probe
configuration is the same as the target configuration).
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tween the horizontal locations of the items (compare, e.g., Figure
13 with Figure 15A).

To quantify these correlations and to be able to compare the
results of Experiment 2 with the results of Experiment 1 more
directly, we developed a Bayesian model of subjects’ same/differ-
ent responses in the change-detection task of Experiment 2. This
Bayesian model can be considered to be a two-dimensional gen-
eralization of the Bayesian psychometric functions introduced in
Kuss, Jäkel, and Wichmann (2005). The model assumes a bivariate
Gaussian distribution with mean � � [�1, �2] and covariance
matrix  � ��1

2, ��1�2; ��1�2, �2
2� for the shape of the joint

probability distribution p��̂1, �̂2��1, �2� for a given target con-
figuration, (�1, �2). In the one-dimensional case, this is similar
to using a Gaussian cumulative distribution function for mod-
eling psychometric functions. When a subject is presented with
a probe configuration (l1, l2), he or she makes a same/different
response based on the probability of the probe configuration

under p��̂1, �̂2��1, �2� �i.e., p��̂1 � l1, �̂2 � l2��1,�2��. Intuitively,
probe configurations with high probability under p

��̂1,�̂2��1,�2� are likely to elicit more “same” responses or, in
other words, they are more likely to be confused with the target
configuration. Mathematically, we handled the mapping from

p��̂1 � l1,�2 � l2��1,�2� to probabilities of same/different re-
sponses as follows. We linearly mapped the probabilities
of probe configurations relative to the maximum

attainable probability ( i.e., p̂��̂1 � l1, �̂2 � l2��1, �2� �

p��̂1�l1,�̂2�l2��1,�2�

max�p��̂1,�̂2��1,�2��
; note that for a Gaussian distribution, this

is equal to exp � � 0.5*�l � ��T��1�l � ���, which is the

unnormalized exponential part of the definition of the Gaussian
density) to go from a lower bound bl, which represents the
minimum probability of “same” responses to an upper bound
bu, which represents the maximum probability of “same” re-
sponses (we performed Bayesian inference over these variables
based on individual subjects’ responses):

pl � �bu � bl� * p̂��̂1 � l1, �̂2 � l2��1, �2� 	 bl. (22)

This is a reasonable choice because, as is evident from Figure
15, subjects do not respond “same” with a probability of 1, even
for the target configuration itself, and do not respond “same”
with a probability of 0, even for very dissimilar lure configu-
rations. A “same” response in a given trial is modeled as a
Bernoulli distributed variable with a success probability of pl.
Finally, all variables of interest in the model (�1, �2, �, �1, �2,
bl, bu) are given suitable priors and their posteriors were com-
puted via MCMC sampling based on individual subjects’ same/
different responses (additional details are provided in Appendix
C). We note that this Bayesian analysis was performed for each
subject separately.

We are specifically interested in the posterior distribution of the
variable � for different target configurations because it represents
the correlation coefficient of the underlying joint probability

model p��̂1, �̂2��1, �2� that characterizes a subject’s estimates of the
feature values of the items in the target configuration. Given the
posterior distribution of �, we computed its maximum a posteriori
(MAP) estimate for each target configuration.

Figure 16B shows the means and the standard errors (across
subjects) of the MAP estimates of � for the five target configura-
tions. Confirming the qualitative observations we made from Fig-

Figure 15. Probability of “same” responses as a function of the position along the parallel/orthogonal axis for
the five different target configurations with different � values in Experiment 2 (location change detection; A)
and Experiment 3 (orientation change detection; B). “0” indicates the target configuration itself (i.e., no-change
trials), whereas the other numeric labels represent different lure configurations along the parallel (solid line) or
the orthogonal axis (dashed line). Error bars represent standard errors of the mean across subjects.
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ure 15A, it shows that for target configurations with a small |�|, �
is high, and it gradually decreases for target configurations with
larger |�|. The linear regression of the MAP estimates of � on |�|
was significant, and the slope was negative, suggesting that �
decreased with |�|(b � �0.08, t(98) � –6.55, p � .01).

Figure 16A shows, for a representative subject in Experiment 2
(Subject MG), the means and shapes of the underlying distribu-

tions p��̂1,�̂2��1,�2� for the five target configurations, with the
parameters of these distributions set to their MAP estimates. The
five target configurations used in Experiment 2 are represented by
the black crosses.

Although estimates of the correlations and variances of the joint
distributions obtained in Experiment 2 are roughly comparable to
estimates of the corresponding variables in Experiment 1, biases
toward the mean horizontal locations in Experiment 2, although
consistent with the direction of the biases in Experiment 1, were,
in general, weaker than the biases obtained in Experiment 1. In this
regard, it is interesting to note that most previous reports of biases
toward mean feature values in VSTM used recall tasks rather than
change-detection or recognition type tasks (Wilken & Ma, 2004;
Huang & Sekuler, 2010; Brady & Alvarez, 2011). Change-
detection experiments with more target configurations would be
needed to determine whether recall tasks (as in Experiment 1)

induce additional biases over and above those observed in change-
detection tasks (as in Experiment 2).

Discussion. Using a change-detection task, Experiment 2 rep-
licated the main experimental finding of Experiment 1, namely, the
existence of pairwise correlations between estimates of the hori-
zontal locations of different items that decrease with the distance
between the actual horizontal locations of the corresponding items.
Because the change-detection task used in Experiment 2 has a
minimal motor component, the results of Experiment 2 rule out
possible motor explanations of the observed correlations.

Furthermore, because subjects make a single decision in each
trial of Experiment 2, these results also rule out possible explana-
tions of the observed correlations in terms of sequential reporting
of the estimates of the feature values of items (the recall task used
in Experiment 1 involved sequential reporting).

Experiment 3

Experiments 1 and 2 used horizontal location as the relevant
feature dimension to be remembered. An interesting question is to
what extent the results obtained in these experiments generalize to
other feature dimensions. In particular, do the specific pattern of
correlations observed between the representations of different
items in VSTM extend to feature dimensions other than horizontal
location as the feature-independent nature of our models would
suggest? To address this question, Experiment 3 used orientations
of Gabor gratings instead of horizontal locations of squares as the
stimulus feature to be remembered. Otherwise, the experimental
design was the same as in Experiment 2.

Method.
Procedure. Subjects were seated 57 cm from a CRT monitor

with a screen resolution of 1,280 � 1,024 pixels and a refresh rate
of 85 Hz. Subjects’ heads were stabilized with the help of a chin
rest. The sequence of events in a single trial of Experiment 3 is
shown in Figure 17. In each trial, a small fixation cross was
presented at the center of the display for 1 s. Subjects were then

Figure 16. A. Results for a representative subject (Subject MG): For the
five target configurations used in Experiment 2, the means and shapes of

the distributions p��̂1, �̂2��1,�2� with the parameters of these distributions
set to their maximum a posteriori (MAP) estimates. The five target con-
figurations used in Experiment 2 are represented by the black crosses. Red
contours represent cases where the 95% credible interval for � excludes 0.
B. The means and the standard errors (across subjects) of the MAP
estimates of � for the five target configurations in Experiment 2. C and D.
Similar to A and B, but results are shown for Experiment 3. In C, results
are shown for a representative subject in Experiment 3 (Subject TH). For
better visualization, a different scaling was chosen to create the ellipses in
C than in A. deg � degrees.

Figure 17. The sequence of events in a single trial of Experiment 3: (a)
a small fixation cross is presented at the center of the screen for 1 s; (b) the
target display, consisting of two oriented Gabor gratings, is flashed briefly;
(c) a delay interval of 1 s follows the target configuration; (d) the probe
display is presented until the subject responds either “same” or “different”
(in this example, the probe display is different from the target display).
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presented with a target configuration consisting of two oriented
Gabor gratings for 100 ms. The standard deviation of the isotropic
Gaussian envelope of the gratings was 0.8°. The spatial frequency
of the gratings was 0.9 cycles/degree. The two gratings were
vertically separated by a distance of about 6° (center-to-center),
and their horizontal locations were the same. Subjects were asked
to remember the orientations of the gratings in the target config-
uration. We used five different target configurations with � �
�15°, �7.5°, 0°, 7.5°, 15°. Specifically, the target configurations
used were (37.5°, 52.5°), (41.25°, 48.75°), (45°, 45°), (48.75°,
41.25°) and (37.5°, 52.5°). As in Experiment 2, a moderate amount
of jitter (uniform between �30° and 30°) was added to the orien-
tations of both gratings in each trial so that the subjects never saw
the exact same target configuration twice. Again, the same jitter
was used for both gratings, so that the difference � remained the
same. On different trials, target configurations were presented
either on the right side of the fixation cross or on the left side of
the fixation cross, thus the stimuli were always viewed peripher-
ally. The presentation side was determined randomly in each trial.

After a 1-s delay interval, a probe configuration was presented
that remained on the screen until the subject responded. On half of
the trials, the probe configuration was exactly the same as the
target configuration. On the other half of the trials, the probe
configuration was a lure configuration. The lure configurations
were generated as in Experiment 2. For a given target configura-
tion, six lure configurations each were generated on the parallel
and orthogonal axes. On the parallel axis, orientations of the
gratings in the six lure configurations differed from the orienta-
tions of the gratings in the target configuration by (�18°, �18°),
(�12°, �12°), (�6°, �6°), (6°, 6°), (12°, 12°), or (18°, 18°).
These six lure configurations along the parallel axis were given the
numeric labels �3, �2, �1, 1, 2, 3, respectively (the target
configuration itself was given the label 0). On the orthogonal axis,
orientations of the gratings in the six lure configurations differed
from the orientations of the gratings in the target configuration by
(�18°, 18°), (�12°, 12°), (�6°, 6°), (6°, �6°), (12°, �12°), or
(18°, �18°). Similarly, these six lure configurations along the
orthogonal axis were also given the numeric labels �3, �2, �1, 1,
2, 3, respectively, so that the configurations along the parallel and
orthogonal axes with the same numeric label are equidistant to the
target configuration.

Subjects were asked to remember the orientations of the gratings
in the target configuration and detect any changes in these orien-
tations when the probe configuration came on. Subjects responded
by pressing one of two designated keys: “f” for “same” (or no
change) and “j” for “different” (or change). Subjects were given
auditory feedback after each trial. In addition, written feedback
was presented on the screen after every 30 trials. Each subject
completed a total of 600 trials (120 trials for each of the four target
configurations; half of these 120 trials were “same” trials and the
remaining 60 “lure” trials were equally divided between the 12
lure configurations).

Participants. Eighteen naive subjects participated in the experi-
ment. Subjects were undergraduate students at the University of
Rochester. All subjects reported normal or corrected-to-normal vision,
and they were compensated at a rate of $10 per hour for their time.
Subjects completed the experiment in a single session.

Results. The average accuracy of the subjects was 68.8% correct
in Experiment 3. Analysis methods used here are the same as in

Experiment 2 above. Figure 15B shows the probability of “same”
responses as a function of the position along the parallel/orthogonal
axis for the five target configurations used in Experiment 3. Figure
16D shows the means and the standard errors (across subjects) of the
MAP estimates of � for the target configurations. As in Experiment 2,
� tended to be high for target configurations with a small |�| and
gradually decreased for target configurations with larger |�|. The
linear regression of the MAP estimates of � on |�| was significant, and
the slope was negative, suggesting that � decreased with |�|(b �
�0.02, t(88) � �5.08, p � .01).

Figure 16C shows, for a representative subject in Experiment 3
(Subject TH), the means and shapes of the underlying distributions

p��̂1, �̂2��1,�2� for the five target configurations (represented by the
black crosses), with the parameters of these distributions set to their
MAP estimates. We did not find a consistent bias toward mean
orientations in subjects’ responses. Note, for instance, for the partic-
ular subject shown in Figure 16C, the means of the underlying
distributions (black and red dots) were closer to the main diagonal
than the target configurations (black crosses) in only one out of four
cases, the opposite pattern was apparent in the remaining three cases
(note that the fifth configuration was on the main diagonal). This
could either be due to the limited number of target configurations we
tested or due to the particular feature dimension used in this study
(i.e., orientation). Further experiments using a larger number of target
configurations are needed to resolve this issue.

Discussion. Experiment 3 confirmed the specific pattern of
correlations observed in Experiments 1 and 2 for a different feature
dimension, namely, orientation. Correlations between the esti-
mates of the orientations of different items in a target configuration
tended to be high (and credibly different from 0) for small orien-
tation differences and gradually decreased for larger differences.

General Discussion

There is now extensive experimental evidence suggesting that
the content of a visual memory for even a simple display encoded
in VSTM can be very complex. VSTM uses organizational pro-
cesses that make the representation of an item dependent on the
representations of other items as well as on the actual features of
the displayed items (Brady & Alvarez, 2011; Brady et al., 2011;
Huang & Sekuler, 2010; Jiang et al., 2000; Kahana & Sekuler,
2002). In other words, the way we remember an individual item
might depend not only on the actual properties of that item but also
on the properties of other items simultaneously presented with that
item and on how we remember those other items as well.

To account for these dependencies, we proposed PCT, a theory
of the organization of VSTM. PCT states that VSTM infers prob-
ability distributions over partitions or clusterings of visual items.
Probabilistic clustering of items gives rise to dependencies in the
joint representation of multiple items in VSTM. Representations of
items belonging to the same cluster share parameters, and thus are
dependent. Representations of items belonging to different clusters
do not share parameters, and thus are independent. Importantly,
VSTM does not determine a single partition. Rather, it determines
a probability distribution over all possible partitions. This property
allows it to represent items at multiple granularities or scales
simultaneously. Because PCT hypothesizes that VSTM makes use
of multiple scales, it can account for experimental data that has
previously motivated hierarchical models of VSTM. In fact, as we
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showed in the section on Models, a two-level hierarchical model
proposed by Brady and Alvarez (2011) can be seen as a special
case of PCT with a single cluster (i.e., where all items are always
assigned to a single cluster). In the general case, however, PCT
does not set any a priori bounds on the number of clusters, but
rather automatically infers the appropriate distribution over the
number of clusters to use and the scales of those clusters from the
feature values of a given set of items. Because PCT hypothesizes
that VSTM automatically determines which particular scales to
use, it overcomes many of the shortcomings of hierarchical models
with prespecified, fixed structures (e.g., see Hierarchical Encod-
ing of Items in VSTM).

We explored several possible implementations of PCT: an exact
implementation based on the Dirichlet process mixture model
(DPMM) and approximate implementations based on Bayesian
finite mixture models (BFMMs) with different numbers of com-
ponents, including a model using a single component that we have
shown to be equivalent to the two-level hierarchical model of
Brady and Alvarez (2011). We consider the DPMM to be an exact
implementation of PCT in the sense that it does not assume any a
priori limit on the number of components to be used and considers
all possible partitions of the given set of items. In practice, how-
ever, the DPMM and BFMMs with a sufficiently large number of
clusters make indistinguishable predictions. Because of the small
set sizes used in VSTM experiments and subjects’ tendency to
group items in a display (Woodman et al., 2003; and the studies
reviewed in this article), “sufficiently large” can be as small as four
to five components, as demonstrated by the quite good perfor-
mance of the BFMM with four components in fitting the data we
modeled in this article.

Through computer simulations, we demonstrated that PCT explains
a number of biases and dependencies in VSTM representations pre-
viously reported in the literature. Through novel experiments, we
evaluated a crucial prediction of PCT, namely, that dependencies
between estimates of the feature values of different items based on
their VSTM representations should decrease with the distance be-
tween the actual feature values of the corresponding items. This
prediction was qualitatively confirmed in a series of experiments
specifically designed to measure such dependencies. However, quan-
titatively, the observed dependencies decayed more slowly than pre-
dicted by all models considered in this article, suggesting that further
improvements in the models or better alternative models are needed to
more accurately characterize dependencies in subjects’ estimates.

DPMM as a Rational Model of Encoding in VSTM
Under Capacity Constraints

An important question concerns the status of PCT in terms of
Marr’s (1982) levels of analysis. Consider, for instance, the
DPMM (our comments apply equally to a BFMM with a suf-
ficiently large K). Do we put forward this model as addressing
a computational-level analysis of the problem of encoding in
VSTM, or rather as a representational/algorithmic level descrip-
tion of the organizational processes in VSTM? Before answer-
ing this question, we acknowledge that the boundary between
these two levels can often be fuzzy. Indeed, some researchers
have discussed “rational process models,” which are specifi-
cally intended to blur the distinction between the levels (San-
born et al., 2010). Nonetheless, we believe that the DPMM is

best viewed as addressing a computational-level analysis of the
problem of encoding in VSTM.

We think that it is possible to consider the DPMM as a rational
model (Anderson, 1990) of encoding in VSTM under some capac-
ity constraints. In what follows, we informally describe one pos-
sible way in which the DPMM can be construed as an optimal
model of encoding in VSTM. Clearly, when faced with the prob-
lem of reporting the feature value of a target item in a briefly
presented multi-item display, without any constraints on the ca-
pacity of encoding in VSTM, the optimal strategy is to encode all
items’ features with infinite precision. However, this optimal strat-
egy is not attainable by people due to capacity limitations in
VSTM (Bays & Husain, 2008; Luck & Vogel, 1997; Wilken &
Ma, 2004; Zhang & Luck, 2008). Given these capacity limitations,
there may be different ways of defining optimality. One possible
way is to define it as the minimization of the expected squared
error of a subject’s estimates over the trials of a recall task. It is
well-known that this expected error can be decomposed into terms
representing the bias and variance of the estimator. If the estimator
has low bias but high variance, the subject might tolerate a small
increase in the bias term in exchange for a larger decrease in the
estimator’s variance to decrease the expected error. A (two-level)
hierarchical model performs precisely this type of a trade-off to
reduce the expected error of the estimates. More specifically, it
does so by sharing information between the estimates of different
items. This reduces the variance of the estimates of individual
items, but introduces biases in these estimates. However, sharing
information between the estimates of all items indiscriminately
might not be the best strategy because the introduced biases might
be too large and/or the reduction in variance too small due to the
heterogeneity or dissimilarity of the estimates of different items. A
still better strategy would be to share information selectively
among the estimates of different groups of items. If, for example,
only estimates of groups of highly similar items share information,
the introduced biases would be minimal because the estimates of
the feature values of items in a group would already be similar to
each other, and the reduction in variance would be significant
because the group would be relatively homogeneous (low vari-
ance), meaning that grouping reduces the variance of individual
estimates maximally. This is the strategy implemented by the
DPMM and BFMMs.

The optimal way to trade-off the estimator bias against its variance
to minimize the expected error may depend on the memory noise (i.e.,
�obs in the models we considered in this article). For example, when
the individual estimates are highly noisy (small �obs), the benefits of
variance reduction through grouping may outweigh biases introduced
in this way, hence the optimal strategy may be to prefer grouping
whenever possible. On the other hand, for a large �obs, the gains from
variance reduction might not be as large as the biases introduced
through grouping. In this case, a preference against grouping might be
optimal. In the DPMM and BFMMs, the parameter �c controls such
preferences for or against grouping.

A number of researchers have previously used the DPMM or
closely related variants as rational models for categorization or cate-
gory learning problems (Anderson, 1990, 1991; Griffiths, Sanborn,
Canini, & Navarro, 2008; Sanborn et al., 2010). Thus, considering the
DPMM as a rational model of encoding information about multiple
items in VSTM under certain capacity limitations parallels an analo-
gous approach to the study of human categorization.
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A Novel Form of Dependence Between
Representations of Multiple Items in VSTM

The Experiments section discussed the results of three novel
experiments that we designed to empirically determine properties

of the joint probability distribution, p���̂i�i�1
N ���i�i�1

N �, for small set
sizes. This led to the discovery of a previously unrecognized form
of dependence between estimates of the feature values of different
items in VSTM: There were strong positive pairwise correlations
between representations of different items when the feature values
of the corresponding items were similar, and the magnitude of
these correlations gradually decreased with the distance between
their feature values. The existence of these correlations were
confirmed for two different feature dimensions: horizontal location
(Experiments 1 and 2) and orientation (Experiment 3). Future
studies will need to test for similar correlations using other feature
dimensions. It is entirely possible that for some feature dimensions
(e.g., for more categorical features), correlations might not exist.

In a similar vein, Experiments 1 and 2 used a location change-
detection task, whereas Experiment 3 used an orientation change-
detection task. It would be interesting to examine the interactions
between the effects of spatial proximity and feature similarity (e.g.,
orientation similarity) when measuring response correlations by,
for instance, parametrically changing both of these factors. For
example, it is conceivable that for very large spatial distances
between two gratings, correlations between the estimates of their
orientations might be reduced or might vanish altogether.

Another important question concerns the dynamics or time-course
of these correlations. Do they arise during encoding or maintenance?
What would their temporal profile look like over the course of the
delay period? For example, initially in the delay period, the represen-
tations of the items might be less correlated and correlations might
gradually increase or, alternatively, correlations might originate dur-
ing the encoding phase and might be more or less stable thereafter.
These questions can be addressed by parametrically varying the
presentation duration (cf. Bays, Gorgoraptis, Wee, Marshall, & Hu-
sain, 2011) and the length of the delay interval.

Finally, our experiments used small set sizes and considered
only pairwise correlations between representations of different
items in VSTM. For larger set sizes, and especially for more
naturalistic stimuli, the joint distribution characterizing the esti-
mates of the feature values of multiple items will almost certainly
involve more complex, higher order, and more interesting depen-
dencies than just pairwise correlations. The extension of our ex-
perimental methods for uncovering possible dependencies in such
cases in a feasible way would be very valuable.

Extension of Our Probabilistic Framework to More
Naturalistic Stimuli

How can our probabilistic framework be extended to modeling
the organization of VSTM for more naturalistic stimuli? It may be
that characterizing VSTM through the joint probability distribution

p���̂i�i�1
N ���i�i�1

N � would not be a good starting point when consid-
ering naturalistic stimuli because these stimuli often cannot be
described in terms of a number of simple feature values. That is,
they typically exhibit a much richer structure. In recent years, there
has been considerable progress in probabilistic modeling of natural
scenes (Fei-Fei & Perona, 2005; Sivic, Russell, Efros, Zisserman,

& Freeman, 2005; Sudderth, 2006) in computer vision. In partic-
ular, nonparametric hierarchical Bayesian models (such as exten-
sions of DPMMs) of the structure of natural scenes have been
successfully applied to challenging recognition and classification
tasks (Sudderth, 2006). Assuming that these models provide a
reasonably good description of the structure of natural scenes, one
possible approach to modeling the content of a subject’s visual
memory for a natural scene might be to introduce capacity con-
straints in such models, similar to the capacity constraints in the
models discussed in this article, such as constraints on the preci-
sion of the observable nodes in such models, where the observable
nodes might simply be noisy observations of the lowest level
features, just as in the models we considered in this article (al-
though these lowest level features might be more complex than the
ones we used in this article). In future work, it would be interesting
to compare the performances of suitably constrained extensions of
DPMMs with the performances of humans in VSTM experiments
using natural scenes.
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Appendix A

Posterior Inference

For the DPMM, posterior inference was performed using Algo-
rithm 8 of Neal (2000). An excellent description of this algorithm
can also be found in Görür (2007). For the BFMMs, we used a
Gibbs sampling algorithm for posterior inference (Algorithm 2.1 in
Sudderth, 2006). Finally, posterior inference in the HBM was
performed in WinBUGS (Lunn, Thomas, Best, & Spiegelhalter,
2000), modifying the WinBUGS code provided in the supplemen-
tal material of Brady and Alvarez (2011). For all models, in recall

tasks, we used the posterior means as the models’ estimates of the
feature values of different items. As described in more detail in the
main text, the procedure for the simulation of the Viswanathan et
al. (2010) was slightly different, because this study involved a
recognition memory task, unlike the other studies modeled here,
which were all recall tasks. The source code used in the simula-
tions reported in this article is available upon request from the
authors.

Appendix B

Maximum-Likelihood Estimation of the Parameters and Model Comparison

In our simulations, we used grid searches to find the values of
the parameters (for the DPMM and the BFMMs, �c and �obs in the
univariate case and � and �obs

2 in the multivariate case; for the
HBM, �obs) that maximized an approximation to the likelihood
given the observed data. The grid range over which we searched
was determined through trial-and-error in each case.

In the simulation of the experiment by Wilken and Ma (2004), the
data were the average observed errors in 64 conditions (four set sizes
� 16 bins; see the top-left plot in Figure 6). Each model effectively
produces a different likelihood distribution pM(biases|FP) as a func-
tion of its free parameters denoted by FP, where M could be
DPMM, BFMM–2, BFMM–4, or HBM and biases denotes the
collection of variables representing the average biases in each of
the 64 conditions. These likelihood distributions do not have an
analytic form; therefore, we computed them by sampling. Specif-
ically, for each model, we simulated the experiment of Wilken and
Ma (2004) 25 times and, for each of the 25 runs of the simulated
experiment, collected the average biases predicted by the model in
each of the 64 conditions. Furthermore, because trials in each
simulated experiment are independent of each other, the distribu-
tion pM�biases�FP� can be factorized as pM�bias1�FP� pM

�bias2�FP�. . .pM�bias64�FP� with biasi representing the average
bias in the ith condition. We then approximated each pM

�biasi�FP� using a nonparametric kernel density estimate generated
from the 25 collected samples of biasi. The log-likelihood of a
specific setting of the parameters FP given the observed data is
then calculated as �i�1

64 logpM�biasi � obs_bias_i�FP�, where
obs_bias_i denotes the observed average bias in the ith condition.
This procedure was repeated for each setting of the free parameters
FP over the grid. The parameter values that maximized the esti-
mated log-likelihood were chosen as the maximum likelihood
(ML) estimates of the parameters. For the DPMM and the
BFMMs, the parameter �obs was allowed to vary across set sizes,
whereas �c was fixed across set sizes. Due to the relatively high
dimension of the search space in this particular simulation (five

free parameters for the DPMM and the BFMMs and four free
parameters for the HBM), grid searches were conducted in a
greedy fashion. The uniform base distribution for � was defined
over the interval [0, 12]. The exact values of the endpoints of this
interval did not affect the simulation results for this particular
experiment, or for other experiments, as long as the interval was
large enough to include the minimum and maximum possible
values of the relevant feature in an experiment.

In the simulation of the experiment by Viswanathan et al.
(2010), the data were the total number of observed “old” (or “yes”)
responses in 1,800 trials each of the medium- and high-
homogeneity conditions. The likelihood in each case was modeled
as a binomial distribution with n � 1,800 (number of trials) and the
model’s predicted success probability p, which was a function of
the parameters of the model. The parameter values that maximized
the log-likelihood, log(Binomial(k � obs_med_k; n, pmed(FP))) �
log(Binomial(k � obs_high_k; n, phigh(FP)), where obs_med_k
and obs_high_k are the total number of observed “old” responses
in the medium and high homogeneity conditions, respectively, and
pmed(FP) and phigh(FP) are the model’s predicted success proba-
bilities in the two conditions), were chosen as the maximum
likelihood (ML) estimates of the parameters. The uniform base
distribution for � was defined over the interval [0, 11].

In the simulation of the experiments by Brady and Alvarez
(2011), the data were the observed mean biases in Experiment 1
and Experiment 2. As in the simulation of the Wilken and Ma
(2004) experiment, each model produces a different distribution
over the mean biases in the simulated Experiments 1 and 2,
pM(bias1|FP) and pM(bias2|FP), as a function of the free parame-
ters. Since these distributions do not have an analytic form, we
drew 25 samples from these distributions by simulating each
experiment 25 times and computing the predicted mean bias in
each case. We then approximated pM(bias1|FP) and pM(bias2|FP)
with a nonparametric kernel density estimate using the 25 col-
lected samples.

(Appendices continue)
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The parameter values that maximized the estimated log-likelihood,
log(pM(bias1 � obs_mean_bias1|FP)) � log(pM(bias2 � obs_mean_
bias1|FP)), where obs_mean_bias1 and obs_mean_bias2 denote the
observed mean biases in Experiment 1 and Experiment 2 of Brady
and Alvarez (2011) were chosen as the maximum likelihood (ML)
estimates of the parameters. For the multivariate DPMM and
BFMMs, the same model was applied to both experiments. As ex-
plained in the main text, we placed a vague inverse-Wishart prior on
� (the inverse scale parameter of the base distribution for �). Spe-
cifically, the inverse scale parameter of the inverse-Wishart prior on
� was 3000I, where I is the identity matrix, and its degrees-of-
freedom parameter was 2 to maximize the variability (or vagueness)
of the prior. The uniform base distribution for � was defined over the
interval [–50, 200] for both color and size dimensions.

In the application of the models to data from our own experi-
ments, for each subject, the data were trial-by-trial responses of the
subject. In the case of the DPMM and the BFMMs, for each
configuration ��i�i�1

N , the models predicted a joint distribution,

p���̂i�i�1
N ���i�i�1

N ,�c,obs�, over the estimates of the items as a func-
tion of the free parameters �c and �obs. This distribution was
computed by sampling using Equation 2. For each configuration,
50 samples were drawn from the joint distribution of the estimates.

The log-likelihood of parameters given the subject’s responses for
that particular configuration was then computed by evaluating
each response under a bivariate Gaussian approximation to the
joint distribution constructed from those 50 samples, taking its
logarithm and summing over all responses. This was repeated for
all stimulus configurations and the total log-likelihood was com-
puted by summing over all configurations. The parameter values
that maximized the estimated total log-likelihood were chosen as
the maximum likelihood (ML) estimates of the parameters. The
uniform base distribution for � was defined over the interval [–10,
10].

We used the Bayesian information criterion (BIC) to compare
the model fits (Schwarz, 1978). BIC scores were computed ac-
cording to

BIC � �2log L 	 k log n, (B1)

where L denotes the maximum likelihood of the model (i.e., the
likelihood value achieved when ML estimates of the parameters
are used), k is the number of parameters and n is the number of
data points. BIC scores reported in the article are relative to the
BIC score for the DPMM.

Appendix C

Details of the Bayesian Model of Same/Different Responses in Experiments 2 and 3

In the application of the Bayesian model to experimental data
from Experiment 2, the following priors were used: Each of �1 and
�2 were given Gaussian priors with means centered on the actual
feature values (i.e., horizontal locations) of the two items in the
target configurations and with precision 0.01. The correlation
coefficient of the underlying bivariate Gaussian distribution, �,
was given a uniform prior over the interval [–1, 1]. The standard
deviations along each of the two dimensions, �1 and �2, were
given uniform priors over the interval [0.1, 1.3]. The lower bound
on the probability of “same” responses, bl, was given a uniform
prior over [0, 0.5], and the upper bound on the probability of
“same” responses, bu, was given a uniform prior over [0.5, 1.0].

In the application of the Bayesian model to experimental data
from Experiment 3, the following priors were used: Each of �1 and
�2 were given Gaussian priors with means centered on the actual
feature values (i.e., orientations) of the two items in the target
configurations and with precision 0.01. The correlation coefficient
of the underlying bivariate Gaussian distribution, �, was given a
uniform prior over the interval [–1, 1]. The standard deviations

along each of the two dimensions, �1 and �2, were given uniform
priors over the interval [1.0, 18.0]. The lower bound on the
probability of “same” responses, bl, was given a uniform prior over
[0, 0.5], and the upper bound on the probability of “same” re-
sponses, bu, was given a uniform prior over [0.5, 1.0].

We implemented the model in Python using the PyMC package
(Patil, Huard, & Fonnesbeck, 2010). For each of the two experi-
ments, 11,000 samples were drawn from the posterior distributions
of the variables. The first 1,000 samples were discarded as burn-in,
and the remaining 10,000 samples were “thinned” down to every
10th sample to reduce dependencies between consecutive samples.
This reduced the number of samples to 1,000. The results reported
in this article are based on these 1,000 samples. Proper conver-
gence and mixing were monitored and confirmed both visually and
through a battery of diagnostics provided by the PyMC package.
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