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NCEN Diagnosis of Alzheimer’s disease using 
neuropsychological testing improved 

by multivariate analyses

Multivariate Diagnosis of Alzheimer’s Disease Robert M. Chapman,1 Mark Mapstone,2 Anton P. Porsteinsson,3 
Margaret N. Gardner,4 John W. McCrary,1 Elizabeth DeGrush,4 
Lindsey A. Reilly,4 Tiffany C. Sandoval,4 and Maria D. Guillily4
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Rochester, NY, USA
2Neurology, University of Rochester Medical Center, Rochester, NY, USA
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Neuropsychological assessment aids in the diagnosis of Alzheimer’s disease (AD) by objectively establishing
cognitive impairment from standardized tests. We present new criteria for diagnosis that use weighted combined scores
from multiple tests. Our method employs two multivariate analyses: principal components analysis (PCA) and discri-
minant analysis. PCA (N = 216 participants) created more interpretable cognitive dimensions by resolving 49 test mea-
sures in our neuropsychological battery to 13 component scores for each participant. The component scores were used
to build discriminant functions that classified each participant as either an early-stage AD (N = 55) or normal elderly
(N = 78). Our discriminant function performed with high accuracy, sensitivity, and specificity (nearly all >90%) in the
development, a cross-validation, and a new-subjects validation. When contrasted to two different traditional empirical
methods for diagnosis (using cutscores and defining AD as falling below 5% on two or more test domains), our results
suggested that the multivariate method was superior in classification (approximately 20% more accurate).

Keywords: Discriminant analysis; Neuropsychological tests; Diagnosis; Alzheimer’s disease; Principal components
analysis; Multivariate analyses; NINCDS-ADRDA criteria; Posterior probability.

Alzheimer’s disease (AD) is an age-related neurological
illness with early cognitive and behavioral disruption,
particularly in the domain of memory. Neuropsycho-
logical test batteries are commonly used as an aid in
diagnosing AD (Bäckman, Jones, Berger, Laukka, &
Small, 2005), and this is traditionally done by relat-
ing the patient’s score on each individual test to an

arbitrary criterion that is indicative of impairment
below the mean score of a normative reference group
(McKhann et al., 1984). Evidence-based criteria for
diagnosing AD that systematically build a weighted
combined score from all the tests in a battery might
better discriminate impaired cognition from normal
cognitive functioning.
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Multivariate methods for analyzing neuropsychological
test batteries have been explored by others (Carroll, 1993).
Loewenstein et al. (2001) examined the NINCDS-ADRDA
(National Institute of Neurological and Communicative
Disorders and Stroke–Alzheimer’s Disease and Related
Disorders Association) criteria through a series of neu-
ropsychological tests administered to only AD patients to
determine how many factors best represent AD. They con-
cluded that a six-factor model, including factors for general
memory, executive function, visuospatial skills, and verbal
abilities, fit the AD participants’ test results better than a
single-factor model. Despite some problems in coping with
separate factor analyses on each group, Siedlecki, Honig,
and Stern (2008) suggested that there was a fair amount of
similarity in the factor structures among AD, questionable
dementia, and normal older adult groups. Here we carry
factor analysis of a neuropsychological battery further by
looking beyond group differences to build a multivariate
diagnostic method that classifies individuals as either early-
stage AD or normal. We selected AD patients that were
considered early in the course of the disease because they
are more important and more difficult to discriminate from
normal elderly. Early detection of AD is critical in applying
timely pharmacologic and therapeutic interventions. Our
multivariate method could improve traditional neuropsy-
chological assessment of AD by formalizing how the
neuropsychological test measures are combined.

We employ sequential multivariate analyses: principal
components analysis (PCA) and discriminant analysis.
PCA allows the extraction of components from the neu-
ropsychological tests that more parsimoniously represent
the patient’s performance. (We use the term “compo-
nent” instead of “factor,” though they are nearly analo-
gous, because we performed PCA rather than common
factor analysis). PCA provides both (a) component
loadings (which relate test measures to the components)
and (b) component scores (which pertain to an individual’s

performance on those components). The patient’s scores on
the multitude of tests are remapped to fewer scores, one for
each of the underlying components. While previous work
has utilized the factor loadings to measure group differ-
ences and similarities in factor structures (Siedlecki et al.,
2008), here we add another important step by combining
the component (factor) scores in a reasoned, formal way
through discriminant analysis to develop a global measure
that is aimed at better differentiating individuals with AD
from normal elderly. The relative weights assigned to each
component by the discriminant analysis can improve the
discriminatory power of the neuropsychological tests. The
methodology presented in this article produced a highly
accurate classification of each individual as either AD or
normal, and we further tested its strength in two validation
analyses and by comparison with the traditional method.

METHOD

Study sample

To more parsimoniously represent each participant’s neu-
ropsychological test performance in terms of underlying
component scores, we performed PCA on a group of 216
elderly participants. This included 55 AD individuals
and 78 elderly without impaired cognitive function (con-
trol; Table 1). We also included 78 patients diagnosed
with mild cognitive impairment (MCI, a diagnosable
condition of cognitive impairment that is thought to lie
between normal cognitive functioning and AD; Petersen
et al., 2001) and 5 patients diagnosed with age-associated
memory impairment (AAMI; Crook et al., 1986) in the
PCA to generate a component solution with greater gen-
eralizability to the population (John, Easton, Prichep,
& Friedman, 1993). The MCI group contained 34
females—mean age in years (SD) = 72.9 (8.5)—and 44

TABLE 1 
Participant demographics for discriminant analysis

Set n Group Gender Size Age Education MMSE

Development 80 AD Female 18 75.2 (7.5) 14.0 (2.5) 24.4 (3.7)
Male 22 77.1 (4.5) 15.0 (2.7) 23.8 (3.6)

Control Female 20 72.3 (6.1) 14.9 (2.5) 28.9 (1.3)
Male 20 75.6 (6.0) 16.9 (3.1) 28.1 (1.6)

New subjects 53 AD Female 6 75.1 (12.6) 11.7 (4.2) 24.0 (2.1)
Male 9 74.5 (9.4) 15.2 (3.4) 26.3 (4.1)

Control Female 27 64.3 (10.6) 15.8 (2.3) 29.2 (1.1)
Male 11 71.6 (13.1) 16.0 (2.2) 27.8 (1.9)

Note. Values appear as means, with standard deviations in parentheses. The age and education are number of years.
The maximum score on the Mini Mental State Examination (MMSE; Folstein et al., 1975) is 30. The Alzheimer’s dis-
ease (AD) and control groups have significantly different mean education levels (p < .05), but the difference between
their mean ages was not significant. The effects of age and education were removed from our data before the principal
components analysis (PCA) in all the cases where age- and education-corrected normative data were available. The
MMSE scores are significantly different between the AD and control groups (p < .001) as expected. While the individ-
uals in the new-subject validation set are not as well matched, their demographics played no role in their classification.
The discriminant function was created from the development set, which is well matched in gender, age, and education.
The classification accuracy remained high in the new-subjects validation. This result strengthens the generalizability of
the discriminant function.
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MULTIVARIATE DIAGNOSIS OF ALZHEIMER’S DISEASE 795

males—mean age in years (SD) = 73.9 (8.4)—whose
demographics were similar to those of the AD and con-
trol groups. We used 133 elderly participants in our dis-
criminant analyses: 55 diagnosed with early-stage AD
and 78 controls (Table 1). These 133 participants were
divided into two sets for the discriminant analyses: a
development set (including 40 ADs and 40 controls,
totaling 80 participants) and a new-subjects validation
set (including 15 ADs and 38 controls, totaling 53 partic-
ipants). The participants selected for the development set
were those that were demographically well matched for
age and education and approximately half female and
half male. We included more participants in the develop-
ment set to produce a more reliable discriminant func-
tion while leaving a reasonable number of participants in
the validation set. All 216 participants spoke fluent English.

The AD and MCI participants were independently
diagnosed by memory disorders physicians from area
clinics using standard accepted clinical criteria. Each AD
participant met standard criteria for AD (NINCDS-
ADRDA; McKhann et al., 1984) and DSM–IV–TR
(Diagnostic and Statistical Manual of Mental Disorders–
Fourth Edition, Text Revision) criteria for dementia of
the Alzheimer’s type (American Psychiatric Association,
2000) and was considered early in the course of the dis-
ease. All MCI participants met standard consensus crite-
ria for amnestic MCI (Petersen, 2004; Petersen et al.,
1999). The clinical diagnosis of MCI and AD was based
on the history, relevant laboratory findings, and imaging
studies routinely performed as part of the clinical assessment

of dementia (Petersen et al., 2001). Limited cognitive test-
ing was performed by the memory disorders physicians
to assist with their diagnosis. With the exception of the
Mini Mental State Examination (MMSE; Folstein, Fol-
stein, & McHugh, 1975), a clock face drawing, and a cat-
egory fluency task (animal naming), no cognitive test
used in clinical decision making was repeated as part of
our experimental cognitive test battery described below.
Control participants were elderly volunteers from the
community, many of whom were deemed to have normal
cognitive functioning by the same memory disorders
physicians. At the time of testing, 48 of the 55 AD partic-
ipants (28 males, 20 females) were taking cholinesterase
inhibitors and/or memantine. Exclusion criteria for all
participants included Parkinson’s disease, HIV/AIDS,
clinical (or imaging) evidence of stroke, reversible demen-
tias, and treatment with benzodiazepines, antipsychotic,
or antiepileptic medications. Informed consent approved
by Research Subjects Review Board at the University of
Rochester was obtained prior to testing. The neuropsy-
chological test data collected in our study and used in the
multivariate methodology presented here did not con
tribute to the clinical diagnoses of the participants.

Neuropsychological assessment

The experimental neuropsychological battery administered
to each participant contained 15 common tests (Table 2)
that target different cognitive domains, particularly memory.

TABLE 2 
Neuropsychological test battery administered to the participants

Test Cognitive domains

Rey–Osterrieth Complex Figure (Rey): Copy and Recall, immediate and delayed (Osterrieth, 
1944; Rey, 1941)

Memory Praxis (copy task)

Mini-Mental State Examination (MMSE; Folstein et al., 1975) Brief test of general cognitive abilities
Wechsler Memory Scale–Third Edition (WMS–III), Digit Span and Letter Number 

Sequencing tests (Wechsler, 1997)
Working memory, attention

Geriatric Depression Scale (GDS; Yesevage et al., 1983) Mood, daily functioning
Wechsler Memory Scale–Revised, Logical Memory I and II (WMS–R, LM–R I and LM–R 

II; Wechsler, 1945, 1987)
Memory

Clock Face Drawing (Tuokko, Hadjistavropoulos, Miller, & Beattie, 1992) Perception, problem solving
North American National Adult Reading Test (AMNART; Grober & Sliwinski, 1991) Premorbid verbal intelligence
Stroop test (Golden, 1978) Attention
Brief Visuospatial Memory Test–Revised (BVMT-R; Benedict & Groninger, 1995) Memory, visuospatial abilities
Controlled Oral Word Association Test (COWAT) and Category Fluency (Benton & Hamsher, 

1976)
Language

Blessed Dementia Scale (BDS; Blessed, Tomlinson, & Roth, 1968; Morris et al., 1989; Stern, 
Hesdorffer, Sano, & Mayeux, 1990; Zillmer, Fowler, Gutnick, & Becker, 1990)

Daily functioning

Hopkins Verbal Learning Test (HVLT; Brandt, 1991) Memory, language
Boston Naming Test (BNT) 15-item CERAD version (Kaplan, Goodglass, & Weintraub, 

1978; Mack, Freed, Williams, & Henderson, 1992)
Language

Standardized Road-Map Test of Direction (Road-Map; Money, 1976) Visuospatial orientation
Trail Making Test (TMT) A and B (Reitan, 1958) Trail A–attention

Trail B–problem solving

Note. Battery of tests was administered in the order shown. The cognitive domains relate to grouping the tests for the traditional meth-
ods as suggested by the NINCDS-ADRDA (National Institute of Neurological and Communicative Disorders and Stroke–Alzhe-
imer’s Disease and Related Disorders Association) criteria (McKhann et al., 1984) and as used in this paper. CERAD = Consortium
to Establish a Registry for Alzheimer’s Disease.
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796 CHAPMAN ET AL.

We designed the battery to produce a comprehensive
sample of cognitive processes and their degeneration in
AD. Among others, the tests included measures of mem-
ory retrieval and retention, generative fluency, executive
function, visuospatial abilities, and attributes of mood
and daily living. The subscores of the neuropsychologi-
cal tests were used to produce a more detailed assess-
ment of the participant’s cognitive performance,
including content accuracy and timing (Carroll, 1993).
For the MMSE, the total score was used in all analyses.

All neuropsychological measures were standardized to
have zero mean and unit variance using established age/
education-corrected normative data when possible and
laboratory-derived data (normal elderly) when published
norms were not available. This is acceptable because
normal participants are often used as a baseline with
which other participant groups are contrasted. Standard
z scores are easier to compare than raw test measures,
which lie in different metrics. Prior to standardization,
the raw time scores were transformed to speed scores by
computing their reciprocal in order to reduce skewness.
Because age is an important risk factor for developing
AD, it is possible the normative data for the neuropsy-
chological tests (which take age into account) may
include misdiagnosed “normal” individuals who have
developed or were developing memory impairments.
However, because we performed this standardization
before entering the same data into both the traditional
and multivariate diagnostic methods, differences in clas-
sification success of these two methods would not dispa-
rately be affected by any flaws in the normative data.

Measurements of diagnostic power

How well a diagnostic test performs was determined
through three measures: accuracy, sensitivity, and specif-
icity. Accuracy refers to the total number of individuals
correctly classified (ADs classified as ADs, or true posi-
tives, and controls classified as controls, or true nega-
tives) as a percentage of the total individuals classified.
The sensitivity of a test measures its power of detecting
the disease among those that have the disease. The spe-
cificity of a test measures its ability to not find the dis-
ease in those that do not have it. A desirable diagnostic
test has high accuracy, sensitivity, and specificity.

Multivariate assessment

Our multivariate methodology is summarized in a flow
diagram (Figure 1). Principal components analysis
(PCA) was used to develop the component structure
from the battery of neuropsychological tests. The 216
participants (observations) and 49 test measures (varia-
bles) were submitted to a PCA with Varimax rotation
(Kaiser, 1958). Although discriminant analyses could be
performed on the raw test measures, PCA (Carroll, 1993;
Chapman & McCrary, 1995; Harman, 1976) added sev-
eral distinct advantages to our methodology. First, PCA
resolved the 49 test measures to a smaller number of
component scores for each participant, which reduced

the amount of data and organized the information along
more interpretable dimensions. This also limited the pos-
sibility of chance influencing the discrimination results by
decreasing the number of variables used in the discriminant
analysis (Ahlgren, 1986). Second, every test contributed
to the component solution through its loadings on each
component. The component loadings were used to inter-
pret what cognitive processes each component repre-
sented. The names of the components in Figure 1 were
chosen by consideration of the particular test measures
that had higher loadings on each component. Third, it is
difficult, if not impossible, to strictly determine what
mental processes any particular test involves. PCA
empirically derived underlying cognitive components
that represent separate cognitive domains, such as epi-
sodic memory or generative fluency, and the partici-
pant’s component scores place his or her performance on
those components. This relates the participant’s per-
formance on a test more directly to particular aspects of
cognitive functioning.

Though there are multiple mathematical methods that
both achieve data reduction and measure latent con-
structs in a dataset, PCA operates with relatively few
prior assumptions. Additionally, it allows easy computa-
tion of component scores. While we could have reduced
the number of variables in our PCA by using composite
neuropsychological test measures (such as total scores
rather than trial scores) or by removing variables that we
thought would not strongly contribute to one or more
components, we believed it was a better choice to include
as much information in the analysis as feasible. Addi-
tionally, performing the PCA with fewer variables (a
33% reduction) that only included composite mea-
sures on the same set of participants produced essen-
tially the same components (although the order and
loading patterns varied slightly). Finally, the choice of
how to measure the latent constructs generally does
not greatly affect the results (Velicer & Jackson,
1990), and sample size as a function of the number of
variables is not an important factor for stability
(Guadagnoli & Velicer, 1988).

In discriminant analysis (lower Figure 1), the compo-
nent scores of the AD and control individuals were
used to build a discriminant function that classifies par-
ticipants as belonging to either the AD or the control
group. The linear discriminant function is composed of
the sum of the selected component scores, each
weighted by their best contribution in differentiating
the participant groups. In SAS’s STEPDISC procedure
(SAS Institute, Inc., 2002), the stepwise variable selec-
tion begins, like forward selection, with no variables in
the model. At each step, the model is examined. If the
variable in the model that contributes least to the dis-
criminatory power of the model as measured by Wilks’s
lambda fails to meet the criterion to stay, then that var-
iable is removed. Otherwise, the variable not in the
model that contributes most to the discriminatory
power of the model is entered. When all variables in the
model meet the criterion to stay, and none of the other
variables meets the criterion to enter, the stepwise selec-
tion process stops.
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MULTIVARIATE DIAGNOSIS OF ALZHEIMER’S DISEASE 797

Figure 1. Developing and using a component structure of neuropsychological test measures to discriminate Alzheimer’s disease (AD)
from control. The component structure was derived from principal components analysis (PCA) of 49 neuropsychological test measures
from 216 AD, mild cognitive impairment (MCI), control, and age-associated memory impairment (AAMI) individuals. The compo-
nent numbers in the component structure reflect the order of the components in the PCA solution. The order of the seven components
used in the discriminant function represents relative weights that best discriminate AD from control individuals. The right column
depicts the application of this method to diagnose a new individual.
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Using the components selected by the stepwise proce-
dure, discriminant functions were built to classify each
individual as a member of either the AD or the control
group with associated posterior probability of group
membership based on Bayesian posterior distributions
(Ingelfinger, Mosteller, Thibodeau, & Ware, 1983). We
validated the accuracy of these classifications against
clinical assessment.

All multivariate analyses were computed with SAS 9.1.3
(SAS Institute, Inc., 2002). The primary procedures were
the FACTOR, STEPDISC, and DISCRIM procedures.
These have also been applied to brain event-related poten-
tials (ERPs) used to study AD (Chapman et al., 2007).

Traditional methods of neuropsychological 
assessment

To provide further validation of the novel value found in
our PCA and discriminant function, we compared our
multivariate results to classification outcomes derived
from a traditional method. We arranged our tests (Table 2)
into the eight cognitive domains suggested by the
NINCDS-ADRDA criteria (McKhann et al., 1984):
memory, language, perception, attention, praxis, visu-
ospatial orientation, problem solving, and daily func-
tioning. We evaluated the traditional method in two
ways. First for the traditional–many method, we
arranged as many of our tests as possible into the eight
domains to increase the likelihood of obtaining true pos-
itives. We did this as follows: memory = Wechsler Mem-
ory Scale–Revised (WMS–R) Logical Memory I, Logical
Memory II, Hopkins Verbal Learning Test (HVLT)
Delayed Recall score; language = Boston Naming Test,
Controlled Oral Word Association; perception = Rey–
Osterrieth Complex Figure Copy Task, Clock Face
Drawing Test; attention = Wechsler Memory Scale–
Third Edition (WMS–III) Digit Span, Stroop Test, or
Trail Making Test–Trail A; praxis = Rey–Osterrieth
Complex Figure Copy Task; visuospatial orientation =
Standardized Road-Map Test of Direction; problem
solving = Clock Face Drawing Test, Trail Making Test–
Trail B; daily functioning = Blessed Dementia Scale.
Although our battery contained many measures of mem-
ory, only the Logical Memory I and II and the HVLT
Delayed Recall scores were chosen for the memory
domain. These tests had the greatest discriminability in a
stepwise discriminant procedure performed on the raw
test measures, and including just these provided the tradi-
tional–many method the best chance to differentiate
between the AD and control groups without vastly increas-
ing the number of false positives. Another reason for their
inclusion in the traditional method is that delayed recall
episodic memory and list tests are commonly used in the
clinical assessment of AD. Impairment (<5th percentile) on
any one of the tests in each domain equated to impairment
in that domain, and impairment in two or more domains
(Loewenstein et al., 2001; McKhann et al., 1984) was classi-
fied as AD in this traditional method.

Our second method, the traditional–single method,
allowed only one test to contribute to each domain,

which would increase the likelihood of obtaining true
negatives to boost specificity. We arranged the tests in
the following manner: memory = WMS–R Logical
Memory II; language = Controlled Oral Word Association;
perception = Rey–Osterrieth Complex Figure Copy Task;
attention = WMS–III Digit Span; praxis = Rey–Osterrieth
Complex Figure Copy Task; visuospatial orientation =
Standardized Road-Map Test of Direction; problem
solving = Trail Making Test–Trail B; daily functioning =
Blessed Dementia Scale. Again, impairment in two or
more domains was classified as AD.

Our use of the traditional methodology was limited to
neuropsychological testing, whereas clinical evaluations
include more information (such as imaging, medical his-
tory, etc.) and subjective observations. The same set of
neuropsychological test data on the same participants
was used in our comparison of the traditional and multi-
variate methods for analyzing neuropsychological test
results in AD. The participants used in this comparison
combined the development and new-subjects validation
sets, resulting in 133 total participants (55 AD individu-
als and 78 control individuals).

RESULTS

Group means of test measures

The neuropsychological test score mean and standard
deviation for each of the test measures are presented for
the AD and control groups in Table 3 (the raw scores
and standard z scores are both presented). The standard
z scores for each test measure were used in all statistical
analyses. For nearly all of the 49 measures, a one-way
analysis of variance (ANOVA) produced a significant
group effect, and every significant effect was at p < .001
(df 1, 132) except for the WMS–III Digit Span Forward
Score, which was p < .05). Five measures were not signi-
ficant (the Geriatric Depression Scale, the Blessed
Dementia Scale, the Standardized Road-Map Test of
Direction, and the Rey–Osterrieth Complex Figure
Immediate Recall and Delayed Recall speeds). The dif-
ferences between the groups are more likely attributed to
disease effects than demographic dissimilarities since the
AD and control groups were well matched in age, gen-
der, and education (Table 1). Between the groups the age
differences were approximately two years (AD, mean
age = 76.4 years, SD = 6.0; control, mean age = 74.0
years, SD = 6.2), and the education differences were
roughly two years with comparable deviations (AD, mean
education = 14.4 years, SD = 2.5; control, mean education
= 15.9 years, SD = 3.0). These small average differences
are unlikely to exert much influence on the results. While
education was significantly different between the AD and
control groups (p < .05), the ages of the AD and control
groups were not significantly different. Additionally, the
effects of age and education were removed from our data
before the PCA in all the cases where age- and education-
corrected normative data were available.

Unsurprisingly, the control group performed better on
each test and its parts than the AD group did. The control
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TABLE 3 
AD and control group means for each of the 49 neuropsychological test measures

Group

Raw Standard (z scores)

Test Measure AD Control AD Control

Rey–Osterrieth Complex Figure (Rey) Copy score 24.9 (10.6) 31.9 (4.0) −1.8 (2.8) −0.2 (1.1)
Copy speeda 0.3 (0.2)b 0.5 (0.2)b −0.7 (0.6) −0.1 (0.8)
Immediate recall score 5.1 (4.6) 15.4 (6.8) −1.5 (1.2) 0.7 (1.4)
Immediate recall speeda 1.3 (1.4)b 0.8 (0.8)b 0.6 (2.1) −0.1 (1.1)
Delayed recall score 3.6 (4.5) 14.6 (6.3) −1.8 (1.3) 0.6 (1.3)
Delayed recall speeda 2.9 (1.4)b 1.2 (1.1)b 1.9 (6.1) 0.1 (1.3)

Mini-Mental State Examination (MMSE) Total score 24.1 (4.5) 28.5 (1.5) −2.4 (3.3) 0.4 (1.2)
Wechsler Memory Scale–Third Edition (WMS–III), Digit Span Forward score 5.7 (1.0) 6.5 (1.4) −0.2 (0.8) 0.3 (1.1)

Backward score 3.9 (1.1) 5.5 (1.4) −0.3 (1.0) 0.9 (1.1)
Letter–number score 3.4 (1.2) 5.3 (1.3) −1.6 (0.6) −1.1 (0.6)

Geriatric Depression Scale (GDS) Score 5.8 (4.9) 4.9 (4.4) −0.9 (1.7) −0.7 (1.4)
Wechsler Memory Scale–Revised (WMS–R) Logical 

Memory I (LM–R I)
A recall scorea 6.3 (3.6) 13.9 (4.0) −2.2 (0.9) −0.3 (1.0)

B1 recall scorea 5.0 (3.3) 11.8 (3.9) −2.1 (1.0) −0.2 (1.1)
B2 recall scorea 7.2 (3.5) 15.7 (4.1) −2.5 (0.9) −0.3 (1.1)

WMS–R Logical Memory II (LM–R II) A recall scorea 2.5 (3.5) 12.2 (4.1) −2.4 (0.8) −0.2 (0.9)
B recall scorea 3.4 (3.7) 13.8 (3.6) −2.8 (0.9) −0.3 (0.9)
Recognition scorea 18.0 (5.9) 26.8 (1.9) −4.3 (2.8) −0.3 (0.9)
% Retentiona 36.1 (36.6) 88.9 (11.6) −3.9 (2.8) 0.0 (0.9)

Clock Face Drawing Score 17.5 (2.8) 19.5 (0.8) −0.4 (1.5) 0.6 (0.4)
North American National Adult Reading Test (AMNART) Score 34.2 (7.7) 39.9 (8.2) −1.3 (1.0) −0.6 (1.0)
Stroop test Word score 76.4 (18.0) 94.6 (15.7) −1.7 (1.2) −0.6 (1.2)

Color score 47.4 (13.7) 63.7 (11.4) −2.1 (1.2) −0.9 (1.0)
Color–word score 19.4 (9.3) 32.5 (8.3) −1.4 (0.9) −0.4 (0.9)

Brief Visuospatial Memory Test–Revised (BVMT–R) Trial 1 score 1.5 (1.0) 3.2 (2.3) −1.6 (0.5) −0.8 (1.1)
Trial 2 score 1.9 (1.4) 6.0 (2.6) −0.7 (1.2) 0.7 (1.5)
Trial 3 score 2.3 (1.9) 7.7 (3.0) −2.7 (0.9) −0.4 (1.3)
Learning slope 1.0 (1.3) 4.6 (2.2) −1.5 (0.7) 0.4 (1.2)
Delayed recall 1.6 (2.0) 7.9 (3.1) −2.6 (0.9) 0.0 (1.3)
% Retention 47.8 (54.1) 100.0 (17.8) −3.0 (4.0) 0.9 (1.2)
Hits 5.0 (1.1) 5.9 (0.4) −1.1 (1.8) 0.2 (0.9)
False alarms 1.5 (1.4) 0.2 (0.5) 3.7 (4.0) 0.1 (1.5)
Discrimination index 3.4 (1.7) 5.7 (0.7) −2.9 (2.4) 0.1 (1.0)

Controlled Oral Word Association Test (COWAT) F scorea 9.4 (4.2) 12.7 (4.5) −1.0 (0.9) −0.3 (1.0)
A scorea 8.2 (3.7) 12.3 (4.3) −1.1 (0.8) −0.1 (1.0)
S scorea 9.9 (4.0) 14.6 (4.9) −1.1 (0.8) −0.2 (1.0)

Category Fluency Animal-naming score 11.7 (4.6) 19.2 (5.5) −1.3 (1.1) 0.4 (1.3)
Blessed Dementia Scale (BDS) Scorea 1.2 (1.3) 0.7 (1.2) −0.6 (1.2) −0.1 (1.1)
Hopkins Verbal Learning Test (HVLT) Trial 1 score 4.3 (2.4) 7.2 (1.9) −0.9 (1.3) 0.6 (1.0)

Trial 2 score 5.5 (2.2) 9.7 (1.7) −1.3 (1.1) 0.6 (0.8)
Trial 3 score 5.7 (1.9) 10.7 (1.6) −1.8 (1.0) 0.7 (0.8)
Delayed recall score 1.1 (2.4) 9.7 (2.5) −2.7 (1.0) 0.5 (0.9)
True positives 9.6 (2.2) 11.8 (0.5) −1.4 (1.8) 0.4 (0.4)
Related false positives 2.9 (1.4) 0.6 (0.8) 2.0 (1.4) −0.2 (0.8)
Unrelated false positives 1.6 (1.5) 0.0 (0.2) 4.9 (5.1) −0.2 (0.6)
Discrimination index 5.2 (3.1) 11.0 (1.3) −3.1 (1.9) 0.4 (0.7)

Boston Naming Test (BNT) Score 13.5 (1.9) 14.8 (0.5) −1.6 (2.6) 0.3 (0.7)
Standardized Road-Map Test of Direction (Road-Map) Score 25.8 (4.9) 27.5 (6.3) −0.9 (1.4) −0.5 (1.8)
Trail Making Test (TMT) A speeda 2.0 (1.0)b 3.0 (1.0)b −1.0 (0.8) −0.2 (0.7)

B speeda 0.6 (0.3)b 1.3 (0.5)b −1.3 (0.5) −0.2 (0.7)

Note. Values shown as mean raw or mean z scores, with standard deviations in parentheses. The standardized neuropsychological
scores for each participant for these 49 variables were used in the principal components analysis (PCA) analyses. For a main group (55
AD, 78 control) effect, the F value in an analysis of variance (ANOVA) reached the .05 significance level for all measures except the
Rey–Osterrieth Complex Figure Immediate Recall and Delayed Recall Speed scores, the Geriatric Depression Scale score, the Blessed
Dementia Scale score, and the Standardized Road-Map Test of Direction score. The correlated variables (e.g., total scores) were not
used in our analyses. AD = Alzheimer’s disease.
az scores (mean = 0, SD = 1) for these test measures were generated from laboratory data (normal elderly) since published corrected
normative data were not available. bMean speed score and standard deviation are s−1 multiplied by 100.
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group’s test scores generally hovered around 0, the mean
for a standard z distribution, while the AD group con-
sistently performed at levels below the mean. Further, the
AD group scored higher on measures where they would
be expected to do so, such as failure to discern items not
previously presented in a recognition task (recognition
false positives and false alarms). The mean MMSE
scores were appropriate for each diagnostic group.

There is some debate about the North American
National Adult Reading Test (AMNART) and its utility
in determining premorbid verbal IQ. Schlosser and Ivi-
son (1989) reported that the test shows some sensitivity
to early language impairment in AD. In our results,
removing the AMNART from the PCA only adjusted
the order the components appeared in the solution but
left the components themselves untouched. Therefore,
the test was included in the final component solution.

Neuropsychological components measured 
by PCA

The group of 216 AD, MCI, AAMI, and control individ-
uals, each with 49 test measures, was submitted to PCA
with Varimax rotation. Using mainly Kaiser’s (eigen-
value > 1) criterion (Kaiser, 1960) as a guideline, we
retained 13 distinct, orthogonal, and interpretable com-
ponents in the component structure. These 13 compo-
nents accounted for 77% of the total variance of the
data. PCA produced both component loadings and com-
ponent scores. The component loadings (the general
underlying structure of the neuropsychological test
results) are shown in Table 4. The component scores for
the AD and control individuals were retained for discri-
minant analysis.

Discriminant analyses

The discrimination group (consisting of 133 ADs and
controls) was divided into development and validation
groups. The development group contained 40 ADs and
40 controls. The validation group contained 15 ADs and
38 controls, and these participants did not contribute to
the creation of the discriminant function. This was done
to produce a rigorous test of the generalizability of the
function.

The discriminant function (Table 5) was created with
the seven neuropsychological components chosen by the
stepwise discriminant procedure and was used to classify
each of the 80 AD and control individuals as either an
AD or a control. It was applied to the data used to
develop it with excellent results: A total of 77 of the 80
individuals (96%) were correctly classified, and this res-
ult was statistically significant, Fisher’s Exact Test, c2(1,
N = 80) = 68.83, p < .001.

In addition to the classification of each participant, a
quantitative estimate of the posterior probability of that
classification was also given by the discriminant func-
tion. The posterior probability of AD group member-
ship is conditioned on the participant’s performance on
the neuropsychological tests as expressed in the compo-

nent scores. If this probability was more than .5, the indi-
vidual was classified as an AD, whereas if the probability
was less than .5, the individual was classified as a con-
trol. The posterior probabilities in Figure 2A are from
the cross-validation analysis described next (those from
the other discriminant analyses are not shown).

The accuracy of classifications in the development set
is quite high. However, given enough variables for a
sample size, it is possible that chance can positively influ-
ence results. Discriminant analyses may be left at the
development stage, but to confirm the strength of our
findings two validation procedures were completed: a
cross-validation and the new-subjects validation.

A cross-validation (commonly called one-left-out)
builds a unique discriminant function for each individual
without using his or her data. This function is then applied
to that participant, and this procedure is done for each
participant in the set. Because the participant being classi-
fied does not contribute to the function, this method
achieves a “nearly unbiased estimate” (Lachenbruch,
1975). Of the 80 individuals, 76 were correctly classified
by their test diagnosis in the cross-validation as either
AD or control (Figure 2B). This is a 95% rate of success,
statistically significant by Fisher’s Exact Test, c2(1, N = 80)
= 64.96, p < .001.

Additionally, we performed a new-subjects validation
where the discriminant function from the development
data was applied to entirely novel individuals. Again, the
discriminant function performed very well, showing 50
out of 53 individuals correctly classified by their test
diagnoses. This is a 94% rate of success, statistically sig-
nificant by Fisher’s Exact Test, c2(1, N = 53) = 39.07,
p < .001 (Figure 2C).

Diagnostic results with the traditional method 
compared with our multivariate method

We applied the traditional method of neuropsychologi-
cal assessment (specified in the Method section) to every
participant in our discriminant analyses (both the devel-
opment and new-subjects validation sets). The tradi-
tional methodology using multiple tests per domain
(traditional many) produced only 74% accuracy (99 of
133 individuals correctly classified), which was statisti-
cally significant by Fisher’s Exact Test, c2(1, N = 133) =
34.49, p < .001. The traditional methodology using a sin-
gle test per domain (traditional–single) produced a
slightly better 78% accuracy (104 of 133 individuals cor-
rectly classified), which was statistically significant by
Fisher’s Exact Test, c2(1, N = 133) = 40.91, p < .001.
Since the MMSE is so often used in the diagnosis of AD,
we also computed a discriminant analysis that used only
the MMSE score and obtained an overall accuracy of
75% (100 of 133 individuals correctly classified). In con-
trast, our multivariate method (based on the combina-
tion of the cross-validation and new-subjects validation
results) obtained 95% accuracy (126 of 133 individuals
correctly classified), which was statistically significant by
Fisher’s Exact Test, c2(1, N = 133) = 105.72, p < .001 (Fig-
ure 3). The multivariate method produced significantly
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TABLE 4 
Component loadings for the 216-participant, 13-component PCA solution

Neuropsychological component

Test measure 1 2 3 4 5 6 7 8 9 10 11 12 13

Rey–Osterrieth Complex 
Figure (Rey)

Copy score 7 16 −3 −2 29 7 25 72 −5 2 −11 12 7

Copy speeda 26 40 11 −5 −4 3 36 9 24 7 35 −6 −12
Immediate recall 

score
43 9 11 −12 12 15 75 18 12 4 −14 5 10

Immediate recall 
speeda

−17 14 −6 4 −3 −17 −10 2 6 3 75 −13 −13

Delayed recall 
score

45 8 9 −10 8 17 76 19 6 1 −13 6 9

Delayed recall 
speeda

−16 −4 −2 1 −1 7 −4 −8 −10 2 76 13 15

Mini-Mental State Examination 
(MMSE)

Total score 44 7 14 −29 24 −2 12 33 7 8 −19 −11 1

Wechsler Memory Scale–Third 
Edition (WMS–III) Digit Span

Forward score 10 36 24 −3 68 15 −2 0 8 −4 −7 −1 −6

Backward score 22 30 19 −24 57 5 −4 11 11 6 −4 −17 11
Letter–number 

score
20 3 25 −5 75 5 24 17 −10 12 6 7 0

Geriatric Depression Scale (GDS) Score −8 1 1 −7 11 14 8 −5 17 77 8 −9 15

Wechsler Memory Scale–Revised 
(WMS–R) Logical Memory I 
(LM–R I)

A Recall scorea 77 22 18 −16 12 2 3 7 21 −3 −8 12 1

B1 Recall scorea 77 18 17 −9 13 1 9 1 19 −4 −4 18 3
B2 Recall scorea 80 24 20 −9 11 7 9 9 18 −2 −4 13 6

WMS–R Logical Memory II 
(LM–R II)

A Recall scorea 82 15 15 −12 9 10 17 −1 25 −5 −6 4 −1

B Recall scorea 83 18 20 −12 7 15 18 1 18 −11 −5 3 3
Recognition 

scorea
80 5 7 −23 5 14 4 12 15 4 5 16 −8

% Retentiona 74 0 9 −16 4 29 22 0 9 −13 −12 −10 −3

Clock Face Drawing Score 24 20 9 −10 0 4 5 77 11 −5 6 4 5

North American National Adult 
Reading Test (AMNART)

Score 31 −2 52 4 39 −13 −20 5 28 −2 −6 10 8

Stroop Test Word score 15 75 17 −9 34 8 −16 8 −4 6 −1 1 0
Color score 20 85 15 −9 14 15 −1 10 1 1 1 8 −2
Color–word score 28 72 13 −9 18 11 16 13 −6 4 5 16 12

Brief Visuospatial Memory 
Test–Revised (BVMT–R)

Trial 1 score 40 40 −5 −13 8 1 18 1 58 16 −7 0 6

Trial 2 score 30 9 −9 −8 40 24 34 13 39 26 −4 17 6
Trial 3 score 60 32 11 −12 3 32 18 16 37 6 −9 28 8
Learning slope 52 12 20 −6 −3 39 6 20 6 −4 −6 40 5
Delayed recall 65 31 12 −13 −2 35 18 17 35 11 −9 15 6
% Retention 54 14 7 −8 −7 35 7 36 4 16 −9 −13 2
Hits 29 14 −11 4 10 80 13 1 −3 5 −3 −7 −3
False alarms −25 −19 −14 74 −6 −10 7 −12 −22 −4 −7 −19 −6
Discrimination 

index
29 11 4 −34 14 74 9 10 8 8 −4 2 −6

Controlled Oral Word Association 
Test (COWAT)

F scorea 19 24 82 −5 12 1 5 −2 −2 7 −10 0 1

A scorea 15 13 84 −14 16 3 5 5 4 4 −7 3 2
S scorea 19 14 85 −13 13 −1 9 5 −7 5 1 1 0

Category Fluency Animal-naming 
score

44 42 42 −14 −5 −4 11 5 7 17 6 14 −5

Blessed Dementia Scale (BDS) Scorea 17 16 18 5 0 −3 −4 6 −7 77 −1 17 −16

(Continued)
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higher accuracy than the traditional–single method,
Fisher’s Exact Test, c2(1, N = 266) = 15.55, p < .001,
and the traditional–many method, Fisher’s Exact Test,
c2(1, N = 266) = 21.02, p < .001.

DISCUSSION

The multivariate diagnostic method described here
achieved excellent accuracy, sensitivity, and specificity

by combining neuropsychological test results in a
weighted manner that was dictated by the data rather
than an arbitrary combination. This weighting was done
through two sequential multivariate methods: (a) PCA,
which combined the neuropsychological test measures
into component scores that represented a person’s per-
formance more parsimoniously and with greater inter-
pretability, and then (b) discriminant analysis, which
selected and weighted the component scores with the
greatest power to differentiate AD from normal aging
(Figure 1). We have confirmed that the neuropsycholog-
ical tests are sensitive to group differences between early-
stage AD and normal aging (Table 3). Here we have pro-
ceeded to formalize their diagnostic use at the individual
level through our multivariate methodology and to
improve traditional methods of clinical AD assessment
through neuropsychological testing. First, the multivari-
ate methodology and its outcomes are discussed. Then,
we compare our multivariate results with the diagnostic
results reached by traditional methodology.

Multivariate method of neuropsychological 
assessment of AD

The discriminant function was developed from 80 AD
and control individuals, and it performed extremely well
at classifying the participants whose neuropsychological
component scores measured by PCA were used in its
creation. However, it is the two validations that are of

TABLE 4 
(Continued)

Neuropsychological component

Test measure 1 2 3 4 5 6 7 8 9 10 11 12 13

Hopkins Verbal Learning Test 
(HVLT)

Trial 1 score 69 27 12 −4 26 −1 7 2 −22 10 −2 12 16

Trial 2 score 69 29 12 −19 25 11 17 7 −14 10 −3 17 8
Trial 3 score 75 33 17 −17 11 4 12 15 −12 9 −7 14 8
Delayed recall 

score
74 21 13 −22 15 19 18 5 −13 13 −7 3 3

True positives 70 1 −6 9 3 8 −5 37 −10 23 −5 −17 3
Related false 

positives
-49 −15 −13 65 −7 −10 −18 7 3 −3 10 4 1

Unrelated false 
positives

−37 −8 −16 74 −10 −8 −14 −7 4 6 3 −17 0

Discrimination 
index

75 9 6 –46 7 9 9 19 −5 14 −10 −9 −2

Boston Naming Test (BNT) Score 32 15 4 −25 −1 −9 6 7 3 9 3 66 −8

Standardized Road-Map Test of 
Direction (Road-Map)

Score 11 2 2 −3 2 −5 8 9 3 1 2 −4 94

Trail Making Test (TMT) A speeda 31 68 10 −11 −9 3 17 16 34 6 8 −4 −5
B speeda 40 60 25 −8 10 2 20 12 35 6 6 2 0

Note. Loadings are multiplied by 100. Bold indicates values above an arbitrary threshold of 43, which was selected to highlight more
salient loadings. This analysis included 55 early-stage Alzheimer’s disease (AD), 78 mild cognitive impairment (MCI), 78 controls, and
5 age-associated memory impairment (AAMI). The table reflects the principal components analysis (PCA) Varimax rotated compo-
nent pattern. The 13 components explained 77% of the total variance.
az scores for these test measures were generated from laboratory data (normal elderly) since published age/education-corrected norma-
tive data were not available.

TABLE 5 
Linear discriminant function coefficients for determining the 

probability of AD and control group membership

Variable Component AD Control

Constant −2.42 −1.05
Episodic memory 1 −3.63 2.37
Generative fluency 3 −1.47 0.67
Recognition memory–false 

positives
4 1.28 −0.72

Speeded executive function 2 −1.30 0.64
Recognition memory–true 

positives
6 −0.80 0.92

Visuospatial episodic memory 7 −0.55 0.58
Visuospatial learning 9 −0.50 0.33

Note. The discriminant coefficients shown are for the seven
neuropsychological components selected by the stepwise discri-
minant procedure. The components are shown in the order
they were selected. AD = Alzheimer’s disease.
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special interest. In the cross-validation, a single individ-
ual was omitted from the development of the discrimi-
nant function. The function was then applied to classify
that individual, and this procedure was done for every
participant. This analysis yielded high classification
accuracy (95%). Additionally, the discriminant analysis
provided the posterior probability of group membership
for each individual. These are plotted in Figure 2A. This

shows that not only were the vast majority of AD partic-
ipants correctly classified by their test diagnoses, but
they also had extremely high probabilities of belonging
to the correct group. Likewise, most of the control par-
ticipants had extremely low probabilities of belonging to
the AD group and hence high probabilities of control
group membership. No participant lay in a neutral range
near the .5 probability line.

Figure 2. Discrimination results for the cross-validation and new-subjects validation. A. Participants are ordered according to their
posterior probabilities of group membership by our discriminant function in the cross-validation. Clinically diagnosed Alzheimer’s dis-
ease (AD) participants appear with decreasing probability of belonging to the AD group; those who lie above the .5 probability line are
correctly classified by our test diagnosis as AD. ADs are misclassified as controls if they fall below this line. Controls lying below the
line are correctly classified by the test diagnosis as members of the control group, and controls lying above the line are incorrectly clas-
sified as AD. Control participants are ordered by increasing probability of AD group membership. B–C. A positive test diagnosis (T+)
reflects AD group classification. A negative test diagnosis (T–) reflects control group classification. Sensitivities are calculated as the
number of true positives (T+ and AD) divided by the sum of true positives and false negatives (T– and AD). Specificities are calculated
as the number of true negatives (T– and control) divided by the sum of true negatives and false positives (T+ and control). To view a
color version of this figure, please see the online issue of the Journal.
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The one control participant misclassified as AD in the
cross-validation is of particular interest, since this person
was diagnosed with MCI approximately three months
after completing this research protocol. In this case, our
test diagnosis correctly detected that this participant was
exhibiting impaired cognition.

Our diagnostic test method produced extremely good
results with high accuracy in the development (96%), the
cross-validation (95%), and the new-subjects validation
(94%). Additionally, both the cross-validation and new-
subjects validation had strong sensitivities (.93 and .87).
The specificities for both analyses were also very good
(.98 for the cross-validation and .97 for the new-subjects
validation). This suggests that our multivariate method
performed very well at both detecting the disease and dif-
ferentiating between affected and unaffected individuals.

The new-subjects validation tested the discriminant
function with entirely novel individuals and again yielded
excellent results. These 53 AD and control participants
were not used to create the discriminant function.

Although they did participate in the PCA that created
the component solution, this was not a necessity. We
included as many participants as possible in the PCA to
produce a stable and generalizable component structure.
We computed the PCA using a relatively diverse set of
individuals, including normal controls, MCI, and AD.
All were entered into this PCA as a single set that we
would not characterize as a relatively homogenous diag-
nostic group. A single component structure was pro-
duced for the entire set. Thus, we would expect these
results to hold for participants not part of the original
PCA and who have different etiological conditions, at
least within the range of conditions used (controls to
AD). The raw neuropsychological test results of a new
individual can be transformed into component scores
using the previously developed component structure.
Once developed, the component structure and discrimi-
nant function can be used repeatedly to diagnose any
number of new patients. This methodology is depicted in
the right column of Figure 1. Neuropsychologists and

Figure 3. Comparison of the diagnostic power of traditional methods of neuropsychological assessment with a multivariate method.
The traditional method was based upon the NINCDS-ADRDA (National Institute of Neurological and Communicative Disorders
and Stroke–Alzheimer’s Disease and Related Disorders Association) criteria (McKhann et al., 1984). The same participants (55 Alzhe-
imer’s disease, ADs, and 78 controls) and neuropsychological test results were used in this comparison. The multivariate method pro-
duced a 17% and 21% increase in accuracy, a 7% and 15% increase in sensitivity, and an 18% and 29% increase in specificity over the
traditional–single and traditional–many methods, respectively. To view a color version of this figure, please see the online issue of the
Journal.
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physicians could transform a new patient’s raw scores to
component scores using the component structure. Hav-
ing the patient’s scores in terms of the component metric
will allow the examiner to judge performance on the
interpretable component and thus more directly relate a
test measure to its constituent cognitive processes.
Equally important is the ability to apply the previously
developed discriminant function to this new individual
and determine the likelihood of group membership,
either as an AD or a control. Should the patient lie
between these two groups, they may possibly be showing
symptoms of MCI (as seen in the one control misclassi-
fied as AD in the cross-validation), and an examination
of where the patient’s component scores lie on each of
the components could help elucidate his or her specific
deficits.

This report sequentially combined both PCA and dis-
criminant analyses in a methodology that used ubiqui-
tous neuropsychological tests to diagnose AD. Our
diagnostic method benefited from several advantages.
First, the use of PCA reorganizes a large amount of data
into a more parsimonious set of component scores.
Because each PCA component “groups” together corre-
lated test measures (and thus those test measures most
likely to represent the same cognitive functions), the
component scores more directly gauge a person’s per-
formance with regard to those cognitive functions. Sec-
ond, because the component structure was created from
the data of AD, MCI, and control participants, it con-
tains the influences of both individual and group differ-
ences. The component structure then reflects the
cognitive disparities between the AD and control group
as well as the differences among the individuals within
the groups. The components become a common lan-
guage, creating fewer measures that more succinctly and
sharply represent individual and group differences.
Third, the discriminant function weights the components
in terms of their contributions to discriminating AD
from control and then classifies each individual with
high accuracy, sensitivity, and specificity. Finally, the
posterior probabilities add a quantitative context to each
diagnosis that might prove extremely useful. In addition
to the binary diagnosis, a measurement of how similar or
dissimilar a patient is to the AD group might influence
the nature of treatment.

There are some issues with our methods as presented
here. First, factor structures have often been created
from single groups and then compared (e.g., Siedlecki
et al., 2008). We developed a common metric for all the
clinical groups of interest by using all of their data in the
PCA, believing it would be a stronger measurement tool
because it reflected both individual and, more impor-
tantly for discrimination, group differences. Also,
including impaired and normal individuals in the PCA
ensures that components best able to differentiate
between the groups will appear in the component struc-
ture (Chapman et al., 2009). Methodologically, using a
variety of groups in the development of the underlying
structure would tend to avoid the one-group risk of
restricting the range in the test measures and thereby
attenuating correlations among variables that can result

in falsely low estimates of component loadings (Fabrigar,
MacCullum, Wegener, & Stahan, 1999). Another point of
interest is that this methodology is only as strong as the
test battery used to develop it. The battery should be suf-
ficiently broad and varied in the cognitive domains it
measures to produce a strong component structure.

By examining the components selected (Table 5) and
the neuropsychological test measure loadings on those
components (Table 4), we can determine which neu-
ropsychological tests are particularly potent at discrimi-
nating AD from normal aging. Clearly, measures of
memory (Component 1), in particular the retrieval and
retention of episodic memory (as with the Logical Mem-
ory tests), are important. Selected second, generative flu-
ency, but not directly categorical fluency, also showed
strong discriminatory power (shown through the salient
loadings the Controlled Oral Word Association Test had
on Component 3). This suggests that the AD patient’s
inability to readily access a mental lexicon is a stark
impairment when compared to normal elderly. Interest-
ingly, recognition memory—both the ability to discrimi-
nate between items previously presented and those that
were not (Component 4) and the ability to recognize
items encountered earlier (Component 6)—was also
selected by the stepwise discriminant procedure. The
appearance of Components 4 and 6, with salient load-
ings on both verbal (HVLT) and visuospatial (BVMT)
recognition tests, in the discriminant function suggests
that examinations of recognition memory can also be a
useful diagnostic tool for AD. Speeded executive func-
tion, examined in our battery through the Trail-Making
and Stroop tests (Component 2), was the fourth compo-
nent selected for discriminating AD and controls.
Finally, measures of visuospatial memory and learning
(Components 7 and 9), represented in this battery by the
Rey–Osterrieth Complex Figure and BVMT, aided in
identifying AD. These tests (remapped along these sim-
pler and interpretable components) symbolized the
batch most able to differentiate between AD and control
in our battery.

The approach to classifying individuals as AD or nor-
mal controls that worked well here was based on PCA
followed by discriminant analysis. Once acceptable
parameters have been developed, it is not necessary to do
complete PCA and discriminant analysis (Figure 1, left
column) for each new patient. One can simply apply
these developed parameters to the neuropsychological
measures (Figure 1, middle and right columns) of a novel
patient. This would involve using the component load-
ings developed in the prior PCA to compute the compo-
nent scores for that individual and then using the
coefficients in the developed discriminant functions to
compute the posterior probabilities of group member-
ship (Figure 1).

This method would be easiest to do for a new partici-
pant if the tests administered are the same as those used
in the development of the component structure. How-
ever, it might be possible to use different tests if their
loadings on the same components could be reasonably
estimated. This is an important point, considering differ-
ent clinics and research centers might wish to employ
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their own battery of tests. An aid to doing this might be
to calibrate the new measures in combination with
marker variables that belong to some of the tests we used
in this study that have strong loadings. The particular
neuropsychological tests at the input of this multivariate
method might not alter the discriminant functions, pro-
vided those test measures can be appropriately loaded
onto the components used in the functions (though the
new tests must be somewhat similar in order to represent
each component in the structure). This is a possible
advantage to having principal components scores used
as the input to the discriminant analysis. These ideas
require further study.

Additionally, after the component structure has been
developed, it may be possible to reduce the number of
tests administered and achieve essentially the same
results. Not all of the neuropsychological components
were selected by the stepwise discriminant procedure.
For example, 6 of the 13 components (Components 5, 8,
10, 11, 12, and 13) were not selected by the stepwise dis-
criminant analysis as having as strong contributions to
differentiating between AD and control participants as
the others that were selected. It is possible the tests that
are highly associated with these unneeded components
(e.g., the Boston Naming Test had a high loading on
only Component 12 as shown in Table 4) may not need
to be administered as part of the battery during diagno-
sis of AD given the other tests in this battery. Although
these tests may not have contributed to the discrimina-
tion of AD from normal elderly, they may hold discrimi-
natory power for differentiating AD from other
dementias or disorders. This warrants further research to
determine whether these tests may be applicable to other
diagnostic procedures.

It is interesting to note that the most commonly used
measure of global cognitive ability, the MMSE, did not
have any loadings above .44 on any component in this
analysis (it has a weakly salient loading on Component
1, as compared to loadings on this component for the
Logical Memory tests, for example, which were gener-
ally above .80). This may be considered surprising as this
measure is commonly used for assessment of cognition
in the elderly population and is often considered the lin-
gua franca of clinical assessment of dementia. However,
this measure has some limitations including a relatively
low ceiling with demented patients often scoring in the
normal range. Using only the total MMSE score in a dis-
criminant analysis to classify AD versus control individ-
uals, we obtained a sensitivity of .56, a specificity of .88,
and an overall accuracy of 75%. In other work, depend-
ing on the criterion used to classify a particular score as
abnormal, the sensitivities and specificities of the MMSE
for dementia ranged from about 56 to 96% (Costa et al.,
1996; Heun, Papassotiropoulos, & Jennssen, 1988;
McDowell, Kristjansson, Hill, & Hebert, 1997). In addi-
tion, the MMSE was designed as a global measure of cog-
nitive function tapping multiple cognitive domains. As
such, the composite total score derived from the MMSE
may obscure select impairments in specific cognitive
domains. This is seen in the MMSE’s scattered, weaker
loadings across many of the components.

There may appear to be some circularity in using neu-
ropsychological tests to develop a new multivariate
method of diagnosis and then validating that method’s
accuracy against clinical assessment, which may also use
neuropsychological assessment. However, clinical assess-
ment is aided by additional information about the
patient, such as family history, imaging and anatomical
studies, and clinical impressions which were not included
in our multivariate approach. Clinical diagnosis often,
but not always, includes formal cognitive testing. In
most cases simple screening measures, such as the
MMSE, category fluency, or clock face drawing, are the
main cognitive tests administered. Our experimental
method goes beyond screening measures by providing a
comprehensive assessment of multiple cognitive domains
in order to fully explore the discrete cognitive dimensions
that are associated with less objectively obtained clinical
measures. The diagnosis of AD and MCI was made in a
specialized clinical setting using standard diagnostic crite-
ria. The tests typically used by the memory disorders phy-
sicians (the MMSE, the category naming test, and the
Clock Drawing Test) either did not load strongly on our
components (<.45) or belonged to components that were
not selected by our stepwise discriminant procedure. This
suggests that the clinical diagnosis derived from neuropsy-
chological testing and use of family history, other medical
information, and clinical impressions is separable from
the formal neuropsychological results reported here.

Whatever concerns there may be about possibilities of
overlap of neuropsychological data in the clinical diag-
noses, the clinical diagnoses we used for comparison for
our multivariate method were the same as those that
were used in analyzing the success of the traditional
methods. The circularity would thus impact the accuracy
of the methodologies equally, and our multivariate
method still showed approximately 20% higher success
rates than the traditional methods.

While the results shown here are an important first
step to improving AD diagnostic procedures through
neuropsychological testing, it is limited at this stage to
differentiating AD from normal elderly. Further study is
necessary to determine whether neuropsychological tests
combined through this multivariate methodology can
discriminate AD from other dementias, memory disor-
ders, and mood disorders. Additionally, examination of
individuals of different ethnicities, cultures, and other
demographic considerations should be performed using
this multivariate methodology; the effects of these varia-
bles were not studied in our present analyses. In this
paper, we wanted to only focus on early AD because it is
the clinical “gold standard” that likely reflects underly-
ing pathology (based on post mortem studies). There-
fore, we wanted to develop discriminant functions to
differentiate individuals with early AD from normal eld-
erly with greater success than what may be achieved with
traditional combinatory methods. We recognize that
extensions of this paper utilizing the component scores
of MCI individuals to predict progression to AD may be
of greater clinical interest, and we are actively pursuing
this work based upon the component structure described
and validated herein.
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Comparison with traditional methodology

Traditional methods of AD assessment with neuropsy-
chological testing typically compare the patient’s scores
on each of the tests to normative data. Performances
below the 5th percentile (approximately 1.7 standard
deviations below the mean of normal performance) are
generally accepted as indicating impairment. The
NINCDS-ADRDA criteria for cognitive assessment in
AD diagnosis (McKhann et al., 1984) state that there
must be impairment in two of eight cognitive domains to
confirm dementia.

Using individuals in both the cross-validation and
new-subjects validation sets for assessing the traditional
methods, scores that were below the 5th percentile were
marked as impaired, and impairment in two domains
was considered indicative of AD. We arranged our neu-
ropsychological test battery into the eight cognitive
domains in two ways: First, the traditional–many
method grouped all the tests applicable to each domain,
and, second, the traditional–single method used only one
test for each of the eight domains.

The traditional–many method produced 74% accuracy
(99 of 133 individuals correctly classified), a sensitivity of
.84, and a specificity of .68. The traditional–single
method performed better overall with a 78% accuracy
(104 of 133 individuals correctly classified), a sensitivity
of .76, and a specificity of .79. Comparing those results
of the traditional methods with the new multivariate
results reported here that show an overall accuracy of
95%, a sensitivity of .91, and a specificity of .97 (Figure
3), the relative weights applied by the PCA and the dis-
criminant function clearly improved the classification
results. The multivariate accuracy was 21% better than
the traditional–many method and 17% better than the
traditional–single method. The sensitivity was moder-
ately increased (7% and 15%), and the specificity was
greatly increased (18% and 29%) through weighted,
quantitative consideration of which components (and
thus which tests) better discriminated AD from control.
The weak specificity of the NINCDS-ADRDA criteria
has been discussed before (Dubois et al., 2007). How-
ever, the issue of how to combine the existing neuropsy-
chological tests in a weighted manner to produce the best
diagnostic method was not addressed.

There are inherent statistical difficulties in quantita-
tively determining “impairment” through measurement
of performance on separate tests, and these problems
may lead to more false positives and false negatives in
diagnosis. The traditional–many and traditional–single
methods provide examples of this issue. In the tradi-
tional–many method, more tests were used to represent
each domain, and while that produced a higher sensitiv-
ity, far more control individuals were incorrectly classified
as AD. Conversely, the traditional–single method allowed
only one test to measure each domain, and this resulted in a
better specificity at the expense of misdiagnosing more AD
individuals. Performance below the 5th percentile as a
marker of impairment is an arbitrary criterion that is
applied to each test measure used, whereas the discriminant
analysis seeks a criterion that best discriminates between

groups and is obtained from multivariate considerations,
especially when component scores are its input variables.
Once selected, that multivariate criterion is held for all
individual participants, and this produces a considerable
increase in diagnostic accuracy, sensitivity, and specifi-
city (Figure 3). Clearly the arrangement and combina-
tion of the test measures can greatly impact the
diagnostic results.

Therefore, it may be helpful to consider how these
neuropsychological measures could be combined in a
formal, empirical way. We have shown that the sequen-
tial partnering of PCA and discriminant analysis pro-
duces weighted measures derived from the data that help
ameliorate this issue. In conjunction with biomarkers
from imaging, genetic, ERP (Chapman et al., 2007), or
other promising areas of research, the multivariate
method of neuropsychological assessment presented here
may both help to improve the definition of AD and
increase diagnostic accuracy, sensitivity, and specificity.
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