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Abstract Recent evidence from neuroimaging and psycho-
physics suggests common neural and representational sub-
strates for visual perception and visual short-term memory
(VSTM). Visual perception is adapted to a rich set of statistical
regularities present in the natural visual environment.
Common neural and representational substrates for visual
perception and VSTM suggest that VSTM is adapted to these
same statistical regularities too. This article discusses how the
study of VSTM can be extended to stimuli that are ecologi-
cally more realistic than those commonly used in standard
VSTM experiments and what the implications of such an
extension could be for our current view of VSTM. We advo-
cate for the development of unified models of visual percep-
tion and VSTM—probabilistic and hierarchical in nature—
incorporating prior knowledge of natural scene statistics.
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Introduction

Research on visual short-term memory (VSTM) generally
uses artificial visual displays consisting of simple objects with
easily parameterizable features and with no statistical structure
within or between objects. These displays are used to address
questions such as the nature of capacity limits or the units of

storage in VSTM (Brady, Konkle, & Alvarez, 2011). This
choice of stimuli confers many advantages to the design of
experiments and to the interpretation of results obtained from
such experiments. Among the advantages of using artificial
and simple stimuli are the ease with which such stimuli can be
generated and manipulated, the fact that they make the for-
mulation and testing of hypotheses straightforward, their rel-
ative unfamiliarity for subjects, and, lastly, their “bare bones”
character, stripped of features that are irrelevant to the hypoth-
esis under question. The last two properties help to minimize
the effects of irrelevant prior knowledge or assumptions sub-
jects might bring to a VSTM task.

Despite these advantages, psychologists have also been
aware of the potential problems that are associated with the
use of artificial stimuli and tasks in experimental studies
(Brunswik, 1943, 1955; Neisser, 1976). The main concern
here is the danger that these stimuli and tasks might be too
artificial to give an accurate reflection of the problems faced
by an observer in the natural world. Given that many aspects
of perception and cognition can be profitably thought of as
rational solutions or adaptations to problems that observers
(and actors) encounter in their natural environments
(Anderson, 1990; Geisler, Perry, & Ringach, 2009), unnatural
stimuli and tasks might lead to misleading characterizations of
perceptual and cognitive processes.

In this article, our goal is to take a critical look at the use in
VSTM studies of impoverished, unnatural scenes lacking the
rich statistical structure displayed by stimuli that are more
representative of the natural environment. Although we ac-
knowledge that experiments using artificial displays with
simple statistical structure are often useful first steps in eluci-
dating fundamental perceptual and cognitive processes, we
argue that whether and how results obtained from such exper-
iments would generalize to stimuli and tasks that are more
representative of the natural environment should always be
considered carefully. If there are any doubts about the
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generalizability of the results, experimental stimuli and pro-
cedures will need to be refined accordingly. In the following
sections, we discuss why we think the question of ecological
validity in VSTM research should be taken more seriously and
how the study of VSTM can be extended to ecologically more
realistic stimuli, as well as possible implications of such an
extension.

Why is it important to take the question of ecological
validity in VSTM research seriously?

As was mentioned above, although the use of unnatural stim-
uli and tasks might afford greater experimental control, psy-
chologists have been aware of the problems with generalizing
the results of such studies (Brunswik, 1943, 1955; Neisser,
1976). This generalization problem may be more acute in
some domains than in others, but it is one that every cognitive
psychologist should take seriously if he or she does not want
to study a problem that exists in a laboratory setting but that
does not exist or is either ill-defined ormuch less important for
real observers or actors living in natural environments. Below,
we discuss several specific examples from the VSTM litera-
ture to illustrate the need to take the question of ecological
validity seriously.

Nature of capacity limits

One of the most popular questions in the VSTM literature
addresses the nature of capacity limits in VSTM. For example,
from a single fixation, how much information can we encode
and thenmaintain in VSTM across a brief interval, and what is
the nature of this capacity limit? The notions of information
and capacity are derived from information theory and, to be
meaningful, require well-defined stimulus spaces. This, to-
gether with reasons mentioned in the Introduction, may ex-
plain why studies on the nature of capacity limitations in
VSTM often use stimulus displays containing simple items
with simple features. One consequence of this choice, how-
ever, is that theories or models attempting to explain the nature
of VSTM capacity limitations are specifically tailored to these
types of stimulus displays. For example, these theories put
forward rivaling explanations of how a fixed amount of re-
sources in VSTM gets distributed over some simple “items” in
a display. Some theories (so-called high-threshold models)
have claimed that only a few items can be selected from the
display and encoded with near-perfect resolution, while the
remaining items are not encoded at all (Luck & Vogel, 1997;
Rouder et al., 2008). Other theories posit either a discrete
(Zhang & Luck, 2008) or a continuous (Bays & Husain,
2008) resource that can be distributed among the items either
evenly (Wilken & Ma, 2004) or unevenly (Van den Berg,
Shin, Chou, George, & Ma, 2012).

However, even leaving aside the difficulties surrounding
the issue of what constitutes an “item” in more natural scenes
(what constitutes an item in the rightmost image in Fig. 1a?
Are the arms or heads of the pedestrians separate “items,” or
are only whole bodies items? How many “items” are there on
the traffic lights?), it seems evident that these accounts can
give, at best, an incomplete picture of the nature of capacity
limitations in VSTM for the simple reason that we do not just
see and remember “items” in the natural world.

Figure 1 shows examples of different kinds of visual infor-
mation present in natural environments that can be encoded
and maintained in VSTM. These examples suggest that we
can remember visual information about textures (Fig. 1b),
material properties of objects (Fig. 1c), complex real-world
scenes that are presumably encoded at multiple levels of
abstraction (Fig. 1a), and even actions (Giese & Poggio,
2003) such as walking, running, etc.1 (Fig. 1d).

Consider, for instance, the leftmost image in Fig. 1b. If we
are briefly shown the texture in this figure, we will undoubt-
edly remember something about it. Subjectively, it seems
sensible to suppose that we will not be able to remember every
detail of the texture and that our memory will be more
impoverished than our perception of the same texture.2

Nonetheless, we will be able to remember something about
it. Why is our memory more impoverished than our percep-
tion? Why can we not remember every visual detail in this
texture, and what exactly can we remember about it?
Similarly, for real-world scenes such as the one shown in the
rightmost image in Fig. 1a, what exactly can we remember
about this image from a brief presentation? Existing theories
on the nature of capacity limitations in VSTM have little to
say about these issues, because they are specifically tailored to
the types of artificial stimuli typically used in VSTM studies.

The question of the distribution of resources among items
in simple displays does not arise for stimuli such as those in
Fig. 1b, c, because they do not contain any items, and is at best
poorly defined for stimuli shown in Fig. 1a, d, because these
stimuli are encoded not merely in terms of separate, individual
items, but in a more complex, hierarchical way. Even the
possible “items” or objects in these figures are not encoded
as monoliths, but as structured objects composed of many
parts put together in specific configurations. For example,
the pedestrians in the rightmost image in Fig. 1a can be
decomposed into heads, arms, torsos, and so forth. Their

1 It may be claimed that the last example does not constitute visual
information. However, we can perceive and remember rich visual details
about, for example, somebody’s manner of walking that cannot be not
easily classified as anything other than “visual.” It is doubtful whether
there is a justifiable sense of “visual” according to which the shape of an
object counts as visual information but the manner of movement does not.
2 See, for example, Huang and Sekuler (2010) for a direct comparison of
the precision of visual perception with the precision of VSTM in a simple
estimation task.
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heads can be further decomposed into various facial features,
and so on. In the section titled How to Extend Models of
VSTM to Natural Stimuli, we will discuss how the encoding
of such richly structured scenes in VSTM can be modeled
with hierarchical probabilistic models.

These examples demonstrate that one of the most popular
questions currently debated in the VSTM literature, the nature
of capacity limits, and the answers given to it are specific to

the impoverished, artificial stimuli used in most VSTM stud-
ies and they are either not quite well-defined or simply do not
arise within the context of ecologically more valid stimuli.

Units of storage

Another example is the question of the units of storage in
VSTM—that is, the question of whether objects are represented

Fig. 1 Example natural images highlighting a variety of different types
of visual information that we can perceive and remember in the real
world. a Complex real-world scenes. The first two images are from the
SUN database (Xiao, Hays, Ehinger, Oliva, & Torralba, 2010); the
rightmost image is from http://www.flickr.com/photos/13774569@N07/

5923460837/. b Textures. Images are from the UIUC texture database
(Lazebnik, Schmid, & Ponce, 2005). c Material properties such as
glossiness, rigidity, roughness, being made of leather, and so forth.
Images are from the Flickr Material Database (Sharan, Rosenholtz, &
Adelson, 2009). d Actions. Images are from the SUN database
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as bound units in VSTM or as independent features (Bays, Wu,
& Husain, 2011; Fougnie & Alvarez, 2011; Luck & Vogel,
1997). Again, this question is not meaningful for stimuli that do
not involve objects. A more meaningful question for such
stimuli is what exactly people do represent about them in
VSTM. For stimuli that involve objects, the answer to the
question of whether features of an object are represented inde-
pendently is likely to depend on factors such as familiarity with
the object, the particular object category or features in question,
and so forth. For example, encoding of different features might
be expected to be much less independent for highly familiar
objects than for less familiar objects. Similarly, for object
categories with a higher degree of consistency between their
features, the encoding of features might be expected to be less
independent: Think of the encoding of the color and the shape
of a banana versus the encoding of the color and the shape of a
pen. To the best of our knowledge, these questions are simply
not addressed in the current literature on VSTM because of a
lack of interest in extending the research questions formulated
within the context of simple, artificial stimuli (in this case, the
question of whether a simple object is represented as a bound
unit in VSTM) to ecologically more realistic conditions.

Effects of eye movements, eccentricity, viewing conditions

In many VSTM studies, stimuli are presented solely in the
periphery, and eye movements are prevented either by moni-
toring them or by adopting short presentation times (shorter
than about 150 ms). In addition, in most VSTM studies,
subjects are not given a task other than to remember the
stimuli. In natural vision, in contrast, we sample the world
by making frequent eye movements under tight control of task
demands (Hayhoe, 2000; Land, Mennie, & Rusted, 1999).
Importantly, fixated objects and targets of upcoming saccades
are encoded better than unfixated objects (Bays & Husain,
2008; Hollingworth & Henderson, 2002). Indeed, it has been
argued that visual information from successively fixated ob-
jects can be integrated into a detailed visual representation of
the scene (Hollingworth, 2004; Hollingworth & Henderson,
2002). In addition, perceptual grouping mechanisms appear to
be more effective near fixation than in the visual periphery
(Velisavljevic & Elder, 2008). These results suggest that,
relative to natural (unconstrained) viewing conditions, the
prevention of eye movements in experiments might engage
different encoding mechanisms and lead to qualitatively dif-
ferent patterns of results. Therefore, researchers using
constrained viewing conditions in VSTM experiments should
carefully consider whether their results would generalize to
more natural viewing conditions.

Another obvious difference between viewing conditions in
natural vision and in typical experimental settings is the full-
field, 3-D visual stimulation under natural conditions versus
limited-field, 2-D projections used in most experiments. It

remains to be seenwhat the consequences of these differences,
if any, might be for VSTM studies.

Other issues

In our daily lives, most of our visual perception involves
objects and environments that we are extremely familiar with.
How does this familiarity affect the characteristics of visual
short-term memories for such objects and environments?
Could the results of experiments using unfamiliar stimuli be
reliably generalized to extremely familiar stimuli? If not, how
should they be modified (see, e.g., Hemmer & Steyvers,
2009)? For example, it has been suggested that object features
are encoded approximately independently in VSTM (Bays,
Wu, & Husain, 2011; Fougnie & Alvarez, 2011). Does this
result generalize to objects that we are extremely familiar
with? Similarly, do the set size effects (i.e., decline in memory
precision with the number of objects presented) typically
observed in VSTM studies generalize to stimuli we are ex-
tremely familiar with? If not, how should these results be
modified? Context effects like the word superiority effect
(Reicher, 1969) demonstrating that, in some cases, it may be
easier to recognize objects or features within the context of
other objects or features provide a reason for suspecting that
the decline in memory precision with the number of objects
may not easily generalize to stimuli we are extremely familiar
with (see Bar, 2004, for a review of context effects in object
recognition).

Another example where questions about the generalizabil-
ity of experimental results to more natural conditions might
arise is the recent finding that encoding precision is variable
across items and across trials in typical VSTM tasks (Fougnie,
Suchow, & Alvarez, 2012; Van den Berg et al., 2012). It
remains unclear whether this result would generalize to the
encoding of objects in more realistic scenes. In addition, these
studies used peripheral presentation of stimuli, and thus, var-
iability here refers to variability in encoding isoeccentric items
in the visual periphery. However, under more natural viewing
conditions, it is possible that any variability in the periphery
would be small, as compared with the differences in encoding
precision at different eccentricities (e.g., encoding precision in
the fovea vs. the periphery), thus making it a less significant
phenomenon.

Finally, some studies have reported so-called misbinding
errors in VSTM recall tasks (Bays, Catalao, & Husain, 2009;
Emrich & Ferber, 2012) where subjects, instead of reporting
the feature value of the target item, mistakenly report the
feature value of a distractor. It is not clear whether these types
of errors would happen with significant frequency in more
natural conditions. Reason for suspicion arises because the
frequency of these errors is modified even by seemingly
insignificant changes, such as whether subjects make a re-
sponse by scrolling or pointing (Van den Berg et al., 2012).
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A possible objection

It may be objected that addressing the questions raised in the
present section does not necessarily require using natural
stimuli in VSTM studies but can be addressed equally well,
and perhaps even better, with artificial but controlled stimuli.
For example, the question about the effects of familiarity can
be addressed by familiarizing subjects with a set of artificial
stimuli by extensive training prior to the actual experimental
sessions. There are several possible responses to this objec-
tion. First, although this approach may be feasible for some of
the questions raised here, a potential problem with this ap-
proach is that even after extensive training, artificial stimuli
might still be less privileged for subjects than natural stimuli.
For example, Schwarzkopf and Kourtzi (2008) showed that
subjects were much better at detecting contours that contained
an ecologically valid cue (collinearity of oriented line seg-
ments) than those with an ecologically invalid cue (line seg-
ments orthogonal to the contour path) even after extensive
training with the ecologically invalid cue. Second, the use of
natural stimuli is necessary for addressing some of the ques-
tions raised above. For example, addressing the question
concerning what people can encode about natural textures in
VSTM requires knowledge of the statistical structure of natu-
ral textures (Portilla & Simoncelli, 2000) and experimentally
determining what types of statistics are encoded by subjects
using texture stimuli that look reasonably, if not exactly, like
natural textures. Lastly, it is important to note that many of the
questions raised here would not even be raisedwere it not for a
consideration of whether or not experimental results obtained
under ecologically unrealistic conditions generalize to ecolog-
ically realistic conditions.

How to extend models of VSTM to natural stimuli

In this section, we discuss how models of VSTM can be
extended to ecologically realistic stimuli and some implica-
tions of such an extension.We argue that it is possible to move
beyond simple, artificial stimuli with unnatural stimulus sta-
tistics used in most VSTM studies and do at least partial
justice to the richness and complexity of visual stimuli that
are encoded in VSTM (see Fig. 1).

The plan of the present section is as follows. We first
review evidence indicating that visual perception and VSTM
share common neural and representational substrates presum-
ably residing in visual cortical areas (Continuity Between
Visual Perception and Visual Memory). We then review
experimental and theoretical findings suggesting that the
visual system is adapted to the statistical regularities of
visual stimuli in the environment and that knowledge of these
regularities aids both visual perception and visual memory
(Benefits of Learning a Good Model of the Environment). To

extend models of VSTM to natural stimuli, we then take our
cue from the evidence for common representational substrates
for visual perception and VSTM and suggest that knowledge
of statistical regularities in the natural environment can be
captured with probabilistic generative models. Moreover, we
argue that both visual perception and VSTM can be regarded
as probabilistic inference problems on the same generative
model (Probabilistic Generative Models for Capturing
Knowledge of Statistical Regularities in Natural Stimuli).
Finally, we discuss some consequences of possible mis-
matches between the actual stimulus statistics used in an
experiment and an observer’s internal model of the same
stimuli (Model Mismatch, or What Goes Wrong When the
Observer’s Internal Model Does Not Match the Actual
Stimulus Distribution?).

Continuity between visual perception and visual memory

Recent results from neuroimaging and psychophysics provide
converging evidence for a continuity between visual percep-
tion and VSTM. Several studies have demonstrated that the
contents of VSTM during maintenance can be reliably
decoded from visual cortical areas that are also involved in
the perceptual encoding of the same stimuli (Christophel,
Hebart, & Haynes, 2012; Emrich, Riggall, LaRocque, &
Postle, 2013; Harrison & Tong, 2009; Riggall & Postle,
2012; Serences, Ester, Vogel, & Awh, 2009). Kang, Hong,
Blake, and Woodman (2011) showed that a motion direction
maintained in VSTM can interact with a visually perceived
motion direction to cause a motion repulsion effect that occurs
in the same way as when two visually perceived motion
directions interact. Saad and Silvanto (2013) showed that
maintenance in VSTM can cause adaptation effects similar
to the effects caused by prolonged visual stimulation in the tilt
aftereffect. Montaser-Kouhsari and Carrasco (2009) showed
that discrimination performances in perceptual and VSTM
tasks are affected in very similar ways by heterogeneities at
isoeccentric locations in the visual field. These studies suggest
that VSTM representations and visual perceptual representa-
tions share common substrates residing in visual cortical
areas.

The idea that perception and short-term memory in general
(and visual perception and VSTM in particular) have common
neural and representational substrates has a long history in
memory research. For example, a prominent theory of work-
ing memory holds that short-term maintenance of information
consists of temporary reactivation of representations in long-
term memory thought to be implemented in posterior cortical
areas that are also involved in the initial perceptual encoding
(Cowan, 1995; Fuster, 1997; Ruchkin, Grafman, Cameron,
& Berndt, 2003). Although not uncontroversial (Baddeley,
2003), there is considerable evidence for this theory, not
only for the case of short-term maintenance of visual
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information, but also for short-term maintenance of infor-
mation in other modalities as well (see Postle, 2006, for a
review).

Consistent with this evidence for a common neural and
representational substrate for visual perception and VSTM,
we argue below that both visual perception and VSTM can be
formulated as probabilistic inference problems on the same
richly structured probabilistic generative models capturing the
statistical structure of natural stimuli, with the only difference
between the two being that inference in VSTM is based on
noisier sensory information due to disruption of the visual
signals from the environment. This idea is explained in more
detail below (see the section titled Probabilistic Generative
Models for Capturing Knowledge of Statistical Regularities in
Natural Stimuli).

Benefits of learning a good model of the environment

A crucial observation about the visual system is that, through
experience-dependent visual development and learning, peo-
ple acquire sophisticated internal models of the types of visual
stimuli they encounter in their natural visual environment. The
natural visual environment is very far from random. It exhibits
a rich set of statistical regularities ranging from low-level
regularities between luminance values at nearby locations, or
between orientations or spatial frequencies at different loca-
tions, to mid-level regularities between surface properties or
mid-level features of natural objects, to high-level regularities
between objects in different natural scene categories. The
visual system adapts to these statistical regularities, which
makes it more efficient at performing perceptual tasks in the
natural environment.

Learning a good internal model of the statistical regular-
ities in the natural environment has several benefits. First,
in any task, optimal performance can be achieved only if the
observer’s internal model matches the actual statistical
structure of the stimuli used in the task. For natural tasks
involving natural stimuli, this corresponds to the environ-
mental statistics of the relevant stimuli. In many psycho-
physical tasks, people, in fact, do perform better when
visual stimuli are consistent with natural scene statistics
than when they are not, suggesting that the visual system
is adapted to natural scene statistics (Girshick, Landy, &
Simoncelli, 2011; Knill, Field, & Kersten, 1990; Parragha,
Troscianko, & Tolhurst, 2000; Stocker & Simoncelli, 2006;
Yuille, Fang, Schrater, & Kersten, 2004). In general, the
closer the observer’s internal model is to natural stimulus
statistics, the better the observer’s performance will be in
natural tasks involving those stimuli. Deviations in the
observer’s internal model from the natural stimulus statis-
tics (referred to as “model mismatch” in Orhan & Jacobs,
2014) lead to suboptimal performance in natural tasks.

Second, related to the first point, learning the statistical
regularities in the natural environment enables the visual
system to tolerate significant amounts of noise in visual
input. This might explain, for example, the reliable extrac-
tion of basic-level category information and substantial
amounts of visual detail from very brief presentations of
natural images (Fei-Fei, Iyer, Koch, & Perona, 2007; Serre,
Oliva, & Poggio, 2007; Sharan, Rosenholtz, & Adelson,
2009), even without the benefit of attention (Li, VanRullen,
Koch, & Perona, 2002).

Third, learning the statistical regularities of the natural
environment is necessary for efficient encoding of information
under resource constraints—that is, for encoding as much
information as possible about the environment, subject to
inevitable biological constraints on the representational sys-
tems of the organism. This idea underlies the influential “ef-
ficient coding hypothesis” according to which the goal of
early visual processing is to maximize information transmis-
sion by reducing the redundancy inherent in natural visual
signals due to the rich variety of statistical regularities they
exhibit (Barlow, 1961; Geisler, 2008; Simoncelli &
Olshausen, 2001).

The idea of efficient coding of information is closely relat-
ed to the well-known notion of “chunking” in the short-term
memory literature (Miller, 1956). Chunking can be considered
as a form of redundancy reduction or compression where one
forms efficient representations of more frequently occurring,
or more familiar, stimuli. This kind of efficient allocation of
available resources might lead to an apparent increase in
memory performance or in the number of objects represented,
without any actual increase in the amount of resources. Two
recent studies provided experimental demonstrations of this
idea in VSTM. Brady, Konkle, and Alvarez (2009) showed
that subjects can quickly learn statistical regularities between
color pairs to encode more colors in simple visual displays
consisting of such color pairs. Sims, Jacobs, and Knill (2012)
showed that subjects can adapt to a decrease in the variance of
the stimulus distribution to increase the precision of their
memories. Both studies found that these effects were attribut-
able not to an increase in the available resources, but to the
efficient allocation of resources due to adaptation to the stim-
ulus statistics. It is important to note that both studies used
artificial stimuli with simple forms of statistical regularities,
suggesting that these efficient coding effects are likely to play
a more significant role in natural stimuli displaying a much
richer set of statistical regularities.

Probabilistic generative models for capturing knowledge
of statistical regularities in natural stimuli

How can knowledge of statistical regularities in the environ-
ment be incorporated into models of VSTM? Here, we argue
that knowledge of these statistical regularities can be captured
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with richly structured probabilistic generative models and that
visual perception and VSTM can both be regarded as proba-
bilistic inference problems on the same generative model,
consistent with the evidence for a continuity between visual
perception and VSTM (as reviewed in the section titled
Continuity Between Visual Perception and Visual Memory).

We first give a brief overview of inference in probabilistic
generative models. Figure 2 schematically illustrates a hierar-
chical probabilistic generative model that can be used to
represent the statistical structure of natural scenes and to
capture observers’ knowledge of this statistical structure (for
more concrete examples of hierarchical probabilistic models
applied to capture the statistical structure of natural scenes, see
Sudderth, 2006). In this model, natural scenes are modeled in
terms of hierarchically organized units or variables. Variables
at each level are modeled as configurations of variables at the
next level below. Thus, scenes are modeled as configurations
of different objects, objects as configurations of parts, and so
forth, down to the lowest level features. It is important to
emphasize that all variables in the model are probabilistic
variables, and hence, all are described by probability distribu-
tions. This is a crucial property that distinguishes these models
from earlier hierarchical models of the structure of natural
objects and scenes (Biederman, 1987; Marr, 1982;
McClelland & Rumelhart, 1981). The statistical structure of
natural scenes can then be captured by a complex joint prob-
ability distribution p(Scenes, Objects, . . . , Local features) that
describes all the statistical regularities in natural scenes from
the lowest to the highest level regularities. For instance, this
distribution characterizes what kinds of objects tend to occur
in which configurations in natural scenes of a given type, as
well as the appearance of those objects. The observer acquires
this “prior” distribution, p(Scenes, Objects, . . . , Local
features), through extensive prior experience with the
environment.

What happens when the observer is presented with a nat-
ural scene? It is assumed that when a scene is presented to the
observer, the observer does not have direct access to any of the
variables represented in the model but, rather, only to noisy
measurements or observations of the lowest level variables in
the scene. In the schematic model shown in Fig. 2, these
correspond to the variables representing the local features.
The observer’s noise-corrupted measurements or observations
of these features are represented by the shaded nodes in Fig. 2.
These are the only directly observable variables in the model.
All the other variables are latent or unobservable and have to
be inferred probabilistically based on the directly observable
variables. Intuitively, this means that when presented with a
natural scene, the observer does not directly observe the
objects in the scene, their locations, parts composing the
objects, and so forth but, rather, indirectly (and probabilisti-
cally) infers these from noisy observations of lower level
features. This is achieved through probabilistic inference by

combining the prior distribution p(Scenes, Objects, . . . , Local
features) with the noisy measurements of the lowest level
features to compute posterior distributions over all the latent
variables in the model. The posterior distributions can then be
used to make point estimates of the latent variables.

The following properties apply generally to all hierarchical
probabilistic generative models (hence, they do not depend on
the particulars of the model shown in Fig. 2):

Property 1: Measurement noise degrades the quality of all
posterior distributions in the model. Increasing
the measurement noise leads to posterior distri-
butions with lower precision.

Property 2: Measurement noise affects the representations
(i.e., posterior distributions) of lower level var-
iables more than those of higher level variables.

Property 3: Representations of higher probability regions
under the prior are enhanced relative to the
representation of low-probability regions; that
is, stimuli that are more likely according to the
prior lead to posteriors with higher precision.

We suggest that both visual perception and encoding in
VSTM can be understood as probabilistic inference problems,
similar to the inference problem demonstrated in the schemat-
ic model in Fig. 2. In both cases, the visual system probabi-
listically infers the values of certain latent variables given
noisy measurements or observations of some basic visual
features. In different applications, the latent variables of inter-
est might differ. The observable variables might also differ. In

Scenes

Objects

Parts

Surfaces

Local
features

Observed
features

Fig. 2 A schematic illustration of a hierarchical probabilistic generative
model capturing the statistical structure of natural scenes. The shaded
nodes at the bottom represent the only observable variables in the model.
The other nodes all represent latent or unobservable variables
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some cases, as in Fig. 2, the observable variables might corre-
spond to some low-level image features and their locations,
whereas, in other cases, they might correspond to higher level,
more abstract visual features. More realism can be introduced
into the model by taking into account the fact that perceptual
resolution in the visual periphery—or in other words, the
precision of measurements obtained from the periphery—is
lower than in the fovea.

Crucially, we propose that differences between visual per-
ception and VSTM can be captured entirely by the quality (or
precision) of the observable variables. This is the main claim
of this section. In general, the quality of the observable vari-
ables might depend on the presentation duration of the scene
(with longer presentation durations leading to more precise
measurements; Bays, Gorgoraptis, Wee, Marshall, & Husain,
2011), as well as the length of the potential delay interval
during which visual information has to be maintained in
memory (precision of measurements degrading with the
length of the delay interval).3 For visual perception, the scene
remains visible throughout (and there is no delay interval);
hence, the measurements of the observable variables are
higher in quality or less noisy. For VSTM, the scene is
removed for a certain delay interval after a brief presentation,
so the measurements of the observable variables are expected
to be noisier. This greater uncertainty in the values of the
observable variables “percolates” through the model (by
Property 1 above) and can have a large effect on the posterior
distributions over the latent variables depending on the
strength of the prior (for example, how strong the statistical
regularities in natural scenes of this type are), as well as on the
noise level (which, as mentioned, depends on the presentation
time, the length of the delay interval, and possibly other task
variables). Other than this difference in the precision of the
measurements of observable variables, however, the represen-
tation of prior knowledge about the scene and the probabilistic
inference process involved in determining the values of the
latent variables in the scene are identical in visual perception
and VSTM. That is, there are no qualitative differences be-
tween visual perception and VSTM, just quantitative differ-
ences (that may still have a large impact on behavior depend-
ing on the strength of the prior, as mentioned above). This
account is consistent with the results reviewed above suggest-
ing common representational (and neural) substrates for visual
perception and VSTM.

It seems clear that if the study of VSTM is to be extended to
a richer set of stimuli that are more representative of the
natural visual environment (Fig. 1), models like the one
shown in Fig. 2 that can capture the rich statistical regularities
in natural environments, and people’s prior knowledge of
those regularities, will be essential (see Brady et al., 2011,
for a similar point).

Some experimental details

How can hierarchical probabilistic models such as the one
shown in Fig. 2 be used to model and interpret data from recall
or recognition experiments using natural scenes? In experi-
ments using natural scenes, memory for lower level variables,
such as the color of an object, can be probed directly as in
standard VSTM recall studies. Memory for higher level var-
iables, such as objects, can be probed using either a change
detection or a two-alternative forced choice (2AFC) task. In
the former case, for example, a randomly chosen object might
disappear on half of the trials, and subjects might be asked to
indicate whether any change has taken place in the scene. In
this case, the probabilistic model would need to be duplicated,
one copy for the target scene, the other one for the probe
scene, with the two copies connected by a binary variable
change indicating whether a change has taken place or not (as
in Ma & Huang, 2009). The probabilistic inference of latent
variables including the variable of interest, change, would
proceed exactly as before. In the latter case (a 2AFC task),
after the target scene is presented, a certain location in the
scene might be probed, and subjects might be asked to indi-
cate which one of the two alternative objects was present at
that location in the target scene. This can be modeled by
evaluating the probabilities of the two alternative objects
under the posterior distributions over all the variables corre-
sponding to the object at the target location in the original
scene. The alternative with the higher posterior probability can
then be chosen as the model’s response.

Implications for the debate on the nature of capacity limits

Considered from a perspective that takes into account the
richness and complexity of stimuli that can be encoded in
VSTM (Fig. 1), current discrete or continuous resource
models that dominate the discussion in the VSTM literature
prove to be too simplistic to capture the nature of capacity
limitations in VSTM. Richly structured probabilistic genera-
tive models, such as the one shown in Fig. 2, that can capture
subjects’ knowledge of statistical regularities in natural stimuli
are better suited to modeling what people can and do encode
about such stimuli in VSTM. In the model shown in Fig. 2,
there are two distinct limitations on the model’s performance.
The first one is the accuracy of the model’s prior. This factor is
generally ignored in the models of capacity limitations in

3 See Magnussen and Greenlee (1999) for evidence against degradation
of memory precision with delay interval. However, these researchers only
consider the encoding of single items in VSTM. Results may be different
for multiple items. For example, Zhang and Luck (2009) presented
evidence for deterioration of memory performance with delay interval
in a recall task with three items. Zhang and Luck (2009) interpreted this
result as an increase in the probability of failure to encode items, rather
than as a gradual decrease in memory precision.
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VSTM. As was argued above, the closer the prior is to the
actual environmental statistics of the relevant variables, the
better the model’s performance will be. Crucially, differences
in the priors of two models will be reflected in the models’
performances even when the noise in the observable variables
is the same in both models. The second factor limiting the
performance of a model is the quality of the observable
variables, with less noise in the observable variables yielding
better performance in general.

It may be possible to retain some aspects of both discrete
and continuous resource models of capacity limitations in
complex probabilistic generative models such as the one
shown in Fig. 2. For example, the model in Fig. 2, on the
one hand, posits variables corresponding to objects, and, as
was noted in Property 2 above, these higher level variables in
general tend to be less affected by measurement noise in the
observable variables, having a more all-or-none character than
the lower level variables, such as the features making up the
objects. This property resembles the encoding of objects in the
item-limit models of VSTM (e.g., Luck & Vogel, 1997). On
the other hand, the representation of all variables in the model,
including those of objects or object categories, is probabilistic
(in terms of a posterior distribution over the relevant variable),
and the quality of these probabilistic representations, especial-
ly that of lower level features, is degraded with measurement
noise in the observable variables, resembling the encoding of
features in continuous resource models.

Other types of visual information

So far, we have only discussed, in broad outlines, how the
encoding of natural scenes in VSTM can be modeled with
hierarchical probabilistic generative models. How about other
types of visual information—for example, visual textures
(Fig. 1b)?

Probabilistic generative models provide a rich, versatile,
and quantitative format for representing people’s prior infor-
mation or expectations in a wide range of different perceptual
domains (Kersten & Yuille, 2003; Knill & Richards, 1996). In
different cases, this prior information can be regarded either as
the product of lifelong adaptation to statistical properties of
the natural environment or as shorter-term adaptations ac-
quired by subjects during the course of an experiment
(Brady et al., 2009; Sims et al., 2012). For different types of
visual information, people’s prior expectations can be cap-
tured by different probabilistic generative models. For exam-
ple, a generative model that can be used for modeling people’s
prior information about visual textures (Balas, 2006; Balas,
Nakano, & Rosenholtz, 2009; Portilla & Simoncelli, 2000)
will be different from a generative model that may be used to
capture their prior information about the shapes of objects
belonging to different object categories (Sudderth, 2006) or
their prior information about the structure of different natural

scene categories (Sudderth, Torralba, Freeman, & Willsky,
2008). Crucially, using probabilistic generative models—
commonly employed for representing prior information or
expectations in visual perception (Kersten & Yuille, 2003;
Knill & Richards, 1996)—to capture the representational
structure of VSTM would unify the representational formats
used in visual perception and VSTM (see the section titled
Continuity Between Visual Perception and Visual Memory).

Recent evidence suggests that, even in experiments using
simple, artificial items with unnatural stimulus statistics (e.g.,
oriented Gabors with independently drawn orientations), sub-
jects’ internal models display a rich, hierarchical structure
(Brady & Tenenbaum, 2013; Orhan & Jacobs, 2013) that does
not match the simple, unstructured models used by the exper-
imenter to generate the stimuli. We recently proposed a prob-
abilistic clustering model that attempts to characterize aspects
of the internal model that subjects use to encode simple
displays typically used in VSTM experiments (Orhan &
Jacobs, 2013). This model implements the assumption that
stimuli are generated in clusters, where the number of clusters
and the assignment of stimuli to clusters are uncertain and
have to be inferred probabilistically from the display, even if
the actual generative process used by the experimenter does
not involve any clusters. The model predicts biases in memory
estimates of stimuli based on their VSTM representations, as
has been observed previously in a number of VSTM studies
(Brady & Alvarez, 2011; Huang & Sekuler, 2010). Due to the
coupling of stimuli through the probabilistic clustering as-
sumption, the model also predicts dependencies between
memory estimates of different stimuli that should decrease
with the difference between their feature values. We experi-
mentally confirmed this novel prediction of the model using
both continuous recall (delayed estimation) and change-
detection tasks with small set sizes.

Similarly, Brady and Tenenbaum (2013) recently
showed that hierarchical models incorporating the encoding
of summary statistics of stimuli in a given display, as well
as the perceptual grouping of stimuli, are necessary to
account for display-by-display performance in change-
detection tasks. Brady and Tenenbaum demonstrated that
this is true even in experiments where stimulus values are
drawn independently on each trial and, hence, contain no
statistical structure.

Model mismatch, or what goes wrong when the observer’s
internal model does not match the actual stimulus
distribution?

What happens when an observer’s internal model does not
match the actual stimulus statistics used in an experiment?
Such mismatches can arise because, as we argued above
(Benefits of Learning a Good Model of the Environment),
the visual system is adapted to the statistical structure of
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the natural environment. However, most VSTM studies use
stimuli that are unstructured, such as stimuli in which objects’
feature values are drawn independently from a uniform distri-
bution. In general, if an observer’s internal model is adapted to
represent stimuli with a statistical structure that differs from
the actual statistical structure of the stimuli used in an exper-
iment and the observer’s internal model has a limited ability to
adapt to the statistical structure of the experimental stimuli
during the course of an experiment, then this creates a “model
mismatch.” Importantly, model mismatch negatively impacts
the observer’s performance in a VSTM task.

A consideration of model mismatch might affect the interpre-
tation of results obtained from VSTM studies (Orhan & Jacobs,
2014). For example, the decline in precision with set size found
in standard VSTM studies is generally interpreted as a signature
of VSTM resource or capacity limits. However, in a computa-
tional study, we have recently demonstrated that the same result
can be accounted for as a consequence of model mismatch
without assuming any resource limitations (Orhan & Jacobs,
2014). The basic idea is illustrated in Table 1 with a toy example.

In this example, we imagine a world consisting of objects
that can take one of two values: si = 0 or si = 1 (the example
can be easily generalized to objects that can take a continuum
of values). Suppose, first, that only one object, s1, is presented
to the observer. We assume that s1 = 0 and s1 = 1 are equally
likely in the environment, and the observer allocates k units of
resources for encoding either value of s1, where the resources
can be thought of as the number of spikes, for instance (Ma &
Huang, 2009). The expected amount of resources allocated for
representing a single item is thus equal to k.

Now imagine that a second object, s2, is presented to the
observer alongside the first object, s1. Suppose that there are
correlations in the observer’s natural environment such that
stimulus configurations where both objects have the same
value (s1 = 0, s2 = 0 or s1 = 1, s2 = 1) are more common than
stimulus configurations where the objects have different
values (s1 = 0, s2 = 1 or s1 = 1, s2 = 0). In particular, suppose
that each of the more frequent stimulus configurations
occurs with probability .4, and that each of the less fre-
quent configurations occurs with probability .1. Critically,
we assume that the observer’s visual system adapts to this
statistical regularity in the environment by allocating more
resources for representing the more frequent configurations
and fewer resources for representing the less frequent con-
figurations (similar to the observation made in Property 3
above; see also Ganguli & Simoncelli, 2010). For con-
creteness, we suppose the observer allocates 2.4k units
of resources for representing each of the more frequent
configurations and 0.4k units of resources for representing
the less frequent ones. The expected total amount of
resources allocated for representing a two-object display
is then (0.4 × 2.4k) + (0.4 × 2.4k) + (0.1 × 0.4k) + (0.1 × 0.4k) =
2k—that is, twice the amount of resources expended for

representing a single object. Therefore, the resources increase
linearly with set size. In other words, the amount of resources
per item stays the same.

But now consider what happens when we present the
observer with stimuli drawn from a distribution that his or
her visual system is not adapted to. Assume, for example, that
all four configurations are presented to the observer with equal
probability. The expected total amount of resources allocated
for representing a two-object display is now (0.25 × 2.4k) +
(0.25 × 2.4k) + (0.25 × 0.4k) + (0.25 × 0.4k) = 1.4k, and the
expected resources per item is therefore 0.7k. This represents a
decline in the amount of resources per item from N = 1 (i.e., a
set size effect).

This example has important implications for our under-
standing of VSTM. Recall that set-size effects have conven-
tionally been interpreted as indicating that VSTM has a fixed
amount of memory resources.We claim, however, that there is

Table 1 Possible configurations for one (N = 1) and two (N = 2) objects
(left), resources allocated to each configuration and probabilities of
configurations (right)

N = 1

s1 = 0 k

p0 = 0.5

s1 = 1 k

p1 = 0.5

(Expected) total resources: k

(Expected) resources per item: k

N = 2

s1 = 0, s2 = 0 2.4k

p00 = 0.4

s1 = 1, s2 = 1 2.4k

p11 = 0.4

s1 = 0, s2 = 1 0.4k

p01 = 0.1

s1 = 1, s2 = 0 0.4k

p10 = 0.1

(Exp.) total resources: 2k

(Exp.) resources per item: k

N = 2 (mismatched stimuli)

s1 = 0, s2 = 0 2.4k

p00 = 0.25

s1 = 1, s2 = 1 2.4k

p11 = 0.25

s1 = 0, s2 = 1 0.4k

p01 = 0.25

s1 = 1, s2 = 0 0.4k

p10 = 0.25

(Exp.) total resources: 1.4k

(Exp.) resources per item: 0.7k
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an alternative interpretation of set size effects. As our example
illustrates, these effects might, instead, be a consequence of
using a stimulus distribution that does not match the natural
stimulus distribution that the observer is adapted to.

To reiterate our argument, even if VSTM resources
increase linearly with set size (meaning that resources are
effectively unbounded over the range of set sizes tested),
the visual system might be allocating most of these re-
sources to stimulus configurations that are common in the
natural environment but not proportionately common in
the experiment. This leads to inefficient use of resources
(with respect to the stimulus distribution used in the ex-
periment), which may cause a decline in memory precision
in the experiment (even when the amount of resources
increases proportionally to the set size). Thus, we suggest
that it is an open empirical question as to what extent set
size effects observed in VSTM studies are caused by gen-
uine resource limitations versus inefficient use of resources
due to model mismatch.

The toy example described above also suggests that using
artificial stimuli and unnatural stimulus statistics might lead
researchers to underestimate the capacity of VSTM. In infor-
mation theory, the capacity of an information channel is
defined as the maximum mutual information that can be
achieved between an input ensemble X and the output of the
channel Y, where the maximum is taken with respect to all
possible probability distributions over the input ensemble
(MacKay, 2003). If the VSTM system is abstractly conceived
of as an information channel (Sims et al., 2012), then Xmight
correspond to all possible visual stimuli, and Y might corre-
spond to all possible responses of neurons or neural popula-
tions underlying the VSTM system, presumably the visual
cortical areas where the initial perceptual encoding takes place
(see the section titled Continuity Between Visual Perception
and Visual Memory). If it is assumed, as seems plausible, that
the responses of these visual cortical areas are adapted to
natural stimulus statistics (Benefits of Learning a Good
Model of the Environment), then the optimal input distribu-
tion, P(X), will correspond to the statistics of the visual stimuli
X in the natural visual environment. Any other input distri-
bution will drive the information rate below the capacity of
the channel. Using artificial stimuli with unnatural stimulus
statistics in VSTM studies might yield a similar underutiliza-
tion of VSTM, leading researchers to underestimate its
capacity.

A possible objection

It could be argued that demonstrations of change blindness
with natural scenes (Rensink, 2002; Simons & Levin, 1997)
provide evidence against the suggestion that the capacity
estimates for VSTM would be significantly boosted with the
use of natural stimuli. However, the precise causes of change

blindness in natural scenes and its implications for our
understanding of VSTM are currently a matter of debate.
For instance, researchers have suggested that failure to
detect (sometimes quite salient) changes in natural scenes
might be due not to apparent capacity limitations in visual
attention or in VSTM, but, rather, to simpler factors that
might have nothing to do with capacity limitations of
visual attention or VSTM, such as insufficient time given
subjects to encode the details of the scene (Brady, Konkle,
Oliva, & Alvarez, 2009) or a lack of fixation near target
objects (Hollingworth, 2006; Hollingworth & Henderson,
2002). Therefore, a failure to detect changes in natural
scenes in change blindness studies does not necessarily
imply a severe capacity limitation in visual attention or
in VSTM.

Conclusion

Recent findings from neuroimaging and psychophysics
suggest common neural and representational substrates
for visual perception and VSTM. Visual perception is
adapted to a rich set of statistical regularities present in
the natural visual environment. The continuity between
visual perception and VSTM suggests that VSTM is
adapted to these statistical regularities too. Thinking about
the operation of VSTM in such environments may lead to
a reevaluation of the results obtained from experiments
using artificial stimulus statistics and tasks and may in-
spire the development of ecologically more realistic, com-
plex models incorporating prior knowledge of natural
scene statistics.
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