
Variational Autoencoder

Göker Erdog̃an

August 8, 2017

The variational autoencoder (VA) [1] is a nonlinear latent variable model with an efficient
gradient-based training procedure based on variational principles. In latent variable models, we
assume that the observed x are generated from some latent (unobserved) z; these latent variables
capture some “interesting” structure in the observed data that is not immediately visible from
the observations themselves. For example, a latent variable model called independent components
analysis can be used to separate the individual speech signals from a recording of people talking
simultaneously. More formally, we can think of a latent variable model as a probability distribution
p(x|z) describing the generative process (of how x is generated from z) along with a prior p(z) on
latent variables z. This corresponds to the following simple graphical model

z → x (1)

Learning in a latent variable model Our purpose in such a model is to learn the generative
process, i.e., p(x|z) (we assume p(z) is known). A good p(x|z) would assign high probabilities to
observed x; hence, we can learn a good p(x|z) by maximizing the probability of observed data,
i.e., p(x). Assuming that p(x|z) is parameterized by θ, we need to solve the following optimization
problem

max
θ

pθ(x) (2)

where pθ(x) =
∫
z p(z)pθ(x|z). This is a difficult optimization problem because it involves a possibly

intractable integral over z.

Posterior inference in a latent variable model For the moment, let us set aside this learning
problem and focus on a different one: posterior inference of p(z|x). As we will see shortly, this
problem is closely related to the learning problem and in fact leads to a method for solving it.
Given p(z) and p(x|z), we would like to infer the posterior distribution p(z|x). This is usually

rather difficult because it involves an integral over z, p(z|x) = p(x,z)∫
z p(x,z)

. For most latent variable

models, this integral cannot be evaluated, and p(z|x) needs to be approximated. For example, we
can use Markov chain Monte Carlo techniques to sample from the posterior. However, here we will
look at an alternative technique based on variational inference. Variational inference converts the
posterior inference problem into the optimization problem of finding an approximate probability
distribution q(z|x) that is as close as possible to p(z|x). This can be formalized as solving the
following optimization problem

min
φ

KL(qφ(z|x)||p(z|x)) (3)

where φ parameterizes the approximation q and KL(q||p) denotes the Kullback-Leibler divergence

between q and p and is given by KL(q||p) =
∫
x q(x) log q(x)

p(x) . However, this optimization problem is

1

no easier than our original problem because it still requires us to evaluate p(z|x). Let us see if we
can get around that. Plugging in the definition of KL, we can write,

KL(qφ(z|x)||p(z|x)) =

∫
z
qφ(z|x) log

qφ(z|x)

p(z|x)

=

∫
z
qφ(z|x) log

qφ(z|x)p(x)

p(x, z)

=

∫
z
qφ(z|x) log

qφ(z|x)

p(x, z)
+

∫
z
qφ(z|x) log p(x)

= −L(φ) + log p(x)

where we defined

L(φ) =

∫
z
qφ(z|x) log

p(x, z)

qφ(z|x)
. (4)

Since p(x) is independent of qφ(z|x), minimizing KL(qφ(z|x)||p(z|x)) is equivalent to maximizing
L(φ). Note that optimizing L(φ) is much easier since it only involves p(x, z) = p(z)p(x|z) which
does not involve any intractable integrals. Hence, we can do variational inference of the posterior
in a latent variable model by solving the following optimization problem

max
φ
L(φ) (5)

Back to the learning problem The above derivation also suggests a way for learning the
generative model p(x|z). We see that L(φ) is in fact a lower bound on the log probability of
observed data p(x)

KL(qφ(z|x)||p(z|x)) = −L(φ) + log p(x)

L(φ) = log p(x)−KL(qφ(z|x)||p(z|x))

L(φ) ≤ log p(x)

where we used the fact that KL is never negative. Now, assume instead of doing posterior
inference, we fix q and learn the generative model pθ(x|z). Then L is now a function of θ,

L(θ) =
∫
z q(z|x) log p(z)pθ(x|z)

q(z|x) . Since L is a lower bound on log p(x), we can maximize L as a proxy

for maximizing log p(x). In fact, if q(z|x) = p(z|x), the KL term will be zero and L(θ) = log p(x),
i.e., maximizing L will be equivalent to maximizing p(x). This suggests maximizing L with respect
to both θ and φ to learn qφ(z|x) and pθ(x|z) at the same time.

max
θ,φ
L(θ, φ) (6)

where

L(θ, φ) =

∫
z
qφ(z|x) log

p(z)pθ(x|z)
qφ(z|x)

(7)

= Eq
[
log

p(z)pθ(x|z)
qφ(z|x)

]
2

A brief aside on expectation maximization (EM) EM can be seen as one particular strategy
for solving the above maximization problem in (6). In EM, the E step consists of calculating the
optimal qφ(z|x) based on the current θ (which is the posterior pθ(z|x)). In the M step, we plug the
optimal qφ(z|x) into L and maximize it with respect to θ. In other words, EM can be seen as a
coordinate ascent procedure that maximizes L with respect to φ and θ in alternation.

Solving the maximization problem in Eqn. 6 One can use various techniques to solve the
above maximization problem. Here, we will focus on stochastic gradient ascent since the variational
autoencoder uses this technique. In gradient-based approaches, we evaluate the gradient of our
objective with respect to model parameters and take a small step in the direction of the gradient.
Therefore, we need to estimate the gradient of L(θ, φ). Assuming we have a set of samples z(l), l =
1 . . . L from qφ(z|x), we can form the following Monte Carlo estimate of L

L(θ, φ) ≈ 1

L

L∑
l=1

log pθ(x, z
(l))− log qφ(z(l)|x) (8)

where z(l) ∼ qφ(z|x)

and pθ(x, z) = p(z)pθ(x|z). The derivative with respect to θ is easy to estimate since θ appears
only inside the sum.

∇θL(θ, φ) ≈ 1

L

L∑
l=1

∇θ log pθ(x, z
(l)) (9)

where z(l) ∼ qφ(z|x)

It is the derivative with respect to φ that is harder to estimate. We cannot simply push the gradient
operator into the sum since the samples used to estimate L are from qφ(z|x) which depends on
φ. This can be seen by noting that ∇φEqφ [f(z)] 6= Eqφ [∇φf(z)], where f(z) = log pθ(x, z

(l)) −
log qφ(z(l)|x). The standard estimator for the gradient of such expectations is in practice too high
variance to be useful (See Appendix for further details). One key contribution of the variational
autoencoder is a much more efficient estimate for ∇φL(θ, φ) that relies on what is called the
reparameterization trick.

Reparameterization trick We would like to estimate the gradient of an expectation of the
form Eqφ(z|x)[f(z)]. The problem is that the gradient with respect to φ is difficult to estimate
because φ appears in the distribution with respect to which the expectation is taken. If we can
somehow rewrite this expectation in such a way that φ appears only inside the expectation, we
can simply push the gradient operator into the expectation. Assume that we can obtain samples
from qφ(z|x) by sampling from a noise distribution p(ε) and pushing them through a differentiable
transformation gφ(ε, x)

z = gφ(ε, x) with ε ∼ p(ε) (10)

Then we can rewrite the expectation Eqφ(z|x)[f(z)] as follows

Eqφ(z|x)[f(z)] = Ep(ε)[f(gφ(ε, x))] (11)

3

Assuming we have a set of samples ε(l), l = 1 . . . L from p(ε), we can form a Monte Carlo estimate
of L(θ, φ)

L(θ, φ) ≈ 1

L

L∑
l=1

log pθ(x, z
(l))− log qφ(z(l)|x) (12)

where z(l) = gφ(ε(l), x) and ε(l) ∼ p(ε)

Now φ appears only inside the sum, and the derivative of L with respect to φ can be estimated in
the same way we did for θ. This in essence is the reparameterization trick and reduces the variance
in the estimates of ∇φL(θ, φ) dramatically, making it feasible to train large latent variable models.
We can find an appropriate noise distribution p(ε) and a differentiable transformation gφ for many
choices of approximate posterior qφ(z|x) (see the original paper [1] for several strategies). We will
see an example for the multivariate Gaussian distribution below when we talk about the variational
autoencoder.

Variational Autoencoder (VA) The above discussion of latent variable models is general,
and the variational approach outlined above can be applied to any latent variable model. We
can think of the variational autoencoder as a latent variable model that uses neural networks
(specifically multilayer perceptrons) to model the approximate posterior qφ(z|x) and the generative
model pθ(x, z). More specifically, we assume that the approximate posterior is a multivariate
Gaussian with a diagonal covariance matrix. The parameters of this Gaussian distribution are
calculated by a multilayer perceptron (MLP) that takes x as input. We denote this MLP with
two nonlinear functions µφ and σφ that map from x to the mean and standard deviation vectors
respectively.

qφ(z|x) = N (z;µφ(x), σφ(x)I) (13)

For the generative model pθ(x, z), we assume p(z) is fixed to a unit multivariate Gaussian, i.e.,
p(z) = N (0, I). The form of pθ(x|z) depends on the nature of the data being modeled. For
example, for real x, we can use a multivariate Gaussian, or for binary x, we can use a Bernoulli
distribution. Here, let us assume that x is real and pθ(x|z) is Gaussian. Again, we assume the
parameters of pθ(x|z) are calculated by a MLP. However, note that this time the input to the MLP
are z, not x. Denoting this MLP with two nonlinear functions µθ and σθ that map from z to the
mean and standard deviation vectors respectively, we have

pθ(x|z) = N (x;µθ(z), σθ(z)I) (14)

Looking at the network architecture of this model, we can see why it is called an autoencoder.

x
qφ(z|x)−−−−→ z

pθ(x|z)−−−−→ x (15)

The input x is mapped probabilistically to a code z by the encoder qφ, which in turn is mapped
probabilistically back to the input space by the decoder pθ.

In order to learn θ and φ, the variational autoencoder uses the variational approach outlined
above. We sample z(l), l = 1 . . . L from qφ(z|x) and use these to obtain a Monte Carlo estimate of
the variational lower bound L(θ, φ) as seen in Eqn. 8. Then we take the derivative of this bound
with respect to the parameters and use these in a stochastic gradient ascent procedure to learn
θ and φ. As we discussed above, in order to reduce the variance of our gradient estimates, we
apply the reparameterization trick. We would like to reparameterize the multivariate Gaussian

4

distribution qφ(z|x) using a noise distribution p(ε) and a differentiable transformation gφ. We
assume ε are sampled from a multivariate unit Gaussian, i.e., p(ε) ∼ N (0, I). Then if we let
z = gφ(ε, x) = µφ(x) + ε� σφ(x), z will have the desired distribution qφ(z|x) ∼ N (z;µφ(x), σφ(x))
(� denotes elementwise multiplication). Therefore, we can rewrite the variational lower bound
using this reparameterization for qφ as follows

L(θ, φ) ≈ 1

L

L∑
l=1

log pθ(x, z
(l))− log qφ(z(l)|x) (16)

where z(l) = µφ(x) + ε� σφ(x) and ε(l) ∼ N (ε; 0, I)

There is one more simplification we can make. Writing pθ(x, z) explicitly as p(z)pθ(x|z), we see

L(θ, φ) = Eq
[
log

p(z)pθ(x|z)
qφ(z|x)

]
(17)

= Eq
[
log

p(z)

qφ(z|x)

]
+ Eq [pθ(x|z)] (18)

= −KL(qφ(z|x)||p(z)) + Eq [pθ(x|z)] (19)

(20)

Since both p(z) and qφ(z|x) are Gaussian, the KL term has a closed form expression. Plugging
that in, we get the following expression for the variational lower bound.

L(θ, φ) ≈ 1

2

D∑
d=1

(
1 + log(σ2φ,d(x))− µ2φ,d(x)− σ2φ,d(x)

)
+

1

L

L∑
l=1

log pθ(x|z(l)) (21)

where z(l) = µφ(x) + ε� σφ(x) and ε(l) ∼ N (ε; 0, I)

Here we assumed that z has D dimensions and used µφ,d and σφ,d to denote the dth dimension of
the mean and standard deviation vectors for z. So far we have looked at a single data point x. Now,
assume that we have a dataset with N datapoints and draw a random sample of M datapoints.
The variational lower bound estimate for the minibatch {xi}, i = 1 . . .M is simply the average of
L(θ, φ) values for each x(i)

L(θ, φ; {xi}Mi=1) ≈
N

M

M∑
i=1

L(θ, φ;x(i)) (22)

where L(θ, φ;x(i)) is given in Eqn. 21. In order to learn θ and φ, we can take the derivative of the
above expression and use these in a stochastic gradient-ascent procedure. Such an algorithm can
be seen in Fig. 1.

An example application As an example application, we train a variational autoencoder on the
handwritten digits dataset MNIST. We use multilayer perceptrons with one hidden layer with 500
units for both the encoder (qφ) and decoder (pθ) networks. Because we are interested in visualizing
the latent space, we set the number of latent dimensions to 2. We use 1 sample per datapoint
(L = 1) and 100 datapoints per minibatch (M = 100). We use stochastic gradient-ascent with
a learning rate of 0.001 and train for 500 epochs (i.e., 500 passes over the whole dataset). The
implementation can be seen online at https://github.com/gokererdogan/DeepLearning/tree/

5

Algorithm 1 Training algorithm for the variational autoencoder

1: procedure TrainVA(L: number of samples per datapoint, M : number of datapoints per
minibatch, η: Learning rate)

2: θ, φ← Initialize parameters
3: repeat
4: {x(i)}Mi=1 ← Sample minibatch
5: {{εi,l}Ll=1}Mi=1 ← Sample L noise samples for each one of M datapoints in minibatch
6: ∇θL,∇φL ← Take the derivative of L(θ, φ; {xi}Mi=1) (Eqn. 22) with respect to θ and φ
7: θ ← θ + η∇θL . Update parameters
8: φ← φ+ η∇φL
9: until θ, φ converge

10: end procedure

master/variational_autoencoder. We provide two implementations, one in pure theano and
one in lasagne. We plot the latent space in Fig. 1 by varying the latent z along each of the
two dimensions and sampling from the learned generative model. We see that the model is able
to capture some interesting structure in the set of handwritten digits (compare to Fig4b in the
original paper [1]).

Figure 1: An illustration of the learned latent space for MNIST dataset

6

Appendix

Estimating ∇φEqφ [f(z)] One common approach to estimating the gradient of such expectations
is to make use of the identity ∇φqφ = qφ∇φ log qφ

∇φEqφ [f(z)] = ∇φ
∫
z
qφ(z|x)f(z)

=

∫
z
∇φqφ(z|x)f(z)

=

∫
z
qφ(z|x)∇φ log q(z|x)f(z)

= Eqφ [f(z)∇φ log q(z|x)]

This estimator is known by various names in the literature from the REINFORCE algorithm to
score function estimator or likelihood ratio trick. Given samples z(l), l = 1 . . . L from qφ(z|x), we
can form an unbiased Monte Carlo estimate of the gradient of L(θ, φ) with respect to φ using this
estimator. However, in practice it exhibits too high variance to be useful.

References

[1] Diederik P. Kingma and Max Welling. Auto-encoding variational Bayes. arXiv:1312.6114 [cs,
stat], 2014.

7

