
Bayesian Inference: Metropolis-Hastings Sampling

Ilker Yildirim
Department of Brain and Cognitive Sciences

University of Rochester
Rochester, NY 14627

August 2012

References: Most of the material in this note was taken from: (1) Lynch, S. M. (2007).
Introduction to Applied Bayesian Statistics and Estimation for Social Scientists. New York:
Springer; and (2) Taylan Cemgil’s lecture slides on Monte Carlo Methods
(http://www.cmpe.boun.edu.tr/courses/cmpe58n/fall2009/)

1 Introduction

When performing Bayesian inference, we aim to compute and use the full posterior joint
distribution over a set of random variables. Unfortunately, this often requires calculating
intractable integrals. In such cases, we may give up on solving the analytical equations,
and proceed with sampling techniques based upon Markov Chain Monte Carlo (MCMC)
methods. When using MCMC methods, we estimate the posterior distribution and the
intractable integrals using simulated samples from the posterior distribution.

In a separate Computational Cognition Cheat Sheet, we cover Gibbs sampling, another
MCMC method. When using Gibbs sampling, the first step is to analytically derive the
posterior conditionals for each of the random variables [e.g., p(X1|X2, X3), p(X2|X1, X3),
and p(X3|X1, X2)]. Then we simulate posterior samples from the target joint posterior by
iteratively sampling a value for a random variable from its corresponding posterior condi-
tional while all other variables are fixed to their current values. Gibbs sampling is perhaps
the most frequently used MCMC technique.

However, there are several limitations to it. First, even if we have the full posterior joint
density function, it may not be possible or practical to derive the conditional distributions for
each of the random variables in the model. Second, even if we have the posterior conditionals
for each variable, it might be that they are not of a known form, and therefore there is not
a straightforward way to draw samples from them. Finally, there are cases in which Gibbs
sampling will be very inefficient. That is, the “mixing” of the Gibbs sampling chain might be
very slow, meaning that the algorithm may spend a long time exploring a local region with
high density, and thus take very long to explore all regions with significant probability mass.
For example, when the cross-correlation of the posterior conditional distributions between
variables is high, successive samples become very highly correlated and sample values change
very slowly from one iteration to the next, resulting in chains that basically do not mix.

The Metropolis-Hastings (MH) algorithm simulates samples from a probability distribu-
tion by making use of the full joint density function and (independent) proposal distributions

1

Algorithm 1 Metropolis-Hastings algorithm

Initialize x(0) ∼ q(x)
for iteration i = 1, 2, . . . do

Propose: xcand ∼ q(x(i)|x(i−1))
Acceptance Probability:

α(xcand|x(i−1)) = min {1, q(x
(i−1)|xcand)π(xcand)

q(xcand|x(i−1))π(x(i−1))
}

u ∼ Uniform (u; 0, 1)
if u < α then

Accept the proposal: x(i) ← xcand

else
Reject the proposal: x(i) ← x(i−1)

end if
end for

for each of the variables of interest. Algorithm 1 provides the details of a generic MH algo-
rithm.

The first step is to initialize the sample value for each random variable (this value is often
sampled from the variable’s prior distribution). The main loop of Algorithm 1 consists of

three components: (1) Generate a proposal (or a candidate) sample xcand from the proposal

distribution q(x(i)|x(i−1)); (2) Compute the acceptance probability via the acceptance func-

tion α(xcand|x(i−1)) based upon the proposal distribution and the full joint density π(·); (3)
Accept the candidate sample with probability α, the acceptance probability, or reject it with
probability 1− α.

Proposal Distribution: The MH algorithm starts with simulating a “candidate” sample
xcand from the proposal distribution q(·). Note that samples from the proposal distribution
are not accepted automatically as posterior samples. These candidate samples are accepted
probabilistically based on the acceptance probability α(·). There are mainly two kinds of
proposal distributions, symmetric and asymmetric. A proposal distribution is a symmetric

distribution if q(x(i)|x(i−1)) = q(x(i−1)|x(i)). Straightforward choices of symmetric proposals
include Gaussian distributions or Uniform distributions centered at the current state of
the chain. For example, if we have a Gaussian proposal, then we have xcand = x(i−1)+

Normal(0, σ). Because the pdf for Normal(xcand− x(i−1); 0, σ) = Normal(x(i−1)− xcand; 0, σ),
this is a symmetric proposal. This proposal distribution randomly perturbs the current state
of the chain, and then either accepts or rejects the pertubed value. Algorithms of this form
are called “Random-walk Metropolis algorithm.”

Random-walk MH algorithms are the most common MH algorithms. However, we may
choose to (or need to) work with asymmetric proposal distributions in certain cases. For
example, we may choose a proposal distribution that is inherently asymmetric, such as the
log-normal density, which is skewed towards larger values. In other cases, we may need to
work with asymmetric proposal distributions to accommodate for particular constraints in

2

our models. For example, if we wish to estimate the posterior distribution for a variance
parameter, we require that our proposal does not generate values smaller than 0.

Acceptance function: Intuitively, the MH acceptance function is designed to strike a
balance between the following two constraints: (1) The sampler should tend to visit higher

probability areas under the full joint density (this constraint is given by the ratio π(xcand)

π(x(i−1))
); (2)

The sampler should explore the space and avoid getting stuck at one site (e.g., the sampler

can reverse its previous move in the space; this constraint is given by the ratio q(x(i−1)|xcand)

q(xcand|x(i−1))
).

It is important that the MH acceptance function has this particular form because this form
ensures that the MH algorithm satisfies the condition of detailed balance, which guarantees
that the stationary distribution of the MH algorithm is in fact the target posterior that we
are interested in (see Gilks et al., 1996, for more details).

Importantly, note that the acceptance function can be asymmetric (e.g., α(x(i)|x(i−1))) 6=
α(x(i−1)|x(i))) irrespective of the proposal distribution. Let’s derive the acceptance function
in the case of symmetric proposals:

α(x(i)|x(i−1)) = min{1, q(x(i−1)|x(i))π(x(i))

q(x(i)|x(i−1))π(x(i−1))
} = min{1, π(x(i))

π(x(i− 1))
} (1)

where π(·) is the full joint density. This result is intuitive. When the proposal distribution

is symmetric — q(x(i)|x(i−1)) = q(x(i−1)|x(i)) — the acceptance probability becomes propor-

tional to how likely each of the current state x(i−1) and the proposed state x(i) are under the
full joint density.

Are Gibbs sampling and MH sampling related? Yes. In fact, Gibbs sampling is a special
case of MH sampling where proposal distributions are the posterior conditionals. Recall that
all proposals are accepted in Gibbs sampling, which implies that the acceptance probability
is always 1. The algebra below shows that the acceptance function is equal to 1 for Gibbs
sampling:

α(xcandn , x
(i−1)
−n |x(i−1)n , x

(i−1)
−n)

= min{1, q(x
(i−1)
n , x

(i−1)
−n |xcandn , x

(i−1)
−n)p(xcandn , x

(i−1)
−n)

q(xcandn , x
(i−1)
−n |x

(i−1)
n , x

(i−1)
−n)p(x

(i−1)
n , x

(i−1)
−n)

}

= min{1, p(x
(i−1)
n |x(i−1)−n)p(xcandn , x

(i−1)
−n)

p(xcandn |x(i−1)−n)p(x
(i−1)
n , x

(i−1)
−n)

}

= min{1, p(x
(i−1)
n |x(i−1)−n)p(xcandn |x(i−1)−n)p(x

(i−1)
−n)

p(xcandn |x(i−1)−n)p(x
(i−1)
n |x(i−1)−n)p(x

(i−1)
−n)

}

= 1

(2)

Here, we used the fact that the proposal distributions for Gibbs sampling are the posterior

conditionals [i.e., q(x
(i−1)
n , x

(i−1)
−n |xcandn , x

(i−1)
−n) = p(x

(i−1)
n |x(i−1)−n)]. We also made use of the

chain rule, where we wrote the full joint distribution as the product of two terms [e.g.,

p(xcandn , x
(i−1)
−n) = p(xcandn |x(i−1)−n)p(x

(i−1)
−n)].

3

Accept/Reject a proposal: Finally, we accept a given proposal with the acceptance
probability α which is the outcome of the acceptance function described above. The min

operator in the acceptance function makes sure that the acceptance probability α is never
larger than 1. Operationally, we draw a random number uniformly between 0 and 1, and if
this value is smaller than α, we accept the proposal; otherwise we reject it.

2 A simple model of covariation

We illustrate the MH algorithm on a very simple example. Consider two streams of obser-
vations x1:N and y1:N . We are interested in modeling the correlation ρ between these two
streams. We model the observations given the correlation as a bivariate Gaussian distribu-
tion:

xi, yi|ρ ∼ Normal(µ,Σ) (3)

where µ = [µx µy] and Σ =

[
σxx ρ
ρ σyy

]
. For simplicity, we assume that we know µx, µy = 0

and σxx, σyy = 1. In this case, the likelihood function takes the following form:

p(xi, yi|ρ) =
N∏
i=1

1

2π
√

1− ρ2
exp{− 1

2(1− ρ2)
[x2i − 2ρxiyi + y2i]} (4)

For a fuller specification of the model, we need to specify a prior distribution over the
correlation parameter ρ. A non-informative prior for covariance matrices is the “Jeffreys”

prior (see Gelman et al., 1995), which is of the form 1/|Σ|3/2. In our case, the Jeffreys prior
takes the following form:

p(ρ) =
1

|Σ|3/2
=

1∣∣∣∣1 ρ
ρ 1

∣∣∣∣3/2
= 1/(1− ρ2)3/2

(5)

Using Bayes rule, we write the posterior distribution for the correlation parameter ρ in the
following way:

p(ρ|x1:N , y1:N) ∝ 1/(1− ρ2)3/2
N∏
i=1

1

2π
√

1− ρ2
exp{− 1

2(1− ρ2)
[x2i − 2ρxiyi + y2i]} (6)

3 Inference with a MH sampler

The posterior in Equation 6 doesn’t appear to be of any known form. Therefore, Gibbs
sampling is not straightforward. Instead, we develop a random-walk MH algorithm to infer
the posterior distribution p(ρ|x1:N , y1:N).

The sole latent variable in our model is ρ. There are two things we need to specify to
fully develop an MH sampler, namely the proposal distribution and the acceptance function.

4

−4 −3 −2 −1 0 1 2 3 4
−4
−3
−2
−1
0
1
2
3
4

0 2000 4000 6000 8000 10000
0.0
0.1
0.2
0.3
0.4
0.5
0.6

rh
o

0.0 0.1 0.2 0.3 0.4 0.5 0.6
rho

0
200
400
600
800
1000
1200
1400
1600
1800

Figure 1: (Top row) Random data generated using the Python function
numpy.multivariate normal with N = 1000. (Middle row) A trace plot for ρ. (Bot-
tom row) A histogram plot for the posterior distribution of ρ based upon the samples in the
chain. The mean of this distribution is 0.42 and the standard deviation is 0.03.

Here we choose to work with a symmetric proposal distribution because it makes the
algorithm more straightforward, both conceptually and computationally. In particular, we
use a Uniform distribution centered at the current value of ρ with an overall width of 0.14.

ρcand ∼ Uniform(ρ(i−1) − 0.07, ρ(i−1) + 0.07) (7)

Note that our choice of proposal distribution is not unique. We could have chosen a wider
or a narrower Uniform distribution. Furthermore, we could have worked with a Gaussian
distribution or perhaps an asymmetric proposal distribution. A good rule of thumb is that a
good proposal distribution maintains the acceptance rate of proposals in a reasonable range.
That is, if nearly all candidate samples are being rejected (low acceptance rate) or if nearly
all candidates are being accepted (high acceptance rate), then it is likely that the proposal
distribution is either too wide or too narrow, respectively.

5

Under this symmetric proposal distribution, the acceptance function can be obtained
using Equation 1:

α(ρ(i)|ρ(i−1)) = min{1, p(ρ(i)|x1:N , y1:N)

p(ρ(i−1)|x1:N , y1:N)
} (8)

where p(ρ|x1:N , y1:N) is given in Equation 6.

We simulated a single chain for 10000 steps. Figure 1 illustrates the results. A trace
plot for ρ is shown in the middle row. The thick pencil pattern (Gelman et al., 1995) in-
dicates that the chain converged almost immediately. The bottom row shows the posterior
distribution p(ρ|x1:N , y1:N) in a histogram plot based upon the posterior samples. An imple-
mentation of this algorithm written in the Python programming language can be found on
the Computational Cognition Cheat Sheet website.

Gelman, A., Carlin, J. B., Stern. H. S., & Rubin, D. B. (1995). Bayesian Data Analysis.
London: Chapman and Hall.

Gilks, W. R., Richardson, S., & Spiegelhalter, D. J. (1996). Markov Chain Monte Carlo in
Practice. London: Chapman and Hall.

6

