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Here we consider training a single layer neural network (no hidden units) with an unsupervised
Hebbian learning rule. It seems sensible that we might want the activation of an output unit to
vary as much as possible when given different inputs. After all, if this activation was a constant
for all inputs then the activation would not be telling us anything about which input is present. In
contrast, if the activation has very different values for different inputs then there is some hope of
knowing something about the input based just on the output unit’s activation.

So we might want to train the output unit to adapt its weights so as to maximize the variance of its
activation. However, one way in which the unit might do this is by making its weights arbitrarily
large. This would not be a satisfying solution. We would prefer a solution in which the variance
of the output activation is maximized subject to the constraint that the weights are bounded. For
example, we might want to constrain the length of the weight vector to be one.

Lagrange optimization is a method for maximizing (or minimizing) a function subject to one or more
constraints. At this point, we take a brief detour and give an example of Lagrange optimization.
From this example, you should get the general idea of how this method works.

Example: Suppose that we want to find the shortest vector y = [y1 y2]T that lies on the line
2y1− y2− 5 = 0. We write down an objective function L in which the first term states the function
that we want to minimize, and the second term states the constraint:

L =
1
2
(y2

1 + y2
2) + λ(2y1 − y2 − 5) (1)

where λ is called a Lagrange multiplier (it is always placed in front of the constraint). The first
term gives the length of the vector (actually its 1/2 times the length of the vector squared); the
second term gives the constraint. We now take derivatives, and set these derivatives equal to zero:

∂L

∂y1
= y1 + 2λ = 0 (2)

∂L

∂y2
= y2 − λ = 0 (3)

∂L

∂λ
= 2y1 − y2 − 5 = 0. (4)

Note that we have three equations and three unknown variables. From the first derivative we know
that y1 = −2λ, and from the second derivative we know that y2 = λ. If we plug these values into
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the third derivative, we get −4λ− λ = 5 or that λ = −1. From this, we can now solve for y1 and
y2; in particular, y1 = 2 and y2 = −1. So the solution to our problem is y = [2 − 1]T .

Now let’s turn to the problem that we really care about. We want to maximize the variance of
the output unit’s activation subject to the constraint that the length of the weight vector is equal
to one. Without loss of generality, let’s make things simpler by assuming that the input variables
each have a mean of zero (E[xi] = 0). Because the mapping from inputs to the output is linear

(y = wTx = xTw), this means that the output activation will also have a mean of zero (E[y] = 0).
We are now ready to write down the objective function:

L =
1
2

∑
p

y2
p + λ(1−wTw) (5)

where yp is the output activation on data pattern p. The first term, 1
2

∑
p y2

p, is proportional to the

sample variance of the output unit, and the second term, λ(1−wTw) gives the constraint that the
weight vector should have a length of one. We now do some algebraic manipulations:

L =
1
2

∑
p

(wTxp)(xT
p w) + λ(1−wTw) (6)

=
1
2

∑
p

wT (xpxT
p )w + λ(1−wTw) (7)

=
1
2
wT Qw + λ(1−wTw) (8)

where Q =
∑

p xpxT
p is the sample covariance matrix. Now let’s take the derivative of L with

respect to w, and set this derivative equal to zero:

∂L

∂w
= Qw − 2λw = 0 (9)

which means that Qw = 2λw. In other words, w is an eigenvector of the covariance matrix Q (the
corresponding eigenvalue is 2λ). So if we want to maximize the variance of the output activation
(subject to the constraint that the weight vector is of length one), then we should set the weight
vector to be an eigenvector of the input covariance matrix (in fact it should be the eigenvector
with the largest eigenvalue). As discussed below, this has an interesting relationship to principal
component analysis and unsupervised Hebbian learning.

The idea behind principal component analysis (PCA) is that we want to represent the data with
respect to a new basis, where the vectors that form this new basis are the eigenvectors of the data
covariance matrix. Recall that eigenvectors with large eigenvalues give directions of large variance
(again, we are considering the eigenvectors of a covariance matrix), whereas eigenvectors with small
eigenvalues give directions of small variance (so the eigenvector with the largest eigenvalue gives
the direction in which the input data shows the greatest variance, and the eigenvector with the
smallest eigenvalue gives the direction in which the input data shows the least variance). Each
eigenvalue gives the value of the variance in the direction of its corresponding eigenvector (thus the
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eigenvalues are all positive). Because the data covariance matrix is symmetric, its eigenvectors are
orthogonal (as usual, we assume that the eigenvectors are of length one).

Let x(t) = [x(t)
1 , . . . , x

(t)
n ]T be a data item, and ei = [e1, . . . , en]T be the ith eigenvector (assume

that the eigenvectors are ordered such that the eigenvector with the largest eigenvalue is e1, the
eigenvector with the next largest eigenvalue is e2, and so on). The projection of x(t) onto ei is

denoted y
(t)
i , and is given by the inner product of these two vectors:

y
(t)
i = [x(t)]Tei = eT

i x(t). (10)

That is, y
(t)
i is the coordinate of x(t) along the axis given by ei, and y(t) = [y(t)

1 , . . . , y
(t)
n ]T is the

representation of x(t) with respect to the new basis. Let E = [e1, . . . , en] be the matrix whose ith

column is the ith eigenvector. Then we can move back and forth between the two representations
of the same data by the linear equations:

y(t) = ETx(t), (11)

and
x(t) = Ey(t). (12)

Please make sure that you understand these equations [we have used the fact that for an orthogonal
matrix E (a matrix whose columns are orthogonal vectors), its inverse, E−1, is equal to its transpose

ET ].

Principal component analysis is useful for at least two reasons. First, as a feature detection mecha-
nism. It is often the case that the eigenvectors give interesting underlying features of the data. PCA
is also useful as a dimensionality reduction technique. Suppose that we represent the data using only

the first m eigenvectors, where m < n (that is, suppose we represent x(t) with ŷ(t) = [y(t)
1 , . . . , y

(t)
m ]T

instead of y(t) = [y(t)
1 , . . . , y

(t)
n ]T ). Out of all linear transformations that produce an m-dimensional

representation, this transformation is optimal in the sense that it preserves the most informa-
tion about the data (yes, I am being vague here). That is, PCA can be used for optimal linear
dimensionality reduction.

In the remainder of this handout, we prove that the use of a particular Hebbian learning rule results
in a network that performs PCA. That is, the weight vector of the ith output unit goes to the ith

eigenvector ei of the data covariance matrix, and the output of this unit y
(t)
i is the coordinate of

the input x(t) along the axis given by ei. For simplicity, we assume that we are dealing with a
two-layer linear network with n input units and only one output unit (the result extends to the
case with n output units in which the weight vector of each output unit is a different eigenvector,
but we will not prove that here). We will also assume that the input is a random variable with
mean equal to zero.

The learning rule is:
wi(t + 1) = wi(t) + ε[y(t)xi(t)− y2(t)wi(t)] (13)
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where wi(t) is the value of the output unit’s ith weight at time t. Note that the first term inside
the brackets is the standard Hebbian learning term, and the second term is a type of “weight
decay” term that prevents the weight from getting too big. In vector notation, this equation may
be re-written:

w(t + 1) = w(t) + ε[y(t)x(t)− y2(t)w(t)]. (14)

Recall that we are using a linear network so that

y(t) = wT (t)x(t) = xT (t)w(t). (15)

Using this fact, we re-write the weight update rule as

w(t + 1) = w(t) + ε[x(t)xT (t)w(t)−wT (t)x(t)xT (t)w(t)w(t)]. (16)

Let C = E[x(t)xT (t)] be the data covariance matrix (we use the fact that the input has a mean
equal to zero). The update rule converges when E[w(t + 1)] = E[w(t)]. Denote the expected value
of w(t) at convergence as wo. Convergence occurs when the expected value of what is inside the
brackets in the update rule is equal to zero:

0 = E[x(t)xT (t)]wo −wT
o E[x(t)xT (t)]wowo (17)

= Cwo −wT
o Cwowo. (18)

In other words,
Cwo = λowo (19)

where
λo = wT

o Cwo. (20)

That is, wo is an eigenvector of the data covariance matrix C with λo as its eigenvalue. We know
that wo has length one because

λo = wT
o Cwo (21)

= wT
o λowo (22)

= λo ‖ wo ‖2 (23)

which is only possible if ‖ wo ‖2= 1. We also know that λo is the variance in the direction of wo

because

λo = wT
o Cwo (24)

= wT
o E[x(t)xT (t)]wo (25)

= E[{wT (t)x(t)}{xT (t)w(t)}] (26)

= E[y2(t)] (27)

which is the variance of the output (assuming that the output has mean zero which is true given
our assumption that the input has mean zero and that the input and output are linearly related).
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We still need to prove that wo is the particular eigenvector with the largest eigenvalue, i.e. wo = e1.
This is trickier to prove so we shall omit it.

This result is due to Oja (1982). The extension to networks with n output units in which the weight
vector of each output unit goes to a different eigenvector is due to Sanger (1989). The extension
to networks (using Hebbian and anti-Hebbian learning) with n output units in which the n weight
vectors span the same space as the first n eigenvectors is due to Földiák (1990).
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