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Summary: This note starts by summarizing some of the main points regarding principal
component analysis (PCA). A fuller discussion of these points is provided in the remainder of the
note.

Consider a set of N d-dimensional data vectors {xi}N
i=1. We want to re-represent these data

points using a new basis (and possibly in a q-dimensional space where q < d).

Implementation: Let

x =
1
N

N∑

i=1

xi (1)

denote the data sample mean vector. Then the data sample covariance matrix S is

S =
1
N

N∑

i=1

(xi − x) (xi − x)T . (2)

The new basis is formed by the eigenvectors of S. If dimensionality reduction is desired, ignore the
eigenvectors with small eigenvalues.

PCA is generally derived in two ways, one way is based on finding directions in which the
“variance of the data is maximized”, and the other way is based on “minimizing reconstruction
error”. We next briefly describe these two ways of deriving PCA, and later show that they are
equivalent to each other.

Derivation of PCA I: For a set of d-dimensional data vectors {xi}N
i=1, the principal axes {e}q

j=1

are those orthonormal axes onto which the retained variance under projection is maximal. It can
be shown that the vectors ej are given by the q dominant eigenvectors of the sample covariance

matrix S, such that Sej = λjej . The q principal components of the observed vector xi are given
by the vector

ti = ET (xi − x) (3)

where E is a matrix whose jth column is ej . The variables tj (the elements of the vector t) are

then uncorrelated such that the covariance matrix
∑

i(t
i)(ti)T /N is diagonal with elements λj .
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Derivation of PCA II: Of all orthogonal linear projections ti = ET (xi − x), the principal
component projection minimizes the squared reconstruction error

∑
i ‖xi− x̂i‖2 where the optimal

linear reconstruction of xi is given by x̂i = ET ti + x.

Fuller discussion: Consider an imaginary data set in which the heights (X1) and weights (X2)
of n individuals have been recorded. This two-dimensional sample might then be represented (after
mean-centering) by a scatter plot such as that in Figure 1.

The axis OX1 and OX2 (O stands for origin) of this representation have been determined by
the variables height and weight respectively. Note, however, that we could rotate the axes to the
new positions OY1 and OY2 without altering the configuration of points, and relate the points to
these new axes for any future analysis without changing the outcome of that analysis.

It may also occur that such new axes may actually carry some useful meaning to the investigator;
indeed they may even be more meaningful than the original measurements that were taken. For
instance, imagine all the data points successively compressed on to the OY1 and OY2 axes. Points
at the extreme right-hand end of OY1 will correspond to individuals that have large values of both
height and weight, whereas points at the extreme left of OY1 have small values of both height and
weight. Thus an individual’s value on the OY1 axis is a reflection of that individual’s size, and
hence this axis can be labeled as a ‘size’ axis. Now, consider axis OY2. Points at the top of this
axis will tend to correspond to individuals whose weight (X2) is large in relation to their height
(X1), whereas points at the bottom of this axis will tend to correspond to individuals whose height
is large in relation to their weight. Thus an individual’s value on the OY2 axis is a reflection of
that individual’s shape, and this axis can be labeled as a ‘shape’ axis.

Axes OY1 and OY2 are a rotation of axes OX1 and OX2, and so the relationship between the
two representations is

y1 = x1 cosα + x2 sinα (4)

y2 = −x1 sinα + x2 cosα (5)

where α is the angle between OX1 and OY1 or between OX2 and OY2. For a fixed value of α, this
is a linear relationship.

In Figure 1 there is a wide spread of sample values on the OY1 axis, and a relatively small spread
of values on the OY2 axis. This means that individuals have widely differing sizes, but similar
shapes. It is tempting therefore to approximate the two-dimensional data by a one-dimensional
approximation to this data that is obtained by projecting the points on to the OY1 axis. This will
give a reasonably good approximation since we could characterize the differences between the n

individuals sufficiently well if, instead of quoting the height x1 and weight x2 for each, we were
simply to quote its index of size y1. Replacing the two original variables X1 and X2 by a single
derived variable Y1 effects a reduction in dimensionality from 2 to 1.

Different values of the angle α give different derived variables Y1. Among the different possible
values, there will be one that is deemed to be ‘best.’ Consider the point Pi in Figure 1, and its
projection onto the OY1 axis labeled P ′

1. The line between Pi and P ′
i is denoted PiP

′
i , and its length

is the displacement of the point from its two-dimensional representation to its one-dimensional
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Figure 1: Sample of heights (X1) and weights (X2) of n individuals.

representation. We will regard the optimal value of α as the value that gives rise to the smallest
displacement of all the points from their original two-dimensional positions. In other words, the
line OY1 of closest fit to the points is defined to be the one obtained by minimizing

∑n
i=1(PiP

′
i )

2.

Applying Pythagoras’ Theorem to the triangle OPiP
′
i , we get

(OPi)2 = (OP ′
i )

2 + (PiP
′
i )

2. (6)

Summing over all the points Pi, it follows

n∑

i=1

(OPi)2 =
n∑

i=1

(OP ′
i )

2 +
n∑

i=1

(PiP
′
i )

2. (7)

Hence
1

n− 1

n∑

i=1

(OPi)2 =
1

n− 1

n∑

i=1

(OP ′
i )

2 +
1

n− 1

n∑

i=1

(PiP
′
i )

2. (8)

The left-hand side of this equation is fixed for any given sample regardless of the coordinate-system
that is used. Hence choosing OY1 to minimize 1

n−1

∑n
i=1(PiP

′
i )

2 is equivalent to choosing OY1 to

maximize 1
n−1

∑n
i=1(OP ′

i )
2. Since O is the centroid of the points (recall that the data is mean-

centered), 1
n−1

∑n
i=1(OP ′

i )
2 is just the sample variance when the individuals have values given by

their Y1 coordinate. Thus finding the line OY1 that minimizes the sum of squared perpendicular
deviations of the points from this line is exactly equivalent to finding the line OY1 such that the
projections of points on it have maximum variance.

It’ll now be useful if we abandon our simple two-dimensional example, and instead consider
the more general case when data lies in a p-dimensional space. In what follows below, we use a
sequence of steps of the above form. The data are modeled as usual by a swarm of n points in p
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dimensions, each axis corresponding to a measured variable. First, we look for a line OY1 in this
space such that the spread of the n points when projected on to this line is a maximum. Having
obtained OY1, we next consider the (p− 1) dimensional subspace orthogonal to OY1, and look for
the line OY2 in this subspace such that the spread of points when projected on to this line is a
maximum. This is equivalent to seeking a line OY2 at right angles to OY1, such that the spread
of points when they are projected onto OY2 is as large as possible (although, clearly, this spread
must be no greater than the spread along OY1). Having, obtained OY1 and OY2, we then consider
the (p − 2) dimensional subspace orthogonal to both OY1 and OY2. Thus we look for a line OY3

which is at right angles to both OY1 and OY2 such that the spread of points when projected along
OY3 is as large as possible after the spread on OY1 and OY2 have been taken into account. This
process can be continued until we have obtained p mutually orthogonal lines OYi(i = 1, . . . , p).

The above discussion should give you an intuitive feel for principal components analysis. We
are now about to dive into the mathematical details. Before doing so, we need to take two detours:
one detour on sample covariance matrices and one detour on Lagrange multipliers.

We suppose that each data item is a p dimensional vector xi = [xi1, . . . , xip]T , and that there
are n data items. These items can be placed in an (n× p) data matrix (each row is an individual
data item) whose (i, j)th element is xij . The mean (across all data items) of the jth variable is x̄j =
1
n

∑n
i=1 xij . Let all these means be collected together in the sample mean vector x̄ = [x̄1, . . . , x̄p]T .

The variance of the jth variable is given by

sjj =
1

n− 1

n∑

i=1

(xij − x̄j)2, (9)

and the covariance between the jth and kth variables is given by

sjk =
1

n− 1

n∑

i=1

(xij − x̄j)(xik − x̄k). (10)

Let all these variances and covariances be collected together in the sample covariance matrix S
which has (j, k)th element sjk. By expanding the right-hand side as a matrix product, it can be
shown that

S =
1

n− 1

n∑

i=1

(xi − x̄)(xi − x̄)T . (11)

Now consider forming a variable Y as a linear combination a1X1 + . . . + apXp of the original

variables Xi. We can more concisely write Y = aTX where a = [a1, . . . , ap]T . Then the value of Y

corresponding to the ith data item is

yi = a1xi1 + . . . + apxip (12)

= aTxi, (13)

and the mean of Y over the n sample members is

ȳ = a1x̄1 + . . . + apx̄p (14)

= aT x̄. (15)

4



Next consider the sample variance of Y . This is given by

S2
Y =

1
n− 1

n∑

i=1

(yi − ȳ)2. (16)

Because

yi − ȳ = aTxi − aT x̄ (17)

= aT (xi − x̄) (18)

= (xi − x̄)Ta, (19)

then
(yi − ȳ)2 = aT (x− x̄)(x− x̄)Ta, (20)

and we can write

n∑

i=1

(yi − ȳ)2 =
n∑

i=1

aT (x− x̄)(x− x̄)Ta (21)

= aT {
n∑

i=1

(x− x̄)(x− x̄)T }a. (22)

Consequently,

S2
Y =

1
n− 1

n∑

i=1

(yi − ȳ)2 (23)

= aT { 1
n− 1

n∑

i=1

(x− x̄)(x− x̄)T }a (24)

= aTSa. (25)

If needed, it is easy to show that aTSa =
∑p

i=1

∑p
j=1 aiajsij . We are now done with the detour on

sample covariance matrices. We have shown that the variance of Y can be expressed in terms of
the covariance matrix of X, denoted S, and the linear coefficients, denoted a.

The next detour has to do with Lagrange optimization. This is a method for maximizing
(or minimizing) a function subject to one or more constraints. We give an example of Lagrange
optimization. From this example, you should get the general idea of how this method works.

Example: Suppose that we want to find the shortest vector y = [y1 y2]T that lies on the line
2y1− y2− 5 = 0. We write down an objective function L in which the first term states the function
that we want to minimize, and the second term states the constraint:

L =
1
2
(y2

1 + y2
2) + λ(2y1 − y2 − 5) (26)
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where λ is called a Lagrange multiplier (it is always placed in front of the constraint). The first
term gives the length of the vector (actually its 1/2 times the length of the vector squared); the
second term gives the constraint. We now take derivatives, and set these derivatives equal to zero:

∂L

∂y1
= y1 + 2λ = 0 (27)

∂L

∂y2
= y2 − λ = 0 (28)

∂L

∂λ
= 2y1 − y2 − 5 = 0. (29)

Note that we have three equations and three unknown variables. From the first derivative we know
that y1 = −2λ, and from the second derivative we know that y2 = λ. If we plug these values into
the third derivative, we get −4λ− λ = 5 or that λ = −1. From this, we can now solve for y1 and
y2; in particular, y1 = 2 and y2 = −1. So the solution to our problem is y = [2 − 1]T .

We are now done with detours, and can return to the problem of deriving principal components.
Based on our discussion above, we define the first principal component to be the linear combination
Y1 = aT

1 X of the original variables such that the variance of Y1, aT
1 Sa1, is maximal. Note, however,

that there is a problem. One uninteresting way of making Y1 have a large variance is by making the
linear coefficients a1 = [a11, . . . , a1p]T be as large as possible (i.e. infinite). This would be a trivial
solution. To avoid this solution, we must constrain the coefficients so that they are bounded. In
particular, we use the constraint that the sum of squares of the coefficients is equal to one, i.e.

aT
1 a1 =

p∑

i=1

a2
1i = 1. (30)

Let

V1 = aT
1 Sa1 − λ1(aT

1 a1 − 1) (31)

=
p∑

i=1

p∑

j=1

a1ia1jsij − λ1(
p∑

i=1

a2
1i − 1) (32)

Then
∂V1

∂a1k
= 2

p∑

j=1

skja1j − 2λ1a1k (k = 1, . . . , p) (33)

To find the vector a1 = [a11, . . . , a1p]T maximizing V1, we set ∂V1
∂a1k

= 0 for all k and solve the

resulting set of equations. For the kth coefficient we get

p∑

j=1

skja1j = λ1a1k. (34)

The left-hand side of this equation is the kth element of Sa1, while the right-hand side is the
kth element of λ1a1. Thus when all k equations are treated simultaneously, it follows that the
maximizing value of a1 must satisfy

Sa1 = λ1a1. (35)
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That is, the vector of coefficients a1 is an eigenvector of the data covariance matrix S with eigenvalue
λ1. We choose a1 to be the eigenvector with the largest eigenvalue.

We are done! I will not bore you with the details proving that the linear coefficients correspond-
ing to the other principal components are also given by the eigenvectors of S. Suffice it to say that
one uses Lagrange optimization where we maximize the variance of Yi subject to the constraints
that aT

i ai = 1 and also that ai is orthogonal to all previous vectors of linear coefficients. The fact
that all our intuitions about good coordinate systems and good dimensionality reduction turns out
to be an eigenvalue/eigenvector problem is an amazing result! (Are you amazed?)
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