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Abstract

We propose the “runtime learning” hypothesis which states that people quickly learn to per-

form unfamiliar tasks as the tasks arise by using task-relevant instances of concepts stored

in memory during mental training. To make learning rapid, the hypothesis claims that only a

few class instances are used, but these instances are especially valuable for training. The

paper motivates the hypothesis by describing related ideas from the cognitive science and

machine learning literatures. Using computer simulation, we show that deep neural net-

works (DNNs) can learn effectively from small, curated training sets, and that valuable train-

ing items tend to lie toward the centers of data item clusters in an abstract feature space. In

a series of three behavioral experiments, we show that people can also learn effectively

from small, curated training sets. Critically, we find that participant reaction times and fitted

drift rates are best accounted for by the confidences of DNNs trained on small datasets of

highly valuable items. We conclude that the runtime learning hypothesis is a novel conjec-

ture about the relationship between learning and memory with the potential for explaining a

wide variety of cognitive phenomena.

Author summary

Human cognition is remarkably flexible, with the ability to reliably perform a wide variety

of tasks, including idiosyncratic and unfamiliar ones, in a wide variety of contexts. How-

ever, despite impressive advances in machine learning, leading to artificial intelligences

capable of outperforming humans on select individual tasks, this flexibility has yet to be

replicated by computational models. Doing so is essential to both creating general artifi-

cial intelligence and to achieving a deeper understanding of the human brain and mind.

To account for this vital property of human cognition, we introduce the “runtime learning

hypothesis”, in which the brain rapidly constructs task-specific models in response to the

needs of the moment using an internal training process based on valuable exemplars of

the relevant concepts. We examine the plausibility of this hypothesis using human
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behavioral experiments and machine-learning-based computational modeling. The results

are consistent with the human brain using runtime learning to flexibly perform tasks.

1 Introduction

Perhaps the most impressive aspect of the human brain is its flexibility—it is able to handle a

multitude of different tasks in a multitude of different contexts. In fact, it can handle so many

tasks that it is implausible it has dedicated neural networks for each of them, especially consid-

ering it can even handle tasks it has never encountered before. There are simply too many

obscure tasks people can complete with ease. Are we to believe that brains have networks dedi-

cated to determining if an animal is safe to pet, identifying the creator of a painting from its

style, and deciding which book at the library seems most interesting? Do people have networks

dedicated to answering questions like “During what decade was this photograph taken?” and

“Which of these cars is the fastest?”. Yet people are able to give sensible answers to these and

many other questions. If human brains do not have neural networks dedicated to these tasks,

how is this possible?

Even for tasks that seem common and important enough for a dedicated network, the situa-

tion is more complicated than it appears. Consider the task of determining if a scene is from a

natural environment, such as a forest, or an artificial one, such as a city street. Such scenes vary

significantly in appearance depending on numerous factors such as viewpoint, lighting condi-

tions, and the medium and style of depiction (e.g., a photograph versus an Impressionist paint-

ing). People are faced with either the daunting task of acquiring a single network that is

invariant over the multitude of combinations of these factors, or of acquiring and storing

many networks so that hopefully one of them will be suitable for the specific task at hand. The

former is extraordinarily challenging, as decades of cognitive science and artificial intelligence

(AI) research have shown. The latter seems monstrously inefficient, as it uses precious

resources to prepare for tasks whose narrow scope means they will rarely come up.

In essence, then, it seems that both people and the artificial agents studied in the field of

machine learning (ML) are faced with the same problem, namely how to quickly learn to per-

form novel tasks in the absence of task-specific training information—also known as the prob-

lem of “zero shot” learning. The key hypothesis of this paper is that people are able to rapidly

learn to perform unfamiliar or idiosyncratic tasks at “runtime” (i.e., in an on-the-fly fashion as

novel tasks arise) by internally training neural networks using carefully curated small sets of

high-quality data items obtained from memory. We elaborate on this hypothesis in the next

section.

1.1 Runtime learning

Instead of attempting to produce extraordinarily robust networks that are invariant to contex-

tual variations, we propose an alternative: when faced with tasks for which they do not cur-

rently have dedicated neural networks, people quickly generate new networks then and there,

a process referred to here as “runtime learning”. How might people quickly generate these new

networks? A clue to the answer to this question may be found in exemplar theory, which pro-

poses that people recognize and reason about concepts and categories using exemplars (i.e.,

previously experienced stimuli) stored in episodic memory [1–3]. Although these exemplars

can be used to train neural networks, training a network using all exemplars stored in a per-

son’s episodic memory would be extremely inefficient, as this memory may contain an enor-

mous number of exemplars, most of which are irrelevant to the task that currently needs to be

PLOS COMPUTATIONAL BIOLOGY Rapid runtime learning

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011445 October 4, 2023 2 / 32

https://doi.org/10.1371/journal.pcbi.1011445


performed. Consequently, we conjecture that people are able to identify a (hopefully small)

subset of their stored exemplars that are task-relevant, and then use this subset for rapid net-

work training. For instance, if a person is asked whether an image is of a fox or a wolf, the per-

son can marshal the best stored exemplars of foxes and wolves and use these to train a network

that answers the original question.

In essence, we are saying that people’s brains treat many or even most tasks as zero-shot

learning problems, which they solve using an exemplar approach in which a neural network is

trained using exemplars drawn from memory. “Drawing from memory” may take various

forms: the exemplars may be representations of actual exemplars that have previously been

encountered, or they may be entirely novel exemplars synthesized by a generative model of a

concept, or some combination of natural and synthetic exemplars. We mostly leave the ques-

tion of exactly how exemplars are selected for training for future work (though see below for

ML research on this topic).

Although the exemplars used during this internal training must be based on prior experi-

ence, this does not mean that the tasks they can be used to solve must be familiar. Novel tasks

may use unfamiliar groups of familiar categories. For example, although one may have previ-

ously encountered rabbits, tractors, and unicorns, specifically needing to discriminate between

these categories is probably an unfamiliar task. This is not a trivial generalization—the features

needed to distinguish rabbits, tractors, and unicorns are surely not the same as those for distin-

guishing rabbits, squirrels, and mice, or tractors, cars, and trucks, or unicorns, hippogryphs,

and centaurs.

If an agent has a knowledge base that includes hierarchical and relational properties

between concepts—as found in semantic networks, frames, or graph neural networks, for

instance—the system can address tasks involving unfamiliar categories that can be con-

structed from familiar ones. For example, if one is familiar with rabbits, foxes, squirrels,

etc., and knows they are all mammals, one can construct a “mammal” training set from

these subcategories (e.g., by using symbolic or graph neural network data structures and

reasoning operations of the type that have been studied in cognitive science and AI for

many years [4–8]) without needing to store instances of a separate, distinct mammal cate-

gory. Acquiring knowledge such as “foxes are mammals” is relatively easy (e.g., one need

only read it in a book). It should also be possible to reorganize the knowledge base to

account for new information. If, for example, we have stored instances of cats under the

generic name “cats”, and if we learn that “Siamese cats have blue eyes and point coloration”,

then we can check our stored cat instances, find the ones matching the Siamese criteria,

and segregate them into a subcategory in case we ever need to perform a task involving spe-

cifically Siamese cats.

The prospect of learning to perform an unfamiliar task only at the point the task is pre-

sented may seem implausible due to time limitations. However, we are inspired by recent cog-

nitive science and ML research on rapid learning. In the following section, we describe this

research, along with other relevant background materials.

1.2 Background and related work

Efficient, rapid learning has been studied in both cognitive science and ML literatures. For

example, methods to achieve rapid learning studied in cognitive science include rote learning,

imitation learning, and active learning, whereas methods to achieve rapid learning studied in

ML include dataset distillation, meta-learning, and few-shot learning. We emphasize that these

methods are typically not mutually exclusive. That is, an agent—biological or artificial—could

simultaneously use multiple methods to achieve rapid learning.
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One of the focuses of the runtime-learning hypothesis is achieving rapid learning by curat-

ing small training sets of high-quality items obtained from memory (as just emphasized, peo-

ple undoubtedly use other methods too). This focus stems in part from the belief that this is a

potentially important cognitive strategy for which there is relevant research in the ML litera-

ture, but the hypothesis is not currently part of cognitive science. In this section, we briefly

review some of the research most relevant to the hypothesis in the ML and cognitive science

literatures.

1.2.1 Machine learning. Some aspects of runtime learning are similar to, or can be com-

bined with, techniques from the machine learning literature. We briefly review some of these

techniques; interested readers can consult S1 Appendix for further details, along with other rel-

evant methods.

A core tenet of runtime learning is that models are trained on only a few exemplars. ML

researchers have created methods of identifying or synthesizing category exemplars that are

especially valuable for training algorithms, usually by treating the training data as a parameter

to be optimized, in a process variously referred to as “dataset distillation” or “core set selection”

[9–14]. The resulting training set is expected to produce models that perform much better

than would be expected given the amount of training data, sometimes even comparably to

models trained on larger training sets. It is also possible to train generative models to produce

particularly valuable synthetic exemplars. (Generative models learn the joint distribution of

classes and observations, and when combined with a prior distribution over classes, sampling

from a generative model of a class produces samples that are likely to belong to the class. See

S1 Appendix for more details.) [15] created an algorithm based on this concept called “genera-

tive teaching networks”, in which a generative model is “meta-trained” to produce exemplars

that can be used to train a neural network to a high level of performance.

Separately but complementarily, performance when trained on only a few exemplars can be

further improved with “meta-learning” techniques. In meta-learning, a model “learns to learn”

so that it can be trained on novel tasks more quickly, reliably, accurately, or otherwise “better”

than it normally could [16, 17]. Approaches include learning special learning rules, learning to

better characterize tasks, and learning features that transfer to other tasks. Like dataset distilla-

tion, meta-learning aims to make learning efficient, but instead of operating on the training

data, it identifies effective initial conditions.

1.2.2 Exemplar models of concepts and category learning. Many popular models of

human object perception, recognition, and categorization are “exemplar models” [1, 2]. A rep-

resentative and influential early model of this sort is the Generalized Context Model [3], which

performs classification tasks by comparing test items to stored exemplars of the classes. Test

items are assigned to classes based on their similarity—or distance in a psychological space—

to class exemplars, where the embeddings of items in the psychological space are possibly

learned and altered by attention, usually by modifying the weight or importance placed on par-

ticular features. Thus, exemplar models can judge the similarity of exemplars contextually by

attending to the features that are the most relevant to current goals. Exemplar models are often

contrasted with “prototype models”, in which knowledge of a category is represented by a sin-

gle “prototype” formed by aggregating multiple exemplars of the category.

More elaborate exemplar-type models introduce a greater level of abstraction in their exem-

plar representations, effectively occupying a middle ground between exemplar and prototype

models. Often, this amounts to learning multiple prototypes for a category, corresponding to

the category’s clusters in psychological space. The Varying Abstraction Model [18] proposes

that depending on the category structure, particular exemplars may either merge or remain

separate, depending on the circumstances. The SUSTAIN model [19] can learn categories

from sequentially presented exemplars, and adds new exemplars to its memory when it is
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unable to adequately account for them. It also has the ability to modify its current exemplars

such that they better represent the concept. Thus, the SUSTAIN model learns both how many

prototypes it needs, and what those prototypes are.

To extend these results to more complicated, naturalistic stimuli, exemplar models have

also incorporated advances in machine learning, using deep neural networks to embed the

exemplars into a psychological space, instead of the hard-coded spaces used in previous work.

[20] found that cognitive models using feature representations from popular off-the-shelf

DNNs outperformed those using hard-coded features on naturalistic stimuli. [21] trained their

own DNN from scratch with ground-truth embeddings derived from another, more expensive

method, and successfully used it in combination with the generalized context model to predict

human responses. It is even possible to learn the embedding DNN and the exemplar model

together in an end-to-end manner [22].

While runtime learning also makes use of class exemplars, it obviously differs in that it iden-

tifies and retrieves the exemplars at test time. It can also use the exemplars indirectly, as part of

the process of learning to perform a particular task when the task presents itself, whereas exem-

plar models can only use the instances more directly as part of a “similarity” calculation, and

exemplar models assume that the learned aspects of the decision process (such as a custom psy-

chological space, or an attention mechanism that creates that space) exist before test time. This

means that the decision process learned at runtime can be for an unfamiliar, possibly unantici-

pated task. Runtime learning thus postulates a much more extreme form of abstraction from

the exemplars than even prototype models. Not only can the relative importance of features be

modified for a given task, the features themselves can if necessary be learned, and need not be

explicitly present in the exemplars drawn from memory or in the psychological space.

1.2.3 Complementary learning systems and memory consolidation. The runtime-learn-

ing hypothesis can be compared to the concept of “memory consolidation”, in which short-

term memories are converted into a stable, long-lasting form [23]. An influential theory of

memory consolidation is the“complementary learning systems” (CLS) approach [24, 25]

which, as its name suggests, proposes that the brain maintains two separate but interacting

learning systems: a fast system that learns primarily by storing—or rote learning—instances or

examples pertinent to the task being learned, and a slow system that consolidates this knowl-

edge into a more abstract and longer-lasting understanding of a concept or task, in part by

accessing the instructive instances stored by the fast system. In the brain, the role of the fast

learner is often assigned to the hippocampus and associated structures, while that of the slow

learner is fulfilled by neocortex. Recent research has suggested that the hippocampus is itself

also capable of some degree of abstraction [25–27], perhaps akin to the multiple cluster proto-

types in some exemplar models.

Electrophysiological recordings in behaving and resting animals have provided evidence

for the basic concepts behind complementary learning systems. Patterns of neural activity seen

in the place-selective cells of the hippocampus of behaving animals have been observed to

repeat in sped-up form as part of sharp waves and ripples (SWRs) during rest and sleep [27–

29]. Furthermore, these SWRs are synchronized with activity levels in the neocortex, which

suggests that the neorcortex is integrating the information in this “replay” [30–32]. Interest-

ingly, novel patterns of SWR of the same type as seen during memory consolidation, but not

corresponding to any previous experience, are later observed during behavior [33, 34]. The

function of these “preplays” is not fully understood, but one proposal is that they correspond

to planning. Without necessarily contradicting this, we suggest that these may be indicative of

runtime learning: the initial appearance of a pattern is the result of an endogenous training

process, and the later reappearance of the pattern during behavior corresponds to the process-

ing of an experience similar to those used for preparation.
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Preplay aside, in the cognitive science and ML literatures, the complementary learning sys-

tems approach is usually conceived of as a way to improve the ability to learn from experience.

Intuitively, this makes sense—maintaining a store of instances in the fast system allows the

slow system to learn about both individual instances and relations among instances. Indeed,

machine learning approaches inspired by the CLS approach have yielded impressive results,

such as in deep Q-learning [35], which successfully learned to play several Atari 2600 games by

using a replay system similar to the proposed hippocampal system. A CLS-inspired replay sys-

tem is also used in some approaches to “continual learning” or “lifelong learning”, in which a

DNN learns different tasks at different times, and must prevent training on later tasks from

causing “catastrophic forgetting” of the earlier tasks [36]. A generative model of previously-

seen concepts can be used to produce training exemplars that maintain performance on a pre-

vious-learned task [37–39].

Our hypothesis, while not at all incompatible with the complementary learning systems

approach, can be distinguished in two important ways. First, while it also depends in part on

learning from an internal store of instances, it functions primarily to learn tasks with which

the learner does not necessarily have any explicit experience with whatsoever, instead of

merely supplementing actual experience. For example, while a person may have learned the

concepts of “cat” and “dog”, this does not mean that they actually have the ability to distinguish

sensory input corresponding to these two classes, especially if they have no experience doing

so. Our hypothesis describes how this “last mile” is achieved without explicit external training.

In this sense, runtime learning can be seen as a “deconsolidation” process, which converts

knowledge from an abstract, general form into one that can be used for particular tasks.

Second, while the “tutoring” of the slow system by the fast system in the complementary

learning approach is usually considered to be relatively slow, and to frequently take place dur-

ing the brain’s “down time” during rest and sleep (dreaming is frequently cited as a possible

example of complementary learning in action [40, 41]), our hypothesis is intended to describe

the brain’s fast response to an immediate and possibly suddenly relevant task. These differ-

ences suggest a way of combining runtime learning and complementary learning systems to

form a learning system trinity: a fast instance-based learner, as in conventional complementary

learning systems, as well as a generative (or otherwise abstract) learner taught, at least in part,

by the fast learner, that learns to produce valuable instances, and finally a runtime learner that

uses generated instances to quickly learn to perform the current task.

1.2.4 Attention and working memory. An important implication of runtime learning is

that preparatory adaptation is also one of the components of attention: one way of attending to

something is by being prepared to process it. Indeed, under some circumstances one can inter-

pret runtime learning as an attentional process, determining what task to focus on by the selec-

tion of training exemplars and initializations (which in turn determines the action of attention

at lower levels, such as which objects and features are represented). This could explain certain

types of inattentional blindness, in which unexpected, irrelevant stimuli are missed, yet are

obvious when explicitly pointed out [42–44]. For example, in the famous “invisible gorilla”

experiment, participants instructed to count the number of times a group of people passed a

ball amongst themselves missed a gorilla walking through the scene [42]. Similar effects have

been found in other experiments [45, 46], and can even occur despite fixation [47].

This sort of internally-directed attention is especially important in working memory, the

short-term, capacity-limited storage and manipulation of information in an especially accessi-

ble form in service of immediate cognitive processes and goals. Working memory requires

attention to highlight not only aspects of the content of perception, but also the contents of

long-term memory that are relevant to the current circumstances; current models of working

memory use attention to manage interactions with long-term memory by controlling what
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representations are maintained. Indeed, [48–51] has created an influential model that

describes working memory as the selective activation of portions of long-term memory by

capacity-limited attention, while [52, 53] consider working memory to have several specialized

components, many of which are at least partly concerned with accessing and storing informa-

tion from long-term memory using an attention mechanism. In any event, runtime learning

may give us a more precise description of what placing information in long-term memory into

working memory entails.

1.2.5 Executive control and task switching. Goal-driven behavior is managed by a set of

functions grouped together as “executive control”, which is generally considered to be centered

in the prefrontal cortex. Runtime learning suggests that one of the main functions of the cen-

tral executive is to determine what concepts are relevant to the current task and to direct the

summoning of exemplars of those concepts from memory to use to train an appropriate

model. Executive control is often examined using task-switching experiments, in which partic-

ipants must rapidly adjust to performing different tasks [54]. Task-switching studies have

revealed that there is a performance cost to switching from one task to another compared to

repeating the same task [55]. This cost is decreased (although not necessarily eliminated) as

the amount of time between the appearance of the cue indicating the switch and the presenta-

tion of the new task increases [55–57], which supports the idea that, when possible, some form

of endogenous preparation or reconfiguration occurs prior to the task shift, although it is not

precisely known what exactly this reconfiguration consists of.

It is possible, at least under some circumstances, that the preparation involved in task-

switching is a form of runtime learning; that is, task preparation consists of performing and

learning from an endogenous, self-administered, self-supervised version of the task being pre-

pared for. However, in general, runtime learning is intended to account not for repeatedly

switching between familiar tasks over relatively short timescales, but for preparing to perform

idiosyncratic and/or unfamiliar tasks by converting abstract knowledge into a directly applica-

ble form, which requires more than the reinstatement of previously-learned and possibly still-

extant rules. Regardless, the evidence for preparation in experimental task-switching settings

supports the plausibility of runtime learning in general.

1.2.6 Mental practice and imagery. Relatedly, work in “mental practice” also seems to

indicated that the basic tenets of runtime learning are plausible. In mental practice, people

consciously visualize (or otherwise imagine) stimuli and the performance of an associated task

in order to prepare for actually performing the task [58–60]. While early research was tentative

in giving a role to practice in the performance of physical tasks (which is the typical domain

that mental practice is considered and studied in), it has since been firmly established that it

can have significant impact, sometimes almost as much as overt practice [61], and may even

be helpful for neurological rehabilitation [62]. The benefits of mental practice have been found

in a variety of motor skills, including music performance [63] and athletics [64]. [65] devel-

oped a theory of mental practice involving the priming of connections between nodes corre-

sponding to the various components of a task (such as muscle movements).

Mental practice has been investigated using a variety of methodologies, including positron

emission tomography [66] and transcranial magnetic stimulation [67]. The findings indicate

that mental practice causes physical changes in the brain associated with neuroplasticity,

including muscle representation in cortex [68], synaptic connectivity [67], and activity levels

[66]. Presumably, if mental practice can be used to train the brain in a way similar to actual

physical activity, then perhaps internal exemplars can be used to train the brain in a manner

similar to real, external exemplars.

The principles underlying runtime learning may overlap with mental practice (and mental

imagery) to some degree, although it differs in that the tasks are not necessarily familiar ones,
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and it is not necessarily a conscious process, nor is it primarily intended to account to perfor-

mance in motor skills, as mental practice usually is (although of course it could be used for such

purposes). Perhaps most importantly, runtime learning explicitly draws an analogy between the

internal training process and conventional external training, which incidentally gives a mecha-

nism by which mental practice itself might conceivably also work. In any event, the effects of

mental practice and preparation in task-switching seems to render our proposal plausible.

1.2.7 Active learning. A key conjecture of the runtime-learning hypothesis is that people

learn from “high quality” data items. An important way in which people can obtain high-qual-

ity data is through active or self-directed learning [69–71]. In active learning, people are able

to choose their own probes of the environment so as to, for example, receive data that maxi-

mizes the amount of new information they obtain or that minimizes their uncertainty about a

task-relevant concept. Because people choose which data items to receive from the environ-

ment, learning can be rapid and efficient.

Like active learning, runtime learning supposes the identification of items that are especially

valuable for learning a particular task. Many of the stimuli that would be selected by active

learning would presumably be valuable for runtime learning. Unlike active learning, however,

these valuable items are summoned from memory instead of found in the environment. Also

unlike active learning, runtime learning uses these valuable examples to learn to perform tasks

without external training, rather than to make external training more efficient.

1.3 Runtime learning in context

We now describe how runtime learning can be combined with earlier theories of learning and

memory to form a more complete picture. When exemplars of a concept are encountered, the

brain first stores them in a relatively concrete form (as in the fast hippocampal system, accord-

ing to the complementary learning systems hypothesis [24, 25]). These exemplars may repre-

sent the instances that were actually experienced, or, in line with evidence of abstraction in the

hippocampus, may be somewhat abstracted (as in the multiple cluster prototypes of some

exemplar models). In the short term, these stored representations can be used more or less as-

is for processes such as recognition involving a recently-learned concept, including using them

as training data for runtime learning.

In the long term, the representations may be consolidated into a more abstract form suit-

able for storage (presumably in the neocortex). Depending on the circumstances, this abstrac-

tion may take one of several forms. Again, it may take the form of cluster prototypes, as in

exemplar models such as the Varying Abstraction Model [18] or the SUSTAIN model [19].

Alternatively, it may take the form of a generative model of the concept that can synthesize an

arbitrary number of exemplars. This generative model may be specifically trained to output

exemplars that are particularly valuable for training, as in Generative Teaching Networks [15].

When a novel task involving familiar concepts is encountered or expected, the relevant con-

ceptual memory is “deconsolidated” by either summoning the corresponding stored prototype(s)

or synthesizing exemplars using the appropriate generative models, then using them to rapidly

train a discriminative model for the task. For more efficient learning, the discriminative model

may be initialized with parameters primed for tasks of a similar type (as in meta-learning).

2 Methods

2.1 Ethics statement

All behavioral experiments with human participants (1, 2, and 3) were approved by the

Research Subjects Review Board of the University of Rochester. Experiments were adminis-

tered using the world wide web, and participants gave their consent by clicking on a button.
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2.2 Computer simulations

All computer simulation results that we report are based on an image classification task. We

used images and class labels from the CIFAR-10 data set [72]. The original dataset contains

60,000 color images (each image is 32 × 32 pixels) in ten classes (6,000 images per class; the ten

classes are: airplane, automobile, bird, cat, deer, dog, frog, horse, ship, and truck.). The 60,000

images are divided into 50,000 training images and 10,000 test images.

The results from a ResNet-50 classifier [73] are reported below. A ResNet model won the

2015 ImageNet Large Scale Visual Recognition Challenge [74], and ResNet models are com-

mon classifiers in the ML literature. Our ResNet-50 model was pretrained on the ImageNet

dataset. However, the model was then modified to accommodate CIFAR-10 images (which are

significantly smaller than ImageNet images). It was also modified by replacing the final output

layer of 1000 units (suitable for ImageNet) with a new output layer of 10 units (suitable for

CIFAR-10). When training ResNet-50 on our training sets, the weights of the final layer of the

model were initialized randomly. All other weights were initialized to ImageNet pretrained

values. The model was trained for 1850 epochs using the Adam optimizer and the cross-

entropy loss function. The learning rate was initialized to 0.01, and then decreased by 90%

after each 800 epochs. The remaining parameters of the Adam optimizer, β1, β2, and �, were

set to 0.9, 0.999, and 10−8, respectively.

2.3 Experiment 1

2.3.1 Subjects. The experimental study was approved by the institutional review board at

the University of Rochester. 141 participants took part in the experiment over the world wide

web via the Amazon Mechanical Turk (MTurk) crowd-sourcing marketplace. Interfacing with

MTurk was facilitated through the use of the psiTurk programming platform [75]. psiTurk

was configured so that only individuals based in the United States could participate in the

experiment. Participants stated that they were at least 18 years old and gave written consent

electronically. It took approximately 15–20 minutes to complete the experiment, and each par-

ticipant received $2.50 for their participation. The experiment consisted of practice and experi-

mental phases (see below), and bonuses of $0.30, $0.40, and $0.50 were awarded for 70%, 80%,

and 90% accuracy during the experimental phase.

2.3.2 Stimuli. The experiment used stimuli from the MNIST dataset. Four digits (1, 2, 4,

and 7) were used during the practice phase (2 instances of each digit), and a different four dig-

its (3, 5, 6, and 8) were used during the experimental phase (20 instances of each digit for each

participant). The latter digits were chosen based on examination of published confusion matri-

ces for MNIST recognition systems [76–78], as we wanted stimuli that participants would have

a relatively high chance of misclassifying. Participants were randomly assigned to one of four

groups, where each group saw different sets of instances of each digit. Thus, there were a total

of 4 groups × 4 digits × 20 instances per digit per group = 320 instances of digits used in the

experiment.

2.3.3 Procedure. During the practice phase of the experiment, on each trial, subjects

viewed a display which showed a fixation cross for 500ms, followed by a random noise mask

consisting of black and white pixels for 100ms, then one of the handwritten digits for 100ms,

and finally another noise mask for 100ms. Following this stimulus presentation, participants

were asked to press the key corresponding to the identity of the digit (e.g., the “1” key in

response to the display of a 1). Importantly, the task was often challenging, due to the short dis-

play time of a digit and the presence of the forward and backward noise masks. Each partici-

pant completed 8 trials during this phase. Digit instances were used in random order, but each

instance was guaranteed to appear exactly once. Responses and response times were recorded.
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Data from the practice phase were not analyzed. This phase served to familiarize participants

with the experimental procedure and general characteristics of the stimuli.

After the practice phase, participants completed the experimental phase. Procedurally,

experimental trials were identical to practice trials (though, of course, they used different dig-

its). As in the practice phase, digit instances were used in random order, but this time each

instance was guaranteed to appear exactly two times, for a total of 160 trials (4 digits × 20

instances per digit × 2 displays per instance). To help maintain interest and attention, every

twenty trials participants were informed of how many correct responses they made during

those trials (although they were not told which trials they had answered correctly).

2.4 Experiment 2

2.4.1 Participants. This web-based experimental study was conducted in a manner sim-

ilar to Experiment 1. 123 participants took part in the experiment. The experiment took

approximately 30–45 minutes to complete, and each participant received $6.00 for their

participation. The experiment consisted of training and test phases (see below), and

bonuses of $0.60, $0.80, and $1.00 were awarded for 70%, 80%, and 90% accuracy during

the test phase.

2.4.2 Stimuli. The experiment used stimuli from the Devanagari Handwritten Character

Dataset [79], an MNIST-like dataset consisting of handwritten exemplars of characters of

Devanagari, a Brahmic script used to write languages such as Hindi. It is assumed that these

characters are generally unfamiliar to participants in the United States, and thus can be consid-

ered “novel” for our purposes. Four characters (known as “tabala”, “waw”, “patalosaw”, and

“ha”) were used. Each character was arbitrarily associated with the Arabic digit 1, 2, 3, or 4

(e.g., all “tabala” characters were associated with 1). Four sets of stimuli were constructed, each

consisting of 20 randomly-selected exemplars of each character (for a total of 80 exemplars in

each set). Thus, there were a total of 4 groups × 4 characters × 20 instances per character per

group = 320 instances of characters used in the experiment. Participants were randomly

assigned to see one of the four groups during the training phase, and one of the remaining

three groups during the test phase, and during both phases each exemplar in the group was

seen twice.

2.4.3 Procedure. During the training phase of the experiment, on each trial, subjects

viewed a display which showed a fixation cross for 500ms, followed by a random binary noise

mask for 250ms, then one of the handwritten characters for 500ms, and finally another noise

mask for 250ms. Following this stimulus presentation, participants were asked to press the key

corresponding to the identity of the character. After making their response, participants

viewed a screen which informed them of the correct answer. Using this feedback, subjects

could learn to perform the classification task—via trial and error—with these novel stimuli.

Importantly, the task was often challenging, due to the short display time of a character, the

presence of the forward and backward noise masks, and the novelty of the stimuli. Each partic-

ipant completed 160 trials during this training phase. Character instances were used in ran-

dom order, but each instance was guaranteed to appear exactly twice. Responses and response

times were recorded. Data from the training phase were not analyzed.

After the training phase, participants completed the test phase. Procedurally, test trials were

identical to training trials, but used a different group of exemplars. In addition, mask and stim-

ulus presentation times were shortened to 100ms each. As in the training phase, character

instances were used in random order, and each instance was guaranteed to appear exactly two

times, for a total of 160 trials (4 characters × 20 instances per character × 2 displays per

instance). To help maintain interest and attention, every twenty trials participants were
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informed of how many correct responses they made during those trials (although they were

not told which trials they had answered correctly).

2.5 Experiment 3

2.5.1 Participants. This web-based experiment was conducted in a manner similar to that

of Experiments 1 and 2. 88 participants took part in the experiment. The experiment took

approximately 25–35 minutes to complete, and each participant received $4.50 for their partic-

ipation. The experiment consisted of training and test phases (see below), and bonuses of

$0.50, $0.60, and $0.70 were awarded for either 50%, 60%, and 70% accuracy or 40%, 50%, and

60% accuracy, for participants who were trained with the good and bad datasets, respectively

(see below), during the test phase.

2.5.2 Stimuli and procedure. The stimuli and procedure were nearly the same as in

Experiment 2. However, participants were trained with either the “good” set (39 participants)

or the “bad” set (49 participants) identified in Experiment 2. Consequently, training lasted 40

trials (4 characters × 5 instances per character × 2 displays per instance). Stimuli used during

testing were randomly selected with the constraint that test items could not be members of the

good or bad training sets. All exemplars from the previous experiment that were not part of

either the good or bad training sets were retained, with the substitutions for the remainder

selected randomly; two substitutes ended up being used twice, for a total of 318 different test

exemplars.

2.5.3 Experiment analysis. The preceding three experiments were analyzed with the use

of a deep neural network (DNN). The DNN was a convolutional network with a convolutional

layer with 6 filters of size 5 × 5, a stride of 1, and rectified linear units, followed by a max pool-

ing layer with 2 × 2 filters and 50% dropout during training, followed by another convolutional

layer with 16 filters of size 5 × 5, a stride of 1, and rectified linear units, then another max pool-

ing layer with 2 × 2 filters and 50% dropout during training, followed by a densely connected

layer with 128 rectified linear units, a densely connected layer with 64 rectified linear units,

and finally 4 softmax output units. The weights were randomly initialized by sampling from a

He normal distribution [73] for all but the last layer, which was initialized with a Glorot uni-

form distribution [80]. All layers but the last had 50% dropout. The network was trained using

the Adam optimization algorithm [81] for 64 epochs with a batch size of 64, an alpha of 0.005,

and a categorical crossentropy loss. (Note that we are not making any particular claims about

the architecture or algorithm that is being runtime trained. As we noted earlier, many algo-

rithms for few-shot learning, such as matching networks, are compatible with runtime learn-

ing; we have used basic convolutional networks for simplicity. In fact, it would not surprise us

if it is ultimately discovered that different tasks use different architectures.)

3 Results and analysis

3.1 Computer simulations

In this section, we begin to evaluate the runtime-learning hypothesis by examining if and

under what circumstances neural networks can efficiently learn from a limited number of

training items. In particular, we investigate whether the training items identified using human

data are effective, and if and when they are better than randomly selected training items.

(However, we are not examining what methods the brain might use to identify such

instances.)

3.1.1 Datasets based on human responses. This subsection reports the results when the

ResNet-50 classifier was trained on datasets in which items were selected based on human

experimental data. [82] conducted an experiment in which subjects were asked to classify
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images from the CIFAR-10 test set. In total, these researchers collected more than 500,000

responses distributed over all 10,000 test images. Some images were classified with high confi-

dence, meaning that subjects were relatively consistent in the class labels assigned to those

images. In contrast, other images were classified with low confidence, meaning that different

subjects tended to respond to these images with different class labels.

Using this database, [82] found that training DNNs with a training set in which each item is

weighted by the inverse of the entropy (a measure of uncertainty) of the human response dis-

tribution for that item improved the performance of the trained model. Our experiment is

similar in nature, but distinct: while in their experiment the exemplars varied in importance,

they were still all included in the training set. Since we are interested in speeding up the train-

ing process, we want to examine whether we can use the human behavioral data to efficiently

reduce the amount of training required. It is plausible that the extra information included in

the weighting labels used by [82] improves performance while, at the same time, the high-con-

fidence exemplars, by themselves, are inadequate for training to a high level of performance.

Here we assess this possibility.

We evaluated the confidence with which an image was classified by calculating the entropy

of the probability distribution over classes produced by subjects. High-confidence images were

those with low entropy distributions, whereas low-confidence images were those with high

entropy distributions. High-quality, low-quality, and random training sets, denoted DHQ, DLQ,

and DR, respectively, were created as follows. DHQ and DLQ, each with 1000 images, were cre-

ated by selecting the 100 highest-confidence and lowest-confidence images from each class,

respectively. DR was created by randomly selecting 100 images from each class from the

CIFAR-10 training set. An 8000-image test set, denoted DT , was also formed, consisting of the

800 images from each class from the CIFAR-10 test set that were not part of DHQ or DLQ.

Fig 1 shows the average accuracy (percent correct) on test set DT after ResNet-50 was

trained on DHQ, DLQ, or DR. (ResNet-50 was also trained and tested on the entire CIFAR-10

dataset (50,000 training items; 10,000 test items) and achieved an average test-set accuracy of

95.65% correct.) Relative to training with random items, training with high-quality items led

Fig 1. Computer simulation results. Average accuracy (percent correct) over five runs on test set DT after ResNet-50

was trained on DHQ, DLQ, or DR. Error bars show the standard errors of the means.

https://doi.org/10.1371/journal.pcbi.1011445.g001
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to 9% better test performance, whereas training with low-quality items led to 18% worse

performance.

The results in this section demonstrate that a learning system can more efficiently learn

from a small dataset of high-quality items than from an equal-sized set of random items. Con-

sequently, when no currently suitable network is available—and thus extemporaneously learn-

ing from a small dataset is the best option—it is sensible for an agent to learn solely from high-

quality data items. This might be considered a surprising result, as in the field of ML it is gen-

erally thought that learning will be best when distributions over training and test items are the

same, so that the training items are representative of test items. Using that logic, one might

expect training with random dataset DR to lead to the best test performance, but we did not

find that to be the case. Instead, we found training with high-quality dataset DHQ to be best

despite the mismatch in distributions over training and test items. We examine this question

more thoroughly in S2 Appendix. Finally, we found that human subjects’ responses in a classi-

fication experiment can be used to identify high-quality and low-quality data items.

3.2 Interim discussion

So far, we have proposed a relationship between learning and memory, namely that people

often rapidly learn to perform tasks from small datasets of high-quality items obtained from

memory, especially when suitable previously-trained neural networks are unavailable. The

plausibility of this runtime-learning hypothesis was evaluated using DNNs and an image clas-

sification task. It was found that training with high-quality items led to better test performance

than training with random or low-quality items when item quality was based on human sub-

jects’ responses in an experimental study.

As described in S2 Appendix, similar results were found when item quality was based on

DNN performance. Moreover, it was found that the advantages of training with high-quality

items were particularly significant when training sets were very small. We conjectured that,

despite the concomitant mismatch between distributions over training and test items, train-

ing with high-quality items is sensible due to the fact that this mismatch is likely to be moder-

ate in magnitude because high-quality training items tend to be near cluster centers, and

thus help learning systems quickly learn cluster locations. Additional results showed that

high-quality items helped a DNN learn to nonlinearly map images to appropriate clusters

such that the high-quality items were near cluster centers in an abstract feature space (see S2

Appendix).

Critically, training examples identified using human behavioral data facilitated DNN learn-

ing more than other examples. This result is at least consistent with the hypothesis that

humans do indeed perform runtime learning. This interpretation allows us to conjecture why

subjects’ responses were useful for selecting training items. Presumably, the runtime-trained

networks that people use to perform a task respond most confidently to experimental test

items that resemble the valuable examples used during runtime learning. Thus, those confi-

dently-identified test items are probably valuable examples as well, explaining why subjects’

responses in a behavioral experiment are useful for selecting training items that facilitate learn-

ing. The remainder of the paper explores this idea in depth.

It should be noted that the runtime learning hypothesis is an inherently difficult one to

test, as it requires researchers to identify internal mental processes based on differences in

behavior that the hypothesis itself states are small and underdetermined. Nevertheless, we

believe that the hypothesis is an important one, and that the evidence we present is compel-

ling enough to provide significant support and encourage future investigation (both by us

and by others).
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3.3 Experiment 1

The use of symbolic reasoning algorithms such as semantic networks to select concepts is a

well-established part of classical artificial intelligence that has been demonstrated many times;

therefore, we focus on the other main aspect of runtime learning, namely that humans make

judgments based on extemporaneously-trained models, which must be trained quickly and

therefore with a relatively limited dataset. ML researchers are actively searching for new and

more effective dataset distillation algorithms. However, we wondered whether data from a

behavioral experiment with people might be useful for identifying small subsets of “good”

training items, meaning items that a learning system would find most useful. For instance, it

may be that data items which people find easy—those they respond to quickly and accurately

—are good training items for a learning system, as suggested by our results in the previous sec-

tion. We also wondered if human behavioral data could be accounted for using neural net-

works trained using a small, curated training set.

3.3.1 Analysis.

Accuracy and reaction time. We can only expect to obtain useful data from participants

who performed the task at least moderately well. Because many participants performed poorly,

presumably due to its inherent perceptual difficulty, we restricted our analyses to responses

from the subset of participants who responded correctly on at least 75% of the trials in the

experimental phase (the task is evidently quite difficult, as this left only 98 participants).

For each participant, we took the rank of that participant’s average reaction time to each

individual digit instance (across the two displays of that instance), and compared it to the aver-

age reaction time to the other instances of the same digit. Thus, for each participant, we had

four sets or rankings (one for each digit), where a set consisted of the ranking of twenty

instances of a digit. Using rank, as opposed to absolute reaction time, meant that we did not

have to normalize reaction times across participants, and also minimized the effect of outliers.

For each participant and each instance of a digit, we noted how often the participant cor-

rectly classified the instance (either 0, 1, or 2 times), and then averaged these values across par-

ticipants. To check for a relationship between accuracy and reaction time, we calculated the

Spearman’s rank correlation between the average number of correct responses to an instance

and the average reaction time rank of that instance, resulting in a correlation of −0.638,

p< 1 × 10−36. In other words, participants responded faster to instances when the instances

were more likely to be classified correctly.

Easy/difficult instances from reaction times. Having confirmed that reaction time corre-

lated with accuracy, we supposed that the speed at which responses were made could be used

as a measure of the ease with which an instance could be classified. For each instance, we con-

ducted a t-test comparing all ranks of that instance (by all the participants who saw that

instance) to all the ranks of all the remaining instances of the same digit. We thus identified

instances that had a significantly lower or higher average rank compared to other instances.

From visual inspection, the results are reasonable and intuitive. Fig 2 shows some represen-

tative examples of easy instances (left two columns) and difficult instances (right two col-

umns). Easy instances clearly exhibited the salient features of the digit, whereas difficult

instances often possessed deformities.

3.3.2 Creating small training sets. Assuming easy instances are relatively typical of their

categories, whereas difficult instances are atypical, we used the reaction time ranks from our

behavioral experiment to create small training datasets for machine learning systems. The

“bad” training set consisted of the twenty instances, five from each digit, with the most signifi-

cantly (most p< .05, all p< .07) higher average reaction time rank than the other instances.

The “good” training set consisted of the twenty instances, five from each digit, with the most
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significantly (most p< .05, all p< .07) lower average reaction time rank. (We disqualified and

excluded one otherwise significant “5” exemplar because it was never correctly identified by

any participant due to its close resemblance to a “6”. The speed of its reactions were therefore

not due to its typicality or ease of identification as a “5”.) Finally, we also constructed several

“random” training sets of randomly chosen instances (subject to the constraint that, as with

the other two sets, they each contain five instances from each digit).

However, even with the most valuable 20 training items, it is unreasonable to expect a

training set of this size to be able to train a neural network (or other classifier) to do anything

besides overfit. For this reason, we used data augmentation to increase the sizes of the sets.

In this augmentation, the set of black pixels in each instance were shifted left or right and/or

up or down one pixel, and/or rotated left or right by 10 degrees to produce additional

instances of the same digit. For each training set, this resulted in 540 data items (9 possible

shifts × 3 possible rotations × 20 initial instances). In addition to the good, bad, and random

sets, we also applied this procedure to the “full set”, consisting of all 320 instances used in the

behavioral experiment, so that the resulting training set (with 9 × 3 × 320 = 8640 items)

could be used to establish a baseline level of performance to compare with the performances

achieved following training with smaller sets. (We chose this baseline, instead of using all

23,321 relevant exemplars in the MNIST database, because we wanted to limit the compari-

son only to exemplars that analysis of our experimental data could possibly have identified as

valuable.) These training sets were used to train a deep convolutional network, described ear-

lier under Methods.

Fig 2. Easy and difficult MNIST instances. The left two columns show “easy” instances of Arabic digits (i.e., instances

with significantly below average reaction time ranks), whereas the right two columns show “difficult” instances.

https://doi.org/10.1371/journal.pcbi.1011445.g002
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Network accuracy. After training, a network was tested on the 3,834 relevant exemplars

from the MNIST test set. Each dataset was used to train one hundred randomly initialized

networks. Results are shown in Fig 3. Networks trained on the bad training set performed

worst, networks trained on the random sets performed better, networks trained on the

good set performed even better, and networks trained on the full set performed best, with

the differences between all pairs being significant (p< .001 in all cases). Even though the

full set contained 16 times as many training items as the good set, networks trained on the

full set performed only 5% better. Overall, these results suggest a connection between ease

of participant classification and training value for machine learning algorithms, and estab-

lishes that a small curated dataset can be used to train neural networks to a high level of

performance.

The point of this analysis is not simply that using the “good” subset is almost as effective as

the full subset; rather, the most important point is that it is better than randomly selecting

exemplars (and better at a high level of significance). This means that if, as we claim, our par-

ticipants’ judgments must be based on a relatively limited number of exemplars, then these

exemplars are especially valuable ones and therefore the logical choice to use under those cir-

cumstances. In experiment 3, we will examine whether the exemplars identified using this

method are indeed especially valuable for humans. For now, we will next analyze whether our

results support the notion that humans are basing their judgments on a limited training set

such as this.

3.3.3 Accounting for subject reaction times. In this subsection, we account for subject

reaction times in our experiment by modeling reaction times with network confidences.

Fig 3. DNN accuracy by training subset for MNIST. Average test-set accuracies for neural networks trained on bad,

random, good, and full training sets (numerical values are shown above the bars), based on training one hundred

randomly-initialized networks on each training set. Error bars show standard errors of the means. Brackets indicate

the level of significance at which pairs are different: ���: p< 0.001; ��: p< 0.01; �: p< 0.05; n.s.: p> 0.05.

https://doi.org/10.1371/journal.pcbi.1011445.g003
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Modeling reaction times with network confidences. Because we used a softmax activation

function for our network’s output units, along with a categorical crossentropy loss during

training, we can interpret the activation values of these units as category probabilities. For each

data item, we used the entropy of the probability distribution defined by the activation values

of the output units as a measure of a network’s “confidence” (e.g., when entropy is low, the net-

work can be considered confident in its answer). Presumably, participant reaction time simi-

larly reflects some form of confidence in a response, with faster reaction times indicating

higher confidence, so the question arises whether there is a relationship between participant

reaction time to a stimulus and network confidence in its answer for the same stimulus.

However, it is not immediately obvious what the proper way to compare these two quanti-

ties is. Human response time is not solely determined by the decision process, but is also

affected by other factors such as planning and executing the motor response. Thus, even if our

network perfectly replicated the human decision process, we would not expect the distribution

of response times and the distribution of network confidences to match exactly. But with some

consideration of what we know about human reaction time, perhaps we can determine how

the distributions of these quantities should be related.

Human reaction times under diverse circumstances can be accurately described by various

models that treat the decision process as one of stochastic evidence accumulation toward one

or more thresholds or boundaries, with prominent examples including the Drift Diffusion

Model [83–85], the Leaky Competing Accumulator [86], and the Linear Ballistic Accumulator

[87]. These models generally use similar psychologically relevant parameters, including latent

period length (the amount of time devoted to non-decision processes that act to shift the distri-

bution of reaction times to the right), the boundary separation (the locations of the boundaries

or thresholds denoting different decisions), and the drift (the rate at which evidence support-

ing a particular decision is stochastically accumulated).

Importantly, of these parameters, only the drift is influenced by the individual stimulus pre-

sented in a particular trial, with high drifts being produced by the presence of high-quality evi-

dence—the rate at which evidence can be gathered is obviously limited by the amount of

evidence present to begin with. In contrast, the boundary location is preselected, and the non-

decision component is presumably fixed. Therefore, any systematic effect the individual exem-

plars have on the distribution of reaction times (and by extension, the summary statistics of

that distribution) is due to their effect on drift, and we can use the mean reaction times to a

particular stimulus as a proxy for the drift induced by that stimulus, with low means indicating

high drift rates.

Turning now to the neural networks, they obviously have no nondecision component to

their responses, and due to the softmax activation function that determines their output, they

have nothing corresponding to boundary separation either. Furthermore, trained neural net-

works, as least as they are commonly used, are deterministic and have no stochastic compo-

nent. However, the values in the output units can be readily interpreted as representing the

relative amount of evidence for each possibility, and the entropy of these units can be seen as

quantifying how concentrated the evidence is. Intuitively, this corresponds to the drift rate in

the diffusion model: low entropy corresponds to high confidence and high drift rate.

Therefore, to the extent that the neural networks reflect the human decision process, we

would expect to see a correlation between the mean reaction time to a particular exemplar and

the entropy of neural network responses to that exemplar. We thus found the Spearman’s cor-

relation coefficients between the mean of human reaction times (which were normalized such

that each participant’s reaction times to all the exemplars they saw summed to 1) to an exem-

plar and the mean confidence (similarly normalized) induced by the same exemplar in 100

neural networks set up in the same way as before and trained on each of the good, bad,
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random, and full training sets. We also found the Spearman’s correlation coefficients between

the mean of human reaction times and the confidences of each network. The results, shown in

Fig 4 (left graph), indicate a moderately strong and highly significant correlation for networks

trained on the good set, lesser correlations for random sets and the full dataset, and a negative

correlation for networks trained on the bad set. (Some readers may be surprised by the nega-

tive correlation exhibited by the networks trained on the bad subset. We believe this negative

correlation is due to the networks trained on the bad set learning to rely on different, possibly

less useful features than humans and networks trained on the good set. These features may be

just as present, or even more so, in exemplars that the other networks are less confident in.

Thus the networks trained on the bad subset may have confidence in different exemplars, and

thus negatively correlated. To put it another way, if “bad” exemplars are far from the true clus-

ter centers, then models trained on them will be most confident on exemplars that are also far

from the cluster centers, the opposite of the trend seen in humans and “good”-trained models,

which are confident in exemplars close to the cluster centers.) Furthermore, the individual cor-

relations produced by the good set were different from those of other sets at a higher level of

significance. Thus, based on both the direction and magnitude of the correlation, networks

trained on the good training set provide the best account of participants’ reaction times in our

experiment. This provides intriguing evidence that, consistent with the runtime-learning

hypothesis, participants in our experiment may have categorized stimuli based on a small set

Fig 4. Correlation between human reaction time and DNN confidence for MNIST. Spearman rank correlation

coefficients between the mean of networks’ confidences and the mean of normalized participant reaction times, based on

training one hundred randomly-initialized networks on each training set. The left, blue bar is the correlation between the

mean network confidence for each exemplar and mean human RT for the same exemplar; the right, orange bar is the

mean of the correlations between each network’s confidence and mean human RT, with error bars representing standard

errors of the means. Asterisks above bars indicate the level at which the correlation was significantly different from zero;

asterisks on brackets indicate the level at which pairs of sets of correlations are different from each other: ���: p< 0.001;

��: p< 0.01; �: p< 0.05; n.s.: p> 0.05.

https://doi.org/10.1371/journal.pcbi.1011445.g004
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of good exemplars. In S3 Appendix, we further analyze this data using a drift-diffusion model

of human reaction times, with similar results.

3.3.4 Discussion. Our results demonstrate a congruence between the ease with which

an exemplar of a category is classified by participants and the usefulness of that exemplar

in training a DNN to recognize that category. We explain this by postulating that partici-

pants similarly complete the task by training a network using especially valuable examples,

and the most easily identified test examples are valuable because they are similar to these

hypothetical valuable training set examples, and are thus valuable themselves. This expla-

nation is further supported by relatively large correlations of the confidence values of net-

works trained on the valuable examples with both participant reaction times and fitted

drift rates.

The high correlations associated with the good dataset cannot be explained merely as due

entirely to correlations involving the specific exemplars used to train the neural networks;

these correlations seem much too large to be produced by only these few exemplars. A reason-

able conclusion is that these correlations exist because training with the good dataset yields

neural networks with similar “reaction times” to our human participants across a relatively

large range of the probability distribution over the stimulus space. That is, training on a small

but curated dataset produces the best match in reaction times throughout the distribution. In

contrast, a model that was simply overfit to the training set would not be expected to be so cor-

related with the human data.

3.4 Experiment 2

If, as we hypothesize, preparing to perform a task involves summoning particularly valuable

exemplars for internal training, part of the process of learning is the identification and storage

of those exemplars for later retrieval. One possible (although not necessary) consequence of

this would be that even when people have the opportunity to learn from many environmen-

tally-provided examples, their performance on a task is reflective of training on a limited sub-

set of those examples, namely the most valuable ones (or valuable abstractions, as in the

exemplar models that learn cluster prototypes). In other words, people would be immediately

putting their learning of valuable examples into practice by giving those examples exclusive

importance during the concurrent training process. To examine this possibility, we conducted

an experiment similar to Experiment 1, but which required participants to first learn to per-

form the classification task on unfamiliar characters from the Devanagari alphabet, instead of

relying on prior knowledge.

3.4.1 Analysis. Because not all participants adequately learned the character classification

task, we restricted our analyses to responses from the subset of participants who responded

correctly on at least 75% of the test trials (leaving 54 participants). We subjected these partici-

pants’ test data to the same rank-based analysis as used in Experiment 1, thereby identifying

exemplars that participants were particularly (all p< .08, most p< .05) quick or slow to cate-

gorize (see Fig 5 for examples). This analysis allowed us to create good and bad training sets.

As before, each set consisted of 5 instances of each character.

As in Experiment 1, we trained neural networks with good and bad training sets, with ran-

dom training sets (each set contained 5 randomly selected instances of each character), and

with a full training set (consisting of all 80 instances of each character used in the experiment).

In each training condition, one hundred randomly-initialized DNNs were trained, and data

augmentation was used as described above. Following training, networks were tested on the

relevant items from the Devanagari Handwritten Character Dataset test set. Test-set accuracies

are shown in Fig 6. As expected, network performance was worst with the bad training set,
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better with the random set, and even better with the good set, with the differences between all

pairs significant at p< .001.

We also computed correlations between network confidences and participants’ mean nor-

malized reaction times (as in Experiment 1). Correlation coefficients are shown in Fig 7. Cru-

cially, DNNs trained on the good training set once again provided the best account of

participants’ reaction times in magnitude, direction, and significance level. Analysis based on a

drift diffusion model is presented in S3 Appendix. We also present a number of variations of

our analysis in S4 Appendix with the aim of reducing the possibility that our results are due to

some sort of artifact.

3.4.2 Discussion. The data from Experiment 2 exhibit the same general patterns of results

as those from Experiment 1 in both our performance-based and confidence-based analyses.

However, the magnitude of the performance effect is lower than with the MNIST digits, which

is what we would expect. Our participants in Experiment 1 have been using Arabic digits for

years, and although they would have to adapt to our specific task, they already have a very

good sense of what “good” examples of each of those digits are. On the other hand, participants

in Experiment 2 are identifying valuable examples based on very limited training, so it is not

surprising that those exemplars, while more effective than average, are not the best possible.

Thus, while the good subset usually (and significantly) outperforms the random subset,

Fig 5. Easy and difficult Devanagari instances. The left two columns show “easy” instances of Devanagari characters

(i.e., instances with significantly below average reaction time ranks), whereas the right two columns show “difficult”

instances.

https://doi.org/10.1371/journal.pcbi.1011445.g005
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occasionally the random subset will by chance consist of exemplars that are even more effec-

tive, reducing the difference between the performance produced by the good and random sub-

sets. This effect may be further strengthened because, as can be seen from the overall level of

performance, the Devanagari characters are more difficult to learn than the Arabic digits. At

the same time, the correlation effect remains relatively strong, indicating that the good subset

really does capture something important about the learning processes underlying our partici-

pants’ performance.

These patterns suggest that even when participants had access to many training exemplars,

they selectively learned only from a subset of particularly valuable ones. The fact that, in both

experiments, a DNN trained on the good set provides the best account of participants’ reaction

times is, to us, both surprising and intriguing. It provides compelling data consistent with the

runtime-learning hypothesis, and suggests that DNNs are capturing the role of the training set

beyond mere performance.

Why would people use (primarily or exclusively) only a limited selection of training data?

Assuming training and test instances are drawn from the same distribution, the theoretically

optimal procedure (from a conventional ML perspective) is to use all data. When we consider

conventional ML procedures, however, we see reason to believe this may not be sensible for

people. Typically, ML systems are indeed trained on all available data but, importantly, they

are trained such that they traverse the dataset multiple times. After a single traversal (or

epoch), they are usually still far from their peak performance. Computers can store all exam-

ples in the training set in memory but, for people, the brain’s capacity to store every instance is

probably much more limited. The brain is thus faced with a choice: either attempt to learn

Fig 6. DNN accuracy by training subset for Devanagari. Average test-set accuracies for neural networks trained on

bad, random, good, and full training sets (with data augmentation), based on training one hundred randomly-

initialized networks on each training set. Error bars show standard errors of the means. Brackets indicate the level of

significance at which pairs are different: ���: p< 0.001; ��: p< 0.01; �: p< 0.05; n.s.: p> 0.05.

https://doi.org/10.1371/journal.pcbi.1011445.g006
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from the “true” data distribution (e.g., by learning from each training example only once) or

store a few representative training instances and traverse this set multiple times. Unless the

number of training examples presented is very small, the latter strategy is intuitively superior

(given people’s attentional, memory, and other cognitive limitations), as it allows people to

execute numerous training iterations over a small curated set of valuable training items stored

in memory. Furthermore, the brain could keep the instances stored for use in training for a

later task, an integral component of the runtime-learning hypothesis. Our results here suggest

that the brain has adopted this latter strategy.

We therefore describe the hypothetical runtime learning process performed by the human

participants in this experiment as follows. During training, each participant stores exemplar

representations of each of the concepts (as in exemplar models). At each trial, the exemplar is

either added to the collective representation, or used to modify one or more of the exemplars

already in the representation, analogous to modern exemplar-based models of category under-

standing. This approach allows a good collective representation without storing every exem-

plar (which, as we just described, would be impractical). Simultaneously, the exemplars

currently in the representation are being continuously used to train a discriminative neural

network. As the representation becomes better and better, the training of the discriminative

network will quickly become dominated by the valuable exemplars. With sufficient training—

which may or may not have occurred in this particular experiment—generative models of the

Fig 7. Correlation between human reaction time and DNN confidence for Devanagari. Average Spearman rank

correlation coefficients between networks’ mean normalized confidences and participant’s mean normalized reaction

times based on training one hundred randomly-initialized networks on each training set. The left, blue bar is the

correlation between the mean network confidence for each exemplar and mean human RT for the same exemplar; the

right, orange bar is the mean of the correlations between each network’s confidence and human RT, with error bars

representing standard error of the means. Asterisks above bars indicate the level at which the correlation was

significantly different from zero; asterisks on brackets indicate the level at which pairs of sets of correlations are different

from each other: ���: p< 0.001; ��: p< 0.01; �: p< 0.05; n.s.: p> 0.05.

https://doi.org/10.1371/journal.pcbi.1011445.g007
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concepts may also be constructed and retained in long-term memory, to later be summoned

when encountering a task involving them and used to produce exemplars, as in the first

experiment.

3.5 Experiment 3

To support the runtime-learning hypothesis, we have relied primarily on two forms of evi-

dence: correlations between DNN confidences and both participant reaction times and fitted

drift rates, and DNN performance when trained on subsets of exemplars identified by analyz-

ing participant reaction time. Concerning the former, although DNNs trained with the good

training set provided the best account of participant reaction time data, it is not necessarily

true that this actually tells us anything definitive about any purported subset used for internal

training. For the latter, while we have demonstrated that the exemplars participants responded

most quickly and accurately to form a good training set for training DNNs (relative to other

equal-sized sets), it is not inevitable that humans will show this same property when trained on

a comparable task. To address these concerns, we conducted an experiment in which we

explicitly manipulated the training sets used by participants.

3.5.1 Analysis. We scored each participant’s test data for accuracy. To determine whether

the assigned training set had a significant effect on test-set accuracy, we conducted a t-test

comparing the accuracies of participants trained on the good and bad training sets. Unlike in

previous analyses, we did not apply a performance threshold for inclusion in the analysis, as

this time performance was the key measure we were interested in. We found that participants

trained on the good set scored significantly higher than participants trained on the bad set

(mean 51.3% for the good set, 36% for the bad set, p< .01), indicating that participants (like

DNNs) learn better from high-confidence exemplars.

We next calculated the Spearman rank correlations between DNN confidences and partici-

pants reaction times, as was done in the analyses of Experiments 1 and 2. Unlike the analyses

of previous experiments, here we used the reaction times of participants with test-set accura-

cies of at least 50%—as opposed to the 75% threshold used previously—reflecting the brief

training phase of this experiment which increased the difficulty of learning the classification

task. This left 15 participants trained on the good set and 9 trained on the bad set. (We recog-

nize that this is a small sample size, but the difficulty of this experimental condition makes it

inherently difficult to obtain participants with good classification performance, as most partic-

ipants do not do well. Fortunately, this portion of Experiment 3 is actually not the truly impor-

tant part—what matters is the fact that participants trained on the good subset perform better

than participants trained on the bad subset, a result derived from much more data.)

The results are shown in Fig 8. The four pairs of bars in the graph correspond to the four

possible combinations of DNN training and participant training. For example, the first bar

pair, labeled “Good/Good”, shows the Spearman’s correlation (averaged across one hundred

runs of randomly initialized DNNs) between mean confidences of DNNs trained with the

good training set (including data augmentation) and mean normalized reaction times of par-

ticipants trained with the good training set, along with the mean of the individual correlations.

For participants trained with the good set, DNNs trained with the good set provided better

accounts of their reaction times than DNNs trained with the bad set. In contrast, for partici-

pants trained with the bad set, DNNs trained with good or bad sets both provided poor

accounts of the reaction time data.

3.5.2 Discussion. The results validate the analyses performed for the earlier experiments:

not only do DNNs learn better from the exemplars participants respond to most quickly and

accurately, participants themselves also learn better from those same exemplars. Although this
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is “external” learning, and not the “internal” learning that is central to the runtime-learning

hypothesis, the results support the plausibility of the hypothesis that people store especially

valuable exemplars for on-the-fly internal training.

Another interesting result is that we validated the use of reaction time correlations with

neural network confidence as a method of uncovering the exemplars used in this internal

training. The method correctly identified networks trained on the good dataset as providing

the best account of the reaction times of participants trained on the good dataset. Just as

importantly, these networks did not provide as good an account for the reaction times of par-

ticipants trained on the bad dataset. The fact that even networks trained on the bad dataset did

not provide an especially good account of participants trained on the bad dataset is perhaps

not surprising, considering how poorly those networks generalize. If training on bad exem-

plars results in not only poor but also inconsistent performance, both by neural networks and

humans, we would not expect to see correlations. Considering how difficult our participants

evidently found the task when trained with the bad subset, they may have been unable to “con-

verge” to similar “bad” solutions—after all, there are many more ways to misunderstand a task

than to understand one, and with minimal experience on the poor exemplars, they may have

focused on a variety of different “alternative” features. If they all (mis)understood the relevant

concepts in different ways (choosing different features), then once aggregated we would not

expect there to be much chance of significant correlations, since their judgments did not align

Fig 8. Correlation between human reaction time and DNN confidence for different training set-training set pairs.

Spearman rank correlation coefficients between mean network confidences and participants’ mean normalized reaction

times. The four pairs of bars correspond to the four possible combinations of DNN training (good versus bad training

sets) and participant training (good versus bad training sets), with the first word in a label indicating the DNN training

condition and the second word indicating the participant training condition. Averages were computed based on training

one hundred randomly-initialized DNNs in each combination. Asterisks indicate the level at which the correlation was

significantly different from zero; asterisks on brackets indicate the level at which pairs of sets of correlations are different

from each other: ���: p< 0.001; ��: p< 0.01; �: p< 0.05; n.s.: p> 0.05.

https://doi.org/10.1371/journal.pcbi.1011445.g008

PLOS COMPUTATIONAL BIOLOGY Rapid runtime learning

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011445 October 4, 2023 24 / 32

https://doi.org/10.1371/journal.pcbi.1011445.g008
https://doi.org/10.1371/journal.pcbi.1011445


in a meaningful way. It is also true that the bad correlations were already weaker in previous

experiments, making them more susceptible to this issue. In any event, the results are consis-

tent with the idea that the correlations found in earlier experiments may indeed reflect the

effective training sets of the human participants.

4 General discussion

In summary, we have proposed the runtime-learning hypothesis which states that people han-

dle idiosyncratic or unfamiliar tasks by drawing on stored instances of concepts relevant to the

task to rapidly learn the appropriate function. Unless the task is predicted ahead of time, this

learning takes place after the task is first presented. To make learning fast enough for this to be

feasible, the hypothesis claims that only a few stored class instances are used, but these

instances are especially valuable for training. We initially motivated the hypothesis by describ-

ing related ideas from the cognitive science and machine learning literatures. If people main-

tain a store of valuable examples of various (overlapping and hierarchical) categories, along

with attribute labels and other knowledge, then even if a task has never been encountered

before, a person can quickly organize a training set of valuable examples tailored to that task,

possibly by using symbolic or graph neural network data structures and reasoning operations

of the type that have been studied in cognitive science and AI for many years [4–8]. Using

computer simulation, we showed that DNNs can learn effectively from small, curated training

sets, and that valuable training items tend to lie toward the centers of data item clusters in an

abstract feature space (S2 Appendix). Using behavioral experiments, we showed that people

too can learn effectively from small, curated training sets. Perhaps the most compelling behav-

ioral result is that people’s reaction times and fitted drift rates are best accounted for by the

confidences of DNNs trained on small datasets of highly valuable items.

These results are exactly what the runtime learning hypothesis would predict, and at the

same time the runtime learning hypothesis provides the best explanation for them that we are

aware of. (A potentially contradictory result would have been the full dataset providing the

best account, as this would have indicated that people may make their decisions based on

extensive training on the task that may not be possible to perform rapidly. The random subset

being as effective as the good subset in explaining the data would also be problematic, as it

would indicate that people do not do the logical thing and use the best exemplars for rapid

learning.) Thus, we believe it warrants further investigation. If the hypothesis is accepted, it

suggests a number of topics for further research, in particular the precise nature of the internal

computational learning algorithm and final decision process, both of which the hypothesis as

it stands is mostly agnostic to. Hopefully, by carefully examining human perceptual phenom-

ena, it will be possible to not only fine-tune the runtime learning hypothesis, but to in turn use

it to even more accurately model human perception.

Note that we are not making any strong claims about the nature of the models that are

trained at runtime. They may be neural networks resembling those we have used here, or may

use a comparison process similar to that seen in models such as SUSTAIN. Our essential point

is that humans appear to make their judgments based on a limited number of representative

exemplars, which we explain as the result of having to train a model in a short period of time,

presumably recently, in response to the task itself. If this were not the case, we would expect

the results, at least for MNIST, to reflect the full subset, but in fact our data suggests humans

use relatively limited subsets whether the concepts involved in the tasks are recently learned or

have been highly familiar to the participants for years. The fact that this pattern was seen even

with the Arabic digits, in which the concepts are assuredly familiar enough for our participants

to use a model trained on many more exemplars, might be explained by saying that that the
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unfamiliar nature of the task itself (that is, the unique combination of digits that needed to be

distinguished, along with other idiosyncratic circumstances) led to the “last minute” creation

of a dedicated model, as stated by the runtime learning hypothesis. Beyond this, we are largely

agnostic as to the precise form this “inner model” takes.

A natural question the reader may have concerns how the brain acquires the valuable exem-

plars that make training more effective. While this is not our primary concern here (although

it may be a fruitful topic for future research), we would like to briefly discuss a few candidates.

As mentioned previously, one of the major inspirations for this work was data distillation
from the machine learning literature, and it is a distinct possibility that the brain employs a

process resembling one data distillation algorithm or another to whittle a large corpus down to

its essence. Another possibility is Generative Teaching Networks [15], an algorithm for learn-

ing generative models that produce exemplars that are especially valuable for learning. In fact,

considering that the biases of GANs can naturally lead to “prototype”-like output (as demon-

strated by mode collapse), it might even be that no special purpose-made algorithm is neces-

sary to produce especially valuable exemplars.

The runtime-learning hypothesis also has implications for many other aspects of human

cognition, including learning, memory, and attention. For brevity, we conclude by focusing on

its implications for reasoning. Training with a small, curated training set is, of course, not usu-

ally as effective as training with all relevant training items. For the purposes of cognitive sci-

ence, this might be a feature of the runtime-learning hypothesis, not a bug—after all, people’s

task performances are often suboptimal [88], and people often tradeoff accuracy for speed

[89]. Relatedly, several cognitive scientists have used sampling-based algorithms to perform

approximate Bayesian inference in order to provide accounts of this suboptimality (e.g. [90–

92]), and the runtime-learning hypothesis can also be viewed as implementing a sampling-

based approach to approximate Bayesian inference. By sampling training exemplars from

memory, one is implicitly sampling functions from an implicit distribution. Interestingly, the

disparity between this sampling distribution and the true posterior may result in “biases and

heuristics” similar to those observed in people [88]. For example, if stored exemplars are espe-

cially high-quality, as we have supposed throughout this paper, we would expect a learner to

exhibit use of something similar to the representativeness heuristic [88]. In addition, it may be

possible to account for the dynamic effects of expectation on perception [93–95] in a Bayesian

manner by including instances of the classes in the training set in proportion to their prior

probabilities.

This observation highlights a relationship between the runtime-learning hypothesis and a

more general approach to studying human cognition known as the “resource rational”

approach [89]. According to the resource-rational approach, people’s cognitive behaviors may

be suboptimal when compared to the best performance achievable by an agent with unlimited

internal (e.g., memory, attention) and external (e.g., time) resources, but these behaviors may

be optimal when compared to the best performance achievable by an agent with limited

resources. Researchers have used this approach to explain the apparent suboptimality of peo-

ple’s decisions in some circumstances. For example, if one decision-making strategy is less

accurate than another but is quicker and easier to implement, then a person may prefer this

seemingly suboptimal strategy.

Although there is suggestive evidence that people complete tasks in a resource-rational

manner [96–99], there are few mechanistic accounts of how this may occur. In our proposal,

people can flexibly determine how to allot their cognitive resources in response to a task based

on both the importance of the task and the time available before a response is required. For

low-importance tasks, or tasks requiring a rapid response, people may opt to train a small net-

work on only a few examples; conversely, for high-importance tasks and/or tasks which do not
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require a swift response, people may elect to train a more powerful network with more exam-

ples. Learning at runtime allows performance to be optimized not only for the task, but for the

wider context in which a task is encountered.

5 Conclusions

Our runtime-learning hypothesis, along with the potential extensions described above, should

be broadly understood as implying a spectrum upon which spontaneously-arising tasks may

reside. At one extreme, there may already exist in the brain a network capable of handling pre-

cisely that task, meaning no runtime learning is necessary. At the other extreme, a task may be

fully unfamiliar, with no previous experience with similar tasks, meaning the brain must rely

entirely upon runtime learning from scratch. In between these two extremes lie cases in which

the brain has some experience with similar tasks, but not enough to perform satisfactorily on

this new task. Under these circumstances, techniques such as meta-learning can be used to

accelerate the runtime learning process and improve the ultimate results. We speculate that

most everyday but non-trivial cognitive tasks fit somewhere in this middle ground.

[100] recently pointed out that an important but underutilized path to producing general

artificial intelligence is to create ML algorithms that learn how to produce algorithms for AI.

This notion is present in the complementary learning systems approach in which a fast, rote

learner teaches a slow, abstract learner. We propose that, in fact, algorithms that train other

algorithms are essential to truly general intelligence, whether biological or artificial.
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