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A B S T R A C T   

Does semantic information—in particular, regularities in category membership across objects—influence visual 
working memory (VWM) processing? We predict that the answer is “yes”. Four experiments evaluating this 
prediction are reported. Experimental stimuli were images of real-world objects arranged in either one or two 
spatial clusters. On coherent trials, all objects belonging to a cluster also belonged to the same category. On 
incoherent trials, at least one cluster contained objects from different categories. Experiments using a change- 
detection paradigm (Experiments 1–3) and an experiment in which participants recalled the locations of ob-
jects in a scene (Experiment 4) yielded the same result: participants showed better memory performance on 
coherent trials than on incoherent trials. Taken as a whole, these experiments provide the best (perhaps only) 
data to date demonstrating that statistical regularities in semantic category membership improve VWM per-
formance. Because a conventional perspective in cognitive science regards VWM as being sensitive solely to 
bottom-up visual properties of objects (e.g., shape, color, orientation), our results indicate that cognitive science 
may need to modify its conceptualization of VWM so that it is closer to “conceptual short-term memory”, a short- 
term memory store representing current stimuli and their associated concepts (Potter, 1993, 2012).   

1. Introduction 

Visual working memory (VWM) is typically thought of as a limited- 
capacity store that represents the visual properties of objects in a scene, 
such as objects’ shapes, colors, orientations, and locations. This infor-
mation would be useful, for example, to plan actions, including eye 
movements and hand reaches. To build its representations, it is obvious 
that VWM must use bottom-up information derived from the pattern of 
light that falls on an observer's retina. What is less obvious, however, is 
whether VWM makes use of top-down information such as semantic 
information. 

Consider a scene in which some objects belong to the same category. 
For example, the scene might contain a coat and a hat, both articles of 
clothing. Should VWM make use of this shared category structure when 
building its representations? 

Our prediction is that the answer is “yes”, and it is motivated as 
follows. VWM has limited capacity, and thus to be efficient it should 
build compressed representations that allow it to minimize the number 
of memory resources used per to-be-remembered item (Bates & Jacobs, 
2020; Brady, Konkle, & Alvarez, 2009; Mathy & Feldman, 2012; Sims, 

Jacobs, & Knill, 2012; Yoo, Klyszejko, Curtis, & Ma, 2018). However, 
compressed codes can only be achieved by taking advantage of statis-
tical regularities of items. Such regularities exist at several levels of 
abstraction, including at the level of groupings of items. Information 
regarding group regularities is often referred to as “summary statistic” or 
“gist” information, and there is now ample data indicating that VWM 
stores summary-statistic information (Brady & Alvarez, 2011, 2015). 
Critically, summary-statistic information is essential to the design of 
compact codes. An implication of this statement is that VWM should 
indeed make use of shared category structure. For example, it can build 
compact codes representing the identities of a coat and a hat by making 
use of the fact that these objects are both articles of clothing. 

However, there are reasons to believe that our prediction might be 
incorrect, meaning that the answer is “no”. For instance, compressed 
codes based on shared category structures might lead to memory errors. 
If an observer is more likely to confuse objects belonging to the same 
category (Roediger & McDermott, 1995), then the observer might 
misremember a blue coat and a red hat as a red coat and a blue hat 
(transposing which color goes with which article of clothing), or even as 
a blue coat and a red glove (introducing a new article of clothing that 
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was not in the original scene). 
To date, there have been few studies of the influence of semantic 

information on VWM. Brady, Störmer, and Alvarez (2016) reported that 
long encoding times aided VWM performance for real-world objects but 
not for simple stimuli. Asp, Störmer, and Brady (2021) found improved 
VWM performance when visually ambiguous stimuli were perceived as 
meaningful. Conci, Kreyenmeier, Kröll, Spiech, and Müller (2021) 
demonstrated better VWM performance when color-shape combinations 
formed meaningful stimuli (e.g., real flags of European countries) than 
when they formed meaningless stimuli (“fake” flags). Liu et al. (2021) 
interpreted neural (intracranial electroencephalography; iEEG) data as 
revealing evidence for visual and semantic influences on VWM. In 
contrast to these studies, however, Luu and Stocker (2021) argued that 
top-down category information does not influence VWM, though it does 
influence subsequent sensory recall and inference processes. 

To help clarify the currently sparse and conflicting scientific litera-
ture, we report the results from four experiments manipulating the 
category structure of objects in a scene. Stimuli were images of real- 
world objects arranged in either one or two spatial clusters. On 
coherent trials, all objects belonging to a cluster also belonged to the 
same category. On incoherent trials, at least one cluster contained objects 
from different categories. Experiments 1–3 used a change-detection 
paradigm, a common experimental paradigm for studying VWM. 
These experiments revealed that participants showed better perfor-
mance on coherent trials than on incoherent trials, indicating a semantic 
category influence on VWM representations or operations. Experiment 4 
asked participants to recall the locations of objects in a scene. It also 
found that participants performed better on semantically coherent trials. 
Taken as a whole, these experiments provide the best (perhaps only) 
data to date demonstrating that statistical regularities in semantic 
category membership improve VWM performance. 

2. Experiment 1 

Experiment 1 used a change-detection paradigm. This paradigm has 
become perhaps the most common experimental procedure in the sci-
entific literature over the past few decades for probing VWM. Indeed, 
the literature now contains scores of articles in which the results of 
change-detection experiments are interpreted as revealing VWM 
properties. 

2.1. Participants 

The study was approved by the Research Subjects Review Board at 
the University of Rochester. The experiment was conducted over the 
world wide web via the Amazon Mechanical Turk (MTurk) crowd- 
sourcing marketplace. Interfacing with MTurk was facilitated through 
the use of the psiTurk programming platform (Gureckis et al., 2016). 
psiTurk was configured so that only individuals based in the United 
States could participate. Participants stated that they were at least 18 
years old. Fifty participants took part in the experiment. It took 
approximately 10-15 min to complete the experiment, and participants 
received $2.00 for their participation. 

2.2. Stimuli 

Stimuli were comprised from 32 images of real-world objects 
selected from an image collection developed by Brady, Konkle, Alvarez, 
and Oliva (2008). Objects were eight exemplars from each of four cat-
egories (food, animal, furniture, clothing). For instance, “apple”, 
“bread”, “hamburger”, “cake”, “sundae”, “avocado”, “roast chicken” and 
“cappuccino” were the eight exemplars from the “food” category. 

For each participant, stimuli were presented in a window whose size 
was fixed at 1024 × 768 pixels. Stimuli were rendered in a display box of 
size 800 × 600 pixels. An image of an individual exemplar was 50 × 50 
pixels. 

A stimulus showed a fixation mark at the middle of the display box, 
along with four evenly-spaced, distinct objects located on an imaginary 
circle (radius = 150 pixels) centered at the fixation mark. Although 
objects were always 90◦ apart, the placement of objects on the circle was 
chosen at random on each trial. 

The experiment contained two trial types. On a coherent trial, all four 
objects were randomly selected from the same category. On an inco-
herent trial, two objects belonged to one category and the remaining two 
objects belonged to a different category. For instance, a stimulus on an 
incoherent trial may have contained two “furniture” objects and two 
“animal” objects. 

2.3. Procedure 

The experimental procedure is illustrated in Fig. 1. On a trial, a 
stimulus was shown for 1000 ms, then a blank screen was displayed for 
1000 ms, and finally, another stimulus was shown. The second stimulus 
remained on the screen until a participant made a response. 

The experimental task was a change-detection task. On a same trial, 
the second stimulus was identical to the first stimulus. On a change trial, 
the second stimulus contained the same objects as the first stimulus. 
From this set of objects, two objects belonging to the same category were 
randomly selected, and the second stimulus was created from the first 
stimulus by swapping their locations. If a participant judged the second 
stimulus to be identical to the first stimulus, the participant responded 
by pressing the “s” (same) key. Otherwise the participant pressed the “d” 
(different) key. 

Each participant performed 120 trials: 8 practice trials and 112 
experimental trials. Practice trials were excluded from data analysis. On 
the experimental trials, there were equal numbers of coherent-same, 
coherent-change, incoherent-same, and incoherent-change trials. The 
order of trials was randomized. In practice trials, a participant received 
feedback (correct or incorrect) on each trial after entering a response. In 
experimental trials, a participant received feedback at the end of each 
block of eight trials. This feedback displayed the number of correct re-
sponses during that block (e.g., “5 of 8 responses correct”). 

2.4. Results 

We focused our analyses on data from participants with above- 
chance performance. A (one-sided) binomial test was used to identify 
these participants. Of the 50 participants, 37 (74 percent) performed 
better than chance. 

For each participant, we compared their percent correct on coherent 
trials with their percent correct on incoherent trials. On average, par-
ticipants performed better in the coherent condition (based on a one- 

Fig. 1. Experimental procedure for Experiment 1. This figure illustrates an 
incoherent-change trial (i.e., a change trial in which two objects belonged to 
one category and the remaining two objects belonged to a different category). 
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sided t-test: t = 1.874 p = 0.0345). (A one-sided test is justified by our 
prediction that category coherence aids VWM performance.) The results 
are shown in Fig. 2 where each dot illustrates a participant's perfor-
mance. Overall, these results indicate that participants found coherent 
trials to be easier than incoherent trials, thereby suggesting that se-
mantic information influences VWM performance. 

3. Experiment 2 

Experiment 2 was identical to Experiment 1 with the following 
exception. In Experiment 1, a change trial was created by randomly 
choosing two objects from the same category in a trial's first stimulus, 
and then swapping their positions to create the second stimulus. In 
contrast, a change trial in Experiment 2 was created by randomly 
selecting an object in a trial's first stimulus, and then replacing this 
object with another object from the same category to create the second 
stimulus (with the constraint that the four objects in the second stimulus 
must be distinct). For instance, suppose the four objects in the first 
stimulus were “apple”, “bread”, “hamburger” and “cake”. And suppose 
that one of the objects, an “apple”, was randomly selected. To create the 
second stimulus, the “apple” might be replaced by a distinct “food” 
object, such as an “avocado”, to create the second stimulus. In addition, 
52 participants took part in Experiment 2. 

3.1. Results 

To focus our analyses on data from participants with above-chance 
performance, a (one-sided) binomial test was used to identify these 
participants. Of the 52 participants, 41 (79 percent) performed better 
than chance. 

Based on data from participants with above-change performance, the 
average performance was not significantly different in the coherent and 
incoherent conditions. This outcome, of course, is contrary to our pre-
diction that category coherence aids VWM performance. Interestingly, 
however, a different outcome emerged when we conducted finer-scale 
analyses that separately considered change trials and same, or no- 

change, trials. 
Starting with change trials, we found that participants performed 

significantly better (one-sided t-test: p = 0.035) on coherent trials (when 
all objects in a stimulus belonged to the same semantic category) than on 
incoherent trials (when two objects belonged to one category and the 
remaining two objects belonged to a different category). On no-change 
trials, participant performance did not significantly differ in coherent 
versus incoherent conditions. These results are shown in Table 1. For 
comparison purposes, this table also displays the analogous results from 
Experiment 1. 

It seems that participants typically found no-change trials to be 
relatively easy, responding correctly on more than 90% of these trials 
regardless of whether trials were coherent or incoherent with respect to 
category membership. In contrast, participants found it challenging to 
detect changes present on change trials. Critically for our purposes, 
participants performed better on these trials when all objects in a trial's 
stimuli belonged to the same category. Similar to Experiment 1, this 
result indicates that semantic regularities—category coherence in this 
case—aids VWM performance. 

4. Experiment 3 

Experiment 3 was a variation of Experiment 1 with a more compli-
cated spatial structure. 

4.1. Participants 

Fifty participants took part in Experiment 3. It took approximately 
15–20 min to complete the experiment, and participants received $3.00 
for their participation. 

4.2. Stimuli 

Experiment 3 used the same source of stimuli as Experiments 1–2 
except that each category contained only four exemplars. For instance, 
“apple”, “bread”, “hamburger”, and “cake” were the exemplars from the 
“food” category. 

For each participant, stimuli were presented in a window whose size 
was fixed at 1024 × 768 pixels. Stimuli were rendered in a display box of 
size 800 × 500 pixels. An image of an individual exemplar was 50 × 50 
pixels. 

An individual stimulus showed six distinct objects, spatially orga-
nized into two clusters with three objects per cluster. A cluster center 

Fig. 2. Each dot illustrates a participant's performance on Experiment 1. The 
horizontal axis shows the percent correct of a participant on incoherent trials 
(out of 56 trials) and the vertical axis shows the percent correct on coherent 
trials (again, out of 56 trials). The red-dashed diagonal line indicates where the 
percentages are equal. (Although 37 participants had above-chance perfor-
mance, not all dots are visible in this graph due to dot overlap.) 

Table 1 
Average participant performance (percent correct) in Experiments 1 (top) and 2 
(bottom). Columns show performance on change versus no-change trials (per-
formance on all trials is also provided). Rows show performance on category 
coherent versus incoherent trials. p values (based on one-sided t-tests) indicating 
the statistical significances of differences in performance on coherent versus 
incoherent conditions are also shown.  

Experiment 1  
Change No-change All trials 

Coherent 0.68 0.923 0.801 
Incoherent 0.625 0.938 0.781  

p 0.00302 0.934 0.0345      

Experiment 2  
Change No-change All trials 

Coherent 0.598 0.922 0.76 
Incoherent 0.569 0.93 0.75  

p 0.0354 0.788 0.132  
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was randomly selected such that clusters were within the display box 
(each cluster had a radius of approximately 150 pixels; the distance 
between two cluster centers was, on average, approximately 250 pixels). 
Within a cluster, the locations of individual objects were sampled from a 
normal distribution whose mean was the cluster center. Locations were 
resampled if objects overlapped. 

The experiment contained two trial types (see Fig. 3). In a coherent 
trial, each cluster contained objects from the same category. For 
example, one cluster may have contained “furniture” objects whereas 
the other contained “animal” objects. In an incoherent trial, objects also 
came from two categories. However, each cluster contained objects from 
two different categories. For instance, a cluster may have contained one 
“furniture” and two “animal” objects. 

4.3. Procedure 

The experimental procedure is shown in Fig. 4. On a trial, a stimulus 
was shown for 3000 ms, then a blank screen was displayed for 1000 ms, 
and finally, another stimulus was shown. The second stimulus remained 
on the screen until a participant made a response. 

The experimental task of Experiment 3 was also a change-detection 
task. On a same trial, the second stimulus was identical to the first 
stimulus. On a change trial, the second stimulus contained the same 
objects as the first stimulus. However, one of the spatial clusters in the 

first stimulus was randomly selected, and the second stimulus was 
created by swapping the locations of two objects from the selected 
cluster belonging to the same category. 

Critically, one object location was cued in the second stimulus using 
a box around that location. On a same trial, the cued location was 
centered at a randomly chosen object. On a change trial, the cued 
location was centered at one of the objects whose locations was swap-
ped. A participant's task was to judge whether the object at the cued 
location was the same in the first and second stimuli or was different. 
The participant responded by pressing either the “s” (same) or “d” 
(different) keys. 

Each participant performed 80 trials: 16 practice trials and 64 
experimental trials. Practice trials were excluded from data analysis. On 
the experimental trials, there were equal numbers of coherent-same, 
coherent-change, incoherent-same, and incoherent-change trials. The 
order of trials was randomized. In practice trials, a participant received 
feedback (correct or incorrect) on each trial after entering a response. In 
experimental trials, a participant received feedback at the end of each 
block of eight trials. This feedback displayed the number of correct re-
sponses during that block (e.g., “5 of 8 responses correct”). 

In general, the experimental task was difficult. Compared with 
Experiment 1, which was also a change-detection task in which object 
locations were swapped, Experiment 3 included more objects and a 
more complex spatial structure. In addition, the high similarity of first 

Fig. 3. Example stimuli of Experiment 3 from the coherent (left) and incoherent (right) trial types.  

Fig. 4. Experimental procedure for Experiment 3. This figure illustrates a coherent-change trial (i.e., a change trial in which stimuli showed clusters of objects from 
the same category). 
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and second stimuli on change trials contributed to task difficulty. These 
stimuli used the same objects and the same locations. Of the six objects 
used on a change trial, four objects were at the same location. Of the two 
objects at new locations, these objects belonged to the same category. 
Moreover, they were not assigned novel locations, but rather their lo-
cations were swapped. For these reasons, good performance on the task 
required a high level of attention and focus. 

4.4. Results 

A (one-sided) binomial test was used to identify participants whose 
performance was greater than chance. Evidently, several participants 
found the task to be extremely challenging. Of the 50 participants, only 
31 (62 percent) performed better than chance. 

Using solely the data from participants with above-chance perfor-
mance, we compared each participant's accuracy on the coherent and 
incoherent trials. On average, participants performed better in the 
coherent condition (based on a one-sided t-test: t = 2.179, p = 0.0186). 
The results are illustrated in Fig. 5 where each dot plots a participant's 
performance. In this graph, the horizontal axis shows a participant's 
accuracy (percent correct) on incoherent trials (out of 32 trials) and the 
vertical axis shows the accuracy on coherent trials (again, out of 32 
trials). 

Although Experiment 3 was difficult for many participants, its data 
revealed the same pattern as Experiments 1–2, namely that category 
regularities aided VWM performance. That is, VWM performance was 
better when stimuli contained clusters of objects belonging to a common 
semantic category. 

5. Experiment 4 

Methodologically, Experiment 4's stimuli and procedure were similar 
to those of Lew and Vul (2015). Participants viewed stimuli showing two 
clusters of objects, and then attempted to recall objects’ locations. On 
coherent trials, objects belonging to the same cluster also belonged to the 
same category (e.g., animals). On incoherent trials, objects belonging to 
the same cluster belonged to different categories (e.g., animals, food). If 
category regularities aid VWM performance (as in Experiments 1–3), 
then we predict that participants will show better performance on 
coherent trials. 

Experiment 4 used three stimulus display durations. As noted above, 
Brady et al. (2016) found that long encoding times aided VWM perfor-
mance for real-world objects. If the influence of category coherence 
interacts with encoding times, then participants’ responses should vary 
with stimulus duration. 

5.1. Participants 

Two hundred twenty-two participants (74 in each of three experi-
mental conditions) took part in Experiment 4. It took approximately 20- 
30 min to complete the experiment, and participants received either 
$2.25, $2.50, or $3.25 for their participation depending on the experi-
mental condition. 

5.2. Stimuli 

Experiment 4 used similar stimuli as Experiment 3, with the excep-
tion that a stimulus in Experiment 4 showed eight distinct objects ar-
ranged in two clusters, four objects per cluster. The distance between 
two cluster centers was approximately 200 pixels. On an incoherent 
trial, each cluster contained two objects from one category and two 
objects from another category. 

Three stimulus display duration conditions were used in Experiment 
4: one used a stimulus duration of 4 s, another used a duration of 6 s, and 
the final condition used a duration of 9 s. Each participant participated 
in only one condition. 

5.3. Procedure 

Each participant performed 40 trials: four practice trials (excluded 
from data analysis) and 36 experimental trials. Half of the experimental 
trials were incoherent and half were coherent. These trial types were 
randomly intermixed. For each trial, two object categories were 
randomly selected. 

On a trial, a stimulus appeared on the screen for either 4, 6, or 9 s, 
depending on the experimental condition. A participant attempted to 
memorize the objects and their locations. The stimulus then dis-
appeared. After 500 ms, the (empty) display box reappeared, and the 
objects from the stimulus were shown arranged in random order along a 
horizontal row below the display box. Using their computer mouse, the 
participant “dragged and dropped” each object to its memorized loca-
tion. There was no time limit for entering this response. When the 
participant completed the response, they pressed a button, and then the 
participant saw a feedback screen with their response in color and the 
original stimulus in black and white. The participant then pressed a 
button to proceed to the next trial. 

5.4. Results 

5.4.1. Euclidean error 
Participants’ memory errors were quantified using a Euclidean dis-

tance error metric which calculates the distance (in pixels) between the 
object locations in a participant's response and the locations in a stim-
ulus. For each participant, the average error was calculated across 
incoherent trials and coherent trials. Fig. 6 shows the results for each 
participant. The three graphs correspond to the 4s, 6s, and 9s stimulus 
display-time conditions. Within each graph, the horizontal axis plots a 
participant's average distance error on incoherent trials, and the vertical 
axis plots the average error on coherent trials. For the three conditions, 
53, 63, and 55 participants, respectively, had larger distance errors in 
incoherent trials. 

T-tests were performed to check for statistical significance of the 
differences in errors between trial types and between stimulus display- 
time experimental conditions. Differences between incoherent and 
coherent trial types were significant for 4s, 6s, and 9s conditions 
(p < 0.01 in all cases). Differences between 4s and 6s conditions 

Fig. 5. Each dot plots a participant's performance on Experiment 3. The hori-
zontal axis shows a participant's percent correct on incoherent trials (out of 32 
trials) and the vertical axis shows the correct rate on coherent trials (again, out 
of 32 trials). 
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(p < 0.05 in all cases) and between 4s and 9s conditions (p < 0.01 in all 
cases) were significant. Differences between 6s and 9s conditions were 
not statistically significant. 

Using each participant's errors, we next calculated a participant- 
specific “semantic index” (SI) to quantify the reduction in error due to 
adding semantic coherence to the clusters in a visual stimulus (relative 
to the error in the absence of semantic coherence). We defined SI as 
follows: 

SI =
EI − EC

EI
× 100  

where EI and EC denote a participant's average errors in the incoherent 
and coherent trial types, respectively. The average values of SI (aver-
aged across participants) in the 4s, 6s, and 9s conditions are 6.2, 9.0, and 
7.1, respectively (differences across conditions were not statistically 
significant). That is, the addition of semantic coherence leads to a 
roughly 7.4% reduction in error. 

Overall, the experiment found that memory errors were smaller on 
coherent trials than incoherent trials, indicating that category coherence 
improved visual memory performance in our participants. This result is 
consistent with the hypothesis that VWM representations are influenced 
by semantic regularities. Lastly, although memory errors tended to be 
larger when stimulus durations were shorter (as expected), we 
normalized for this effect in our SI measure. Based on this normalized 
measure, the data do not support the hypothesis that stimulus duration 
modulates the influence of category regularities on visual memory. 

5.4.2. Cluster error count 
To further understand participants’ performances, we computed a 

“cluster error count” which is the number of objects that a participant 
placed in an incorrect cluster. The first step in calculating this measure is 
to cluster objects in a stimulus and a participant's response. Cluster 
center locations were calculated using the K-means algorithm (Hastie, 
Tibshirani, & Friedman, 2009). Then the center locations were used to 
determine whether an object was placed in an incorrect cluster in a 
participant's response. 

Fig. 7 shows each participant's cluster error count summed across all 
incoherent trials (horizontal axis) and summed across all coherent trials 
(vertical axis). For 4s, 6s, and 9s stimulus display-time conditions, 65, 
53, and 53 participants, respectively, had larger cluster error counts in 
incoherent trials. Statistically, the error count in incoherent trials was 
greater than the count in coherent trials in all conditions (p < 0.01 in all 
cases). In addition, the count decreased as the stimulus display time 
increased from 4s to 6s, but did not significantly vary as the stimulus 

display time increased from 6s to 9s (p = 0.281 between 6s and 9s; 
p < 0.01 between 4s and 9s; p < 0.05 between 4s and 6s).1 

5.4.3. Cluster size 
Finally, we report the “cluster size” which is the average distance of 

objects to the center of a cluster where, as above, cluster centers were 
computed using the K-means algorithm (Hastie et al., 2009). In each 
stimulus display-time condition, there were 74 participants, 36 trials per 
participant, and 2 clusters per trial, meaning that 5328 clusters appeared 
in stimuli and responses. The distributions of stimulus and response 
cluster sizes in each condition are shown in Fig. 8. Response clusters 
were larger than stimulus clusters in all conditions (p < 0.01 in all 
cases). 

Fig. 9 shows each participant's difference between stimulus and 
response cluster sizes averaged across incoherent trials (horizontal axis) 
and averaged across coherent trials (vertical axis). In all display-time 
conditions, incoherent values are larger than coherent values (differ-
ences between incoherent and coherent trials are statistically significant 
at the p < 0.05 level in all cases). 

Fig. 6. Each participant's Euclidean distance error averaged across all incoherent trials (horizontal axis) and averaged across all coherent trials (vertical axis) in 4s 
(left graph), 6s (middle graph), and 9s (right graph) stimulus display-time conditions. 

1 This subsection reports an analysis of whether participants placed objects in 
their correct clusters. A reader might wonder if it's possible to also analyze 
“within cluster” errors. Unfortunately, we are not aware of a good way of doing 
so. Consider a trial on which a participant places an object near the center of an 
incorrect cluster. A within-cluster analysis might assign a small error score—-
after all, the object is near the cluster center. But a small error score in this 
situation would be misleading. In fact, the participant made a large error by 
placing the object in the wrong cluster. One possible approach might be to 
consider only the subset of trials on which a participant placed all objects in 
their correct clusters, referred to here as “high performance” trials. Unfortu-
nately, however, this “cherry picking” of trials introduces a bias. There were a 
relatively large number of high-performance trials on coherent trials, and many 
fewer on incoherent trials. (For instance, in the 4s stimulus display-time con-
dition, there were 709 high-performance, coherent trials and 440 high- 
performance, incoherent trials across participants.) This mismatch is a source 
of bias. Consider the following hypothetical scenario. Suppose that memory 
performance across trials is quantified as a real-valued score. Further suppose 
that this score is normally distributed on coherent trials and also normally 
distributed on incoherent trials. On coherent trials, the mean of the dis-
tribution—corresponding to a typical coherent trial—might be a score that 
yielded a high-performance trial. However, a score yielding a high-performance 
trial on an incoherent trial would require a score from the right-most tail of the 
distribution, corresponding to an atypical incoherent trial. This illustrates why 
we are unaware of a fair and unbiased way to conduct a within-cluster com-
parison of coherent and incoherent trials. 
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6. Discussion 

In summary, we conducted four experiments studying semantic 
influence—influence due to regularities in object category membership, 
in particular—on VWM. Experiments 1–2 used real-world objects 
around a center fixation mark. Objects came either from the same 
category (coherent trials) or different categories (incoherent trials). 
Experiments 3–4 used real-world objects organized into spatial clusters. 
Objects belonging to a cluster either belonged to the same category 

(coherent trials) or belonged to different categories (incoherent trials). 
Experiments 1–3 used a change-detection paradigm. Experiment 4 asked 
participants to recall the locations of objects. All four experiments 
yielded the same result: participants showed better VWM performance 
on coherent trials than on incoherent trials. Taken as a whole, the ex-
periments provide the best (perhaps only) data to date demonstrating 
that statistical regularities in semantic category membership improve 
VWM performance. 

Our result is inconsistent with recent work by Luu and Stocker 

Fig. 7. Each participant's error count summed across all incoherent trials (horizontal axis) and summed across all coherent trials (vertical axis) in 4s (left graph), 6s 
(middle graph), and 9s (right graph) stimulus display-time conditions. 

Fig. 8. Stimulus and response cluster size distributions in 4s, 6s, and 9s stimulus display-time conditions.  

Fig. 9. Each participant's difference between stimulus and response cluster sizes averaged across incoherent trials (horizontal axis) and averaged across coherent 
trials (vertical axis) in 4s (left graph), 6s (middle graph), and 9s (right graph) stimulus display-time conditions. 
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(2021) who argued that category information does not influence VWM, 
although it does influence subsequent sensory recall and inference 
processes. The experiments reported here used a change-detection 
paradigm, a common experimental paradigm in the scientific litera-
ture, whereas the experiments of Luu and Stocker (2021) used a novel 
paradigm in which participants had to reverse their categorical judg-
ments about a stimulus feature, if incorrect, before providing an esti-
mate of the feature. It seems likely that these methodological differences 
account for differences in experimental findings. Future work will need 
to investigate this further. 

Our result is also inconsistent with a conventional perspective in the 
vision sciences literature in which VWM is sensitive solely to bottom-up 
visual properties of objects, such as objects’ shapes, colors, orientations, 
and locations. Instead, our result indicates that VWM is also sensitive to 
top-down semantic information, such as regularities in category mem-
bership. This work contributes to a small, but growing, number of 
studies suggesting a role for semantic information in VWM processing 
(Asp, Störmer, & Brady, 2021; Brady, Störmer, & Alvarez, 2016; Conci, 
Kreyenmeier, Kröll, Spiech, & Müller, 2021; Liu et al., 2021). 

Most experiments on VWM use meaningless stimuli (e.g., oriented 
bars, colored squares), thereby avoiding the question of whether se-
mantics influences VWM. Advocates of this approach might define VWM 
as solely processing and storing visual properties of objects and scenes 
(e.g., object shape, color, orientation). By this definition, it is nonsen-
sical to consider semantic influence on VWM. Recently, however, there 
has been a trend in the field of cognitive science to consider more 
realistic scenarios, including the use of meaningful stimuli such as real- 
world objects. This raises additional complexities. 

Because our work (and the work of others too) indicates a role for 
semantic information in VWM processing, it suggests that the field of 
cognitive science may need to modify its conceptualization of VWM so 
that it is closer to that of “conceptual short-term memory” (CSTM). In 
articles that have, to date, received relatively little attention, Potter 
(1993, 2012) argued for the existence of CSTM, and described it as a 
short-term memory store that is engaged unconsciously and rapidly, and 
represents current stimuli and their associated concepts from long-term 
memory. Future work will need to investigate CSTM and its relationship 
with VWM. What are the properties of CSTM? How is it distinct from 
VWM? Is the distinction between CSTM and VWM “psychologically 
real”? Are both concepts needed or is their distinction in cognitive sci-
ence due to convenience or historical accident? 
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