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We study people’s abilities to transfer object category knowledge across visual and haptic
domains. If a person learns to categorize objects based on inputs from one sensory modal-
ity, can the person categorize these same objects when the objects are perceived through
another modality? Can the person categorize novel objects from the same categories when
these objects are, again, perceived through another modality? Our work makes three con-
tributions. First, by fabricating Fribbles (3-D, multi-part objects with a categorical struc-
ture), we developed visual-haptic stimuli that are highly complex and realistic, and thus
more ecologically valid than objects that are typically used in haptic or visual-haptic exper-
iments. Based on these stimuli, we developed the See and Grasp data set, a data set contain-
ing both visual and haptic features of the Fribbles, and are making this data set freely
available on the world wide web. Second, complementary to previous research such as
studies asking if people transfer knowledge of object identity across visual and haptic
domains, we conducted an experiment evaluating whether people transfer object category
knowledge across these domains. Our data clearly indicate that we do. Third, we developed
a computational model that learns multisensory representations of prototypical 3-D shape.
Similar to previous work, the model uses shape primitives to represent parts, and spatial
relations among primitives to represent multi-part objects. However, it is distinct in its
use of a Bayesian inference algorithm allowing it to acquire multisensory representations,
and sensory-specific forward models allowing it to predict visual or haptic features from
multisensory representations. The model provides an excellent qualitative account of our
experimental data, thereby illustrating the potential importance of multisensory represen-
tations and sensory-specific forward models to multisensory perception.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

When recording neural activity in the human medial
temporal lobe, Quiroga, Kraskov, Koch, and Fried (2009)
found individual neurons that explicitly encode multisen-
sory percepts. For example, one neuron responded selec-
tively when a person viewed images of the television
host Oprah Winfrey, viewed her written name, or heard
her spoken name. (To a lesser degree, the neuron also re-
. All rights reserved.
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(I. Yildirim), rob-
sponded to the actress Whoopi Goldberg.) Another neuron
responded selectively when a person saw images of the
former Iraqi leader Saddam Hussein, saw his name, or
heard his name. Clearly, our brains encode abstract repre-
sentations of objects that are multisensory in the sense
that these representations are activated by perceptual in-
puts, but these inputs span multiple sensory formats or
modalities.

Why would our brains acquire abstract representations
that are activated by inputs from a variety of sensory
modalities? One possible answer to this question is that
these representations facilitate the transfer of knowledge
across modalities. Consider, for instance, a person that



Fig. 1. The top row shows computer-generated images of Fribbles which are rendered using the Fribbles’ 3-D object models. The bottom row shows
photographs of the physical objects corresponding to these same Fribbles which were fabricated via a 3-D printing process using the same 3-D object
models. Pairs of columns illustrate exemplars from different categories (e.g., columns 1–2 illustrate exemplars from category A).
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learns to categorize a set of objects based solely on tactile
or haptic inputs. Would the person be able to categorize
these same objects when the objects are viewed but not
grasped? Would the person be able to view novel objects
from the same categories and be able to categorize these?

Here, we report experimental and computational stud-
ies of the acquisition of multisensory representations of ob-
ject category, and the role these representations play in the
transfer of knowledge across visual and haptic modalities.
Our work includes three contributions. First, our experi-
ment used an unusual set of visual-haptic stimuli known
as ‘‘Fribbles’’. Fribbles are complex, 3-D objects with multi-
ple parts and spatial relations among the parts (see Fig. 1).
Moreover, they have a categorical structure—that is, each
Fribble is an exemplar from a category formed by perturb-
ing a category prototype. Fribbles have previously been
used in the study of visual object recognition (Hayward &
Williams, 2000; Tarr, 2003; Williams, 1997). An innovation
of our work is that we have fabricated a large set of Fribbles
using a 3-D printing process and, thus, our Fribbles are
physical objects which can be both seen and grasped. Based
on this set of stimuli, we have created a data set, referred to
as the See and Grasp data set, containing both visual and
haptic features of the Fribbles. We are making this data
set freely available on the world wide web with the hope
that it will encourage quantitative research on computa-
tional models of visual-haptic perception.

Second, we conducted an experiment evaluating
whether people can transfer knowledge of object category
across visual and haptic modalities. Previous researchers
have considered the transfer of knowledge of object iden-
tity across visual and haptic modalities (e.g., Lacey, Peters,
& Sathian, 2007; Lawson, 2009; Norman, Norman, Clayton,
Lianekhammy, & Zielke, 2004). They have also compared
similarity and categorization judgements based solely on
visual input with those based solely on haptic input (Gaiß-
ert & Wallraven, 2012; Gaißert, Bülthoff, & Wallraven,
2011; Gaißert, Wallraven, & Bülthoff, 2008, 2010). To our
knowledge, our experiment is the first focused on the
transfer of object category knowledge across visual and
haptic modalities.

Lastly, we developed a computational model, referred
to as the MVH (Multisensory-Visual-Haptic) model,
accounting for how multisensory representations of proto-
typical 3-D shape might be acquired, and of the role these
representations might play in the transfer of category
knowledge across visual and haptic modalities. Like some
previous models in the literature (Biederman, 1987; Marr
& Nishihara, 1978), the model makes use of part-based
representations of prototypes. However, it goes beyond
previous work by introducing a learning mechanism for
the acquisition of these representations. Using its acquired
multisensory representations along with sensory-specific
forward models for predicting visual or haptic features
from multisensory representations, the model transfers
object category knowledge between visual and haptic
modalities, thereby providing a qualitative account of our
experimental data.

2. Previous research on visual-haptic object perception

Previous research has shown that knowledge of object
identity transfers (at least in part) across visual and haptic
domains (e.g., Lacey, Peters, et al., 2007; Lawson, 2009;
Norman et al., 2004). For example, Lacey, Peters, et al.
(2007) trained subjects to identify objects either visually
or haptically. Following training, subjects were tested on
the same task using the untrained sensory modality. Sub-
jects showed excellent transfer to the novel modality when
objects were presented at the same orientation as experi-
enced during training, and still showed good transfer when
objects were rotated to a new viewpoint.

Researchers have also compared people’s vision-only
and haptic-only similarity judgements. For example, Gaiß-
ert and colleagues collected people’s unisensory similarity
judgements for naturalistic objects resembling sea shells
(Gaißert and Wallraven, 2012; Gaißert, Bülthoff, et al.,
2011; Gaißert et al., 2008, 2010). Analyses based on multi-
dimensional scaling showed that people’s vision-only and
haptic-only similarity spaces were nearly identical. Gaißert
and colleagues also examined people’s vision-only and
haptic-only categorization judgements. Analyses showed
that these categorizations were highly similar to each
other, and that they were consistent with people’s similar-
ity judgements (also see Haag, 2011).

Additional research has compared the acquisition of
haptic concepts by blind individuals and sighted controls.
Homa, Kahol, Tripathi, Bratton, and Panchanathan (2009)
found that blind subjects learned the categories quickly
and comparably with sighted subjects. Other research has
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studied transfer from haptics to vision in special popula-
tions, such as an individual blinded as a child or born with
congenital cataracts, but with vision partially restored as
an adult (Fine et al., 2003; Held, 2009; Held et al., 2011;
Ostrovsky, Andalman, & Sinha, 2006). For example, Held
et al. (2011) studied congenitally blind individuals born
with dense bilateral cataracts. Following surgical removal
of the cataracts, they were tested on a haptic-to-vision
match-to-sample task in which an observer touched an ob-
ject and selected an image that he or she thought depicted
the same object. It was found that subjects performed
poorly two days after surgery, but their performances im-
proved significantly when tested five days after surgery.

Finally, behavioral and neural evidence support the idea
that object features extracted by vision and by touch are
integrated into multisensory object representations that
are accessible to memory and higher-level cognition (e.g.,
Amedi et al., 2002; Amedi et al., 2005; Ballesteros et al.,
2009; Easton et al., 1997; James et al., 2002; Lacey, Peters,
et al., 2007; Lacey et al., 2009; Lawson, 2009; Norman
et al., 2004; Pascual-Leone and Hamilton, 2001; Reales
and Ballesteros, 1999; Tal & Amedi, 2009; Taylor, Moss,
Stamatakis, & Tyler, 2006). For example, based on fMRI
data, Taylor et al. (2006) argued that posterior superior
temporal sulcus (pSTS) extracts pre-semantic, cross-modal
perceptual features, whereas perirhinal cortex integrates
these features into amodal conceptual representations.
Tal and Amedi (2009), based on the results of an fMRI
adaptation study, claimed that a neural network (including
occipital, parietal, and prefrontal regions) showed cross-
modal repetition-suppression effects, indicating that these
regions are involved in visual-haptic representation.

In summary, previous research strongly suggests the
existence and use of multisensory representations of ob-
jects. This research leads to, but does not address, our re-
search questions: Can people transfer categorical
knowledge about objects across visual and haptic modali-
ties? If so, what computations might underlie this
behavior?

3. Fribbles and the See and Grasp data set

A key component of our research is the unusual visual-
haptic stimuli that we used in both our experimental and
computational studies. These stimuli are a subset of a lar-
ger set of stimuli known as ‘‘Fribbles’’.1 Fribbles have previ-
ously been used in the vision sciences to study visual object
recognition (Hayward & Williams, 2000; Tarr, 2003; Wil-
liams, 1997). Each Fribble is a complex, 3-D object with mul-
tiple parts. Our subset includes 40 Fribbles organized into 4
categories with 10 exemplars per category. Category proto-
types differed in their parts and the spatial layout of these
parts. Exemplars were created by perturbing a category pro-
totype (both in terms of its parts and the spatial relations
among these parts). An innovative aspect of our research is
that we have obtained physical copies of Fribbles fabricated
1 We thank M. Tarr for making the 3-D object files for Fribbles available
on his web pages. We slightly modified these object files so that the
connections among parts would be stronger when the objects are
fabricated.
using an extremely high-resolution 3-D printing process.
Consequently, subjects in our experiment were able to see,
grasp, or both see and grasp these objects. Each Fribble is
about 12 cm in length, 10 cm in width, and 8 cm in height.
Fig. 1 illustrates eight Fribbles, two from each of four catego-
ries (see caption for explanation).

Our stimuli have several advantages. First, the objects
that we use are complex and realistic, each with multiple
parts and spatial relations. These stimuli are, thus, more
ecologically valid than objects that are typically used in
haptic or visual-haptic experiments. Second, our objects
are organized into categories. This property allows us to
study both object recognition and object categorization,
as well as their interactions (Goldstone & Barsalou,
1998). Again, the categorical nature of our stimuli makes
them highly realistic. Lastly, the visual and haptic render-
ings of our objects are perfectly matched because they
are both created from the same 3-D object models.

There does not currently exist a public data set contain-
ing both visual and haptic features of complex, realistic ob-
jects. As a result, quantitative computational models of
visual-haptic interactions or even of haptic perception
are nearly non-existent. We have created such a data set,
referred to as the See and Grasp data set. Because we are
making this set freely available on the world wide web,
we believe that it will become a major resource to the cog-
nitive science and computer science communities inter-
ested in perception.2

The data set contains 40 items corresponding to our 40
Fribbles. There are three entries associated with each item.
One entry is the 3-D object model for a Fribble. The second
entry is an image of a Fribble rendered from a canonical
viewpoint so that the Fribble’s parts and spatial relations
among the parts are clearly visible. (Using the 3-D object
model, users can easily generate new images of a Fribble
from any desired viewpoint.) The third entry is a way of
representing a Fribble’s haptic features. It is a set of joint
angles obtained from a grasp simulator known as ‘‘Gra-
spIt!’’ (Miller & Allen, 2004). GraspIt! contains a simulator
of a human hand. When forming the representation of a
Fribble’s haptic features, the input to GraspIt! was the 3-
D object model for the Fribble. Its output was a set of 16
joint angles of the fingers of a simulated human hand ob-
tained when the simulated hand ‘‘grasped’’ the Fribble.
Grasps—or closings of the fingers around a Fribble—were
performed using GraspIt!’s AutoGrasp function. Each Frib-
ble was grasped twice, once from its front and once from
its rear, meaning that the haptic representation of a Fribble
was a 32-dimensional vector (two grasps � 16 joint angles
per grasp). To be sure that Fribbles fit inside GraspIt!’s
hand, their sizes were reduced by 67%.

Caveat: The field of cognitive science currently has an
incomplete understanding of the notion of ‘‘haptic fea-
tures’’ (interested readers may want to see the pioneering
work on this topic by Klatzky, Lederman, and their col-
leagues; e.g., Lederman & Klatzky, 1987). Consequently,
our choice of joint angles as haptic features follows a com-
2 The data set can be downloaded at the URL http://www.bcs.roches-
ter.edu/people/robbie/jacobslab/dataset.html.
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mon practice in the field of postural hand analysis (e.g.,
Santello, Flanders, & Soechting, 1998; also see Thakur, Bas-
tian, & Hsiao, 2008). Consistent with previous research
(e.g., Santello et al., 1998), analyses of the features pro-
duced by GraspIt! (joint angles at the time of a stable
grasp) reveal that these features contain much information
about Fribbles’ shapes. For example, when feature vectors
are clustered using a simple ‘‘k-means’’ clustering algo-
rithm (Bishop, 2006), the discovered clusters correspond
perfectly to the four categories of Fribbles comprising our
stimuli.
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Fig. 2. Learning curves for Groups V–H (mid gray), H–V (dark gray), and
Vs–H (light gray) during training. The horizontal axis plots the training
block number, and the vertical axis plots the average percent correct.
Error bars show the standard errors of the means.
4. Experiment

Questions about categorization and generalization are
fundamental to cognitive science, yet many open questions
about them remain, particularly in the context of multisen-
sory perception. Important questions include: To what ex-
tent does knowledge of object categories gained through
one modality transfer to another modality? Is the amount
of transfer the same for familiar and novel objects? For
example, if a person learns to visually categorize a set of
objects, can the person categorize these same objects when
the objects are grasped but not seen? Can the person grasp
novel objects belonging to the same categories and cor-
rectly categorize them too? If so, then the person can be
said to have transferred categorical knowledge across
modalities.

4.1. Participants

Participants were 27 students (6 male and 21 female)
from the University of Rochester who reported normal or
corrected-to-normal visual and haptic perception. All par-
ticipants were at least 18 years old (min age = 20, max
age = 24, mean age = 21.5, SD = 0.96). We obtained all par-
ticipants’ written informed consent. Each experimental
session lasted about an hour, and participants were paid
$10. This study was approved by the University of Roches-
ter Research Subjects Review Board.

4.2. Stimuli

Our experiment made use of 40 Fribbles from the See
and Grasp data set, 10 exemplars from each of four catego-
ries. Visual stimuli consisted of images of Fribbles rendered
from a canonical viewpoint so that a Fribble’s parts and
spatial relations among the parts were clearly visible
(Fig. 1, top row). Stimuli were presented on a 19-in. CRT
computer monitor. Subjects sat approximately 60 cm from
the monitor. When displayed on the monitor, visual stim-
uli spanned about 12 degrees in the horizontal dimension
and 10.5 degrees in the vertical dimension. Visual displays
were controlled using the Psychtoolbox extension of Mat-
lab (Brainard, 1997; Pelli, 1997).

Participants received haptic inputs when they touched
physical copies of Fribbles fabricated using a 3-D printing
process (Fig. 1, bottom row). Participants were blindfolded
on trials in which they received haptic inputs. They were
instructed to freely and bimanually explore the Fribbles.
4.3. Procedures

Our experiment included three groups of eight partici-
pants each (three participants were excluded on the basis
of Grubbs tests for outliers; Grubbs, 1950). Participants in
Group V–H were initially trained to visually categorize 24
Fribbles, 6 exemplars from each of four categories. On a
training trial, the image of a Fribble was displayed for 8
s. When the image disappeared, a participant indicated
the category that he or she believed that the depicted Frib-
ble belonged to by pressing a key on the keyboard. An
auditory sound provided feedback as to whether the re-
sponse was correct or incorrect. Training consisted of se-
ven blocks where each block consisted of 24 trials (one
trial for each Fribble). The presentation order of Fribbles
was randomized in each block.

Following training, participants in Group V–H per-
formed test trials. Participants were blindfolded during
testing. On a test trial, a participant bimanually grasped
and explored a Fribble for 8 s (auditory beeps demarcated
the beginning and end of the 8-s period). The participant
then verbally judged the category of the Fribble. This re-
sponse was entered into the computer by an experimenter.
Feedback about the correctness of the participant’s re-
sponse was not provided. Participants performed 40 test
trials using 10 exemplars from each of four categories
(the presentation order was randomized). Of the 10 exem-
plars from a category, 6 were familiar (i.e., these were seen
during training) and 4 were novel.

Participants in Group Vs–H were trained and tested
identically to participants in Group V–H, except the dura-
tion of visual displays was 3 s (down from 8 s). The stimu-
lus duration on haptic-only test trials remained 8 s. Visual-
haptic experiments often use visual stimulus durations
that are roughly half the length of haptic stimulus dura-
tions. The inclusion of Group Vs–H allows us to examine
the effect of visual stimulus duration on cross-modal
generalization.

Participants in Group H–V were trained and tested in a
manner analogous to the training and testing of Group V–
H, but training used the haptic modality and testing used
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Performances during testing.
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the visual modality. That is, on a training trial, participants
bimanually grasped and explored (but did not view) a Frib-
ble, judged its category, and received auditory feedback
about the correctness of their response. On a test trial, they
viewed (but did not grasp) a Fribble and judged its cate-
gory (without receiving feedback).
4.4. Results

The graph in Fig. 2 shows the performances of Groups V–
H, Vs–H, and H–V during training. This graph plots each
group’s average percent correct as a function of the training
block number (error bars indicate the standard errors of the
means). All groups succeeded at learning, and Group V–H
seems to have learned fastest. A mixed-design ANOVA con-
firmed that there is a significant main effect of group (F = 44,
Df = 2, MSE = 0.46, p < 0.001) and block number (F = 70,
Df = 6, MSE = 0.74, p < 0.001), as well as a significant interac-
tion of these factors (F = 4, Df = 12, MSE = 0.04, p < 0.001).

Fig. 3 shows the groups’ performances on the final
training block (left panel) and during testing (right panel).
For Groups V–H and H–V, the differences between each
group’s final training and test performances were not sig-
nificantly different (based on two-tailed t-tests; Group V–
H: p = 0.93; Group H–V: p = 0.90). For Group Vs–H, the dif-
ference between its final training and test performances
was either not statistically significant or it was marginally
significant (p = 0.08).3 In other words, Groups V–H and H–V
3 An anonymous reviewer pointed out the possibility of ceiling effects,
which would violate the normality assumptions underlying the standard t-
test. Consequently, we also conducted a Wilcoxon rank-sum test (Wilco-
xon, 1945), a non-parametric counterpart of the standard t-test (and, thus,
this test does not make any distributional assumptions). The results of this
test are consistent with the results of the t-test (Group V–H, p = 0.95; Group
H–V, p = 0.95; Group Vs–H, p = 0.054).
showed complete cross-modal transfer during test, and
Group Vs–H showed at least partial transfer. Furthermore,
participants’ test performances with familiar objects (those
seen or grasped during training) did not differ significantly
from their performances with novel objects (Group V–H:
p = 0.70; Group H–V: p = 0.22; Group Vs–H: p = 0.81).

We are interested in whether people show cross-modal
generalization of object category knowledge. When they
are trained to categorize objects using one sensory modal-
ity, can they categorize these objects when the objects are
sensed through another modality? If so, can they also cat-
egorize novel objects from these same categories? Our
experimental results indicate that the answers to these
questions are ‘‘yes’’. Our experiment also examined
whether the extent of generalization from vision to haptics
depends on the duration of visual stimulus presentation
during training. Here, our results are inconclusive.
5. Preliminary remarks regarding the MVH model

Our data show that participants transferred object cat-
egory knowledge between visual and haptic modalities.
How did they do this? To address this question, we pro-
pose a novel computational model, referred to as the
MVH (Multisensory-Visual-Haptic) model, with several
important properties. This model uses multisensory repre-
sentations of prototypical 3-D shape. Like some previous
models in the literature (Biederman, 1987; Marr & Nishi-
hara, 1978), the model makes use of part-based represen-
tations of prototypes. However, it goes beyond previous
work by solving the problem of learning these representa-
tions using a Bayesian inference algorithm. Because
the representations are learned, the MVH model contrib-
utes to the growing literature on ‘‘grounded cognition’’
(Barsalou, 2008) by illustrating how high-level abstract
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representations (e.g., multisensory representations of 3-D
prototypes) can be grounded in low-level perceptual fea-
tures (e.g., image pixel values or joint angles of grasping
hands). Using its multisensory representations of proto-
types and sensory-specific forward models for predicting
visual or haptic features from multisensory representa-
tions, the model transfers object category knowledge be-
tween visual and haptic modalities, thereby providing a
qualitative account of our experimental data.

A complete specification of the MVH model requires a
description of the model’s representations, a description
of how these representations are learned, and a description
of how the representations are used for the purpose of
transferring object category knowledge across sensory
modalities. This section discusses these aspects of the
model in an intuitive manner. The next section provides
the mathematical details underlying the model.

Multisensory representations of prototypical shape: Based
on observed sensory features from either individual or
multiple modalities, the model acquires latent or hidden
representations of objects. These representations have
three important properties.

First, the representations are multisensory, meaning
they characterize properties of objects in a way that is
independent of the individual modality or modalities
through which those properties are sensed. Behavioral
and neural data suggest the existence of multisensory rep-
resentations, and also suggest that these representations
underlie, at least in part, a variety of behaviors in visual-
haptic environments (e.g., Amedi, Jacobson, et al., 2002;
Von Kriegstein, et al., 2005; Ballesteros et al., 2009; Easton
et al., 1997; James et al., 2002; Lacey, Peters, et al., 2007;
Lacey, Tal, et al., 2009; Lawson, 2009; Norman et al.,
2004; Pascual-Leone and Hamilton, 2001; Reales and Bal-
lesteros, 1999; Tal & Amedi, 2009; Taylor et al., 2006).

Because the representations are multisensory, they can
be used to predict or ‘‘imagine’’ sensory features from indi-
vidual modalities. For example, given a multisensory rep-
resentation of a particular Fribble, the model can predict
what the Fribble would look like (perhaps a form of visual
imagery) or predict the hand shape that would occur if the
Fribble were grasped (perhaps a form of haptic imagery). A
mapping from a multisensory representation to a sensory-
specific representation can be carried out by a forward
model, a type of predictive model that is often used in
the study of perception and action (Jordan & Rumelhart,
1992; Wolpert & Flanagan, 2009; Wolpert & Kawato,
1998). In cognitive science, forward models are often men-
tal or internal models. However, forward models exist in
the external world too. For instance, a graphics software
package is a vision-specific forward model because it maps
a 3-D representation of an object to a prediction of an im-
age of the object when viewed from a particular viewpoint.
Similarly, the GraspIt! grasp simulator (described above) is
a haptic-specific forward model because it maps a 3-D rep-
resentation of an object to a prediction of the joint angles
of the fingers of a hand when the hand grasps the object
at a particular orientation.

Second, the representations characterize prototypical
knowledge regarding the objects belonging to a category.
A prototype is a summary representation of a category
based on members’ most common feature values, average
feature values, or ideal feature values. Prototype theories
of categorization have been influential in the field of cogni-
tive science for many years (see Minda & Smith (2011) for
a recent review).

Lastly, the representations characterize object shape via
an object’s parts. Part-based representations of 3-D shape
have been explored previously in the artificial intelligence
and cognitive science literatures (e.g., Biederman, 1987;
Marr & Nishihara, 1978). Our model draws on lessons
learned from these earlier efforts. For example, our model
uses shape primitives (cylinders as in Marr & Nishihara,
1978) to represent object parts, and uses spatial relations
among parts to represent multi-part objects.

Learning process: Importantly, the MVH model’s repre-
sentations are learned. The most influential models of ob-
ject shape in the cognitive science literature, such as
those of Biederman (1987) and Marr and Nishihara
(1978), used part-based shape representations that were
stipulated or hand-crafted by scientific investigators. In
contrast, our model learns representations using a probabi-
listic or Bayesian inference algorithm.

Multisensory 3-D shape representations are character-
ized by several parameters in our model. These parameters
include the number of object parts and the spatial config-
uration among parts. This information can be described
by a network or graph in which nodes represent parts,
and edges represent connections between parts. We use
a prior distribution that favors spatial configurations in
which relatively few parts have many connections and
most parts have few connections (e.g., a power law distri-
bution). For example, the prior distribution might assign a
high probability to a shape with one main part (e.g., the
trunk of a body) and other parts connected to this main
part (e.g., the head, arms, and legs). In terms of networks
or graphs, the prior favors shallow trees (e.g., a two-level
network in which the root or parent node represents the
trunk and child nodes represent the head, arms, and legs).

Each object part is represented by a shape primitive,
namely a cylinder (Marr & Nishihara, 1978). Therefore,
there are also parameters for the length, radius, and orien-
tation of each part or cylinder. A uniform prior distribution
is placed on these parameters.

Our description of the learning process also needs to in-
clude a likelihood function. Suppose that the model is
attempting to acquire a multisensory representation of a
category’s prototypical 3-D shape based on visual inputs.
For each object belonging to the category, we assume that
the model views the object from three orthogonal view-
points (front, right, and top defined in a spatial reference
frame), thereby receiving three images of the object. Given
a multisensory 3-D shape representation and the three
images, the value of the likelihood function is computed
as follows. The model uses a vision-specific forward model
to map from the shape representation to an image of the
shape. This visual rendering process is repeated at each
of the three viewpoints. (In simulation, rendering can be
performed by a graphics library such as OpenGL.) The dif-
ferences between the actual images of an object received
by the model and the rendered images based on the mul-
tisensory 3-D shape representation are used to calculate
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a likelihood value. Likelihood values are computed in an
analogous way when the model attempts to acquire a mul-
tisensory representation based on haptic inputs. (In this
case, haptic rendering can be performed by the GraspIt!
simulator.)

Using Bayes’ rule, prior probabilities and likelihood val-
ues are combined to form posterior probabilities over 3-D
shape representations. The prototypical shape for each cat-
egory of objects is the 3-D shape with the largest posterior
probability.

Transfer of object category knowledge across modalities:
Suppose that the MVH model is a participant from Group
V–H in our experiment described above. During training,
it acquired multisensory representations of prototypical
3-D shape, one representation for each category of Fribbles,
based on visual inputs. Now, during testing, the model
grasps, but does not view, a novel Fribble. Because the
model has acquired multisensory representations of proto-
typical shapes, classifying this Fribble is straightforward.
The model uses a haptic-specific forward model to haptic-
ally render each of the prototypes. It then calculates the
differences between the actual haptic features received
by the model when the Fribble is grasped and the rendered
haptic features based on the prototypical shapes. The mod-
el’s estimate is the category whose prototype is closest to
this Fribble in ‘‘haptic feature’’ space. Classification is per-
formed in an analogous way when the model is trained
haptically and tested visually (i.e., when the model is a par-
ticipant from Group H–V).

6. MVH (Multisensory-Visual-Haptic) model

This section provides the mathematical details of the
MVH model. We describe the model from the perspective
of a participant from Group V–H in our experiment. During
training, the model is provided with images of Fribbles
along with the Fribbles’ corresponding category labels.
The model learns a multisensory representation of each
category’s prototypical 3-D shape on the basis of this infor-
mation. The model is provided with Fribbles’ haptic fea-
tures during testing, and it estimates the category to
which each Fribble belongs.

For the purposes of statistical modeling, we present a
‘‘generative’’ model explaining our data set (our notation
is summarized in Table 1). We assume that each data
item—the visual and haptic features of a Fribble—was gen-
erated by the following steps:

1. At random, pick a category, denoted C.
2. Let NC denote the number of parts comprising a mem-

ber of category C. For each part, pick a cylinder (i.e., pick
values for the cylinder’s parameters, namely its length l,
radius r, and orientation o). Let the part collection XC

denote the parameter values of all of an object’s parts
(a vector with NC [number of parts] � 3 [number of
parameters per part] elements).

3. Using a sequential procedure (see below), pick the spa-
tial layout of a Fribble’s parts by selecting values for a
directed tree graph TC and spatial configuration SC. Tree
TC has NC nodes where nodes correspond to parts and
edges indicate which parts are connected (left side of
Fig. 4). Configuration SC indicates where parts are con-
nected. As discussed below, parts can only connect at
‘‘docking locations.’’

4. Parameters XC, TC, and SC define a Fribble. That is, spe-
cific values for these parameters correspond to a spe-
cific Fribble. Given values for these parameters,
visually project the corresponding Fribble onto an
image plane to render its visual features, denoted VC,
and haptically project the Fribble to render its haptic
features, denoted HC (right side of Fig. 4). Note that
XC, TC, and SC define a specific Fribble but these param-
eters can also be used to define an ideal or prototypical
Fribble.

Suppose that, during training, the MVH model is pro-
vided with the visual features of M exemplars from cate-
gory C, denoted VC1 ; . . . ;VCM . The posterior distribution of
the latent variables XC, TC, and SC given this data can be
computed via Bayes’ rule:

pðXC ; TC ; SC jVC1 ; . . . ;VCM Þ / pðXCÞ pðTC ; SC jXCÞ
pðVC1 ; . . . ;VCM jXC ; TC ; SCÞ: ð1Þ

The values of XC, TC, and SC with the highest joint probabil-
ity define the multisensory representation of category C’s
prototypical 3-D shape. The right-hand side of Eq. (1) has
three terms which we describe in order. In the remainder,
we drop the redundant category subscripts C for the sake
of clarity.

Prior distribution over part collection X: Members of cat-
egory C have N parts where each part is modeled as a cyl-
inder with length l, radius r, and orientation o. Let Xk

denote the portion of part collection X corresponding to
part k, and let lk, rk, and ok denote this part’s length, radius,
and orientation, respectively. We use a prior distribution
that assumes that parts are independent, meaning that
p(X) can be factored:

pðXÞ ¼
Y

k

pðXkÞ ð2Þ

and that a part’s parameters are independent, meaning
that p(Xk) can be factored:

pðXkÞ ¼ pðlkÞ pðrkÞ pðokÞ: ð3Þ

In our simulations reported below, we set p(lk) to be a uni-
form distribution over integers in the range [1, . . . ,40], and
set p(rk) to be a uniform distribution over the range
[0.5,1,1.5, . . . ,20] (arbitrary units). The orientation of a part
was always parallel to one of the three axes in our spatial
reference frame and, thus, p(ok) was a uniform distribution
over the set {1,2,3}.

Prior distributions over tree T and spatial configuration S:
The spatial layout of a Fribble’s parts is parameterized by
two variables. Directed tree graph T contains N nodes
where each node corresponds to a part. Edges in the tree
indicate which parts are connected. Spatial configuration
S indicates where the parts are connected.

We modeled part connections by assuming that parts
could only connect at docking locations. The cylinder cor-
responding to a parent part (where parent–child relation-
ships are given by tree T) was approximated by an



Fig. 4. Schematic illustrating steps 3 and 4 in the generative process for the MVH model. (Left) Tree graph characterizing a prototype in terms of its parts
(nodes) and spatial configurations among parts (edges). Illustration to the right of the tree shows that the bottom-right edge represents the connection
between a child part and its parent part. A subset of the ‘‘docking locations’’ on the parent part are illustrated with black and white dots. The child part is
‘‘docked’’ on a docking location at the top of the parent part. (Right) Haptic and visual features of a prototype are obtained through the use of haptic and
visual forward models.

Table 1
Summary of the variables in the MVH model.

Variable Definition

C Category indicator; C 2 {1,2,3,4}
NC Number of parts in prototype for category C
lk Length of part k
rk Radius of part k
ok Orientation of part k
Xk Part k’s length, radius, and orientation; Xk = {lk,rk,ok}
XC All parts in prototype for category C; XC ¼ fX1; . . . ;XNC g
ek Edge connecting kth parent–child pair; k 2 {1, . . . ,NC � 1}
dk Number of available docking locations for edge ek; k 2 {1, . . . ,NC � 1}
TC Tree graph characterizing prototype in terms of parts (nodes) and spatial configurations among parts (edges)
SC Spatial configurations for all parts; each configuration indicates where (which docking locations) a child part connects to its parent part
a Scaling parameter for prior distribution over TC and SC

VC Visual features for category C prototype obtained via visual forward model
HC Haptic features for category C prototype obtained via haptic forward model
V1, . . ., VM Visual features for M exemplars
R Number of pixel-wise disagreements between visual features of exemplar and category prototype
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elongated cube with 6 orthogonal planar surfaces. Each
surface contained 18 equally spaced docking locations. At
the connection between parent and child parts, a child
could cover one or more docking locations on the parent
depending on the child part’s size (as given by part collec-
tion X).

Tree T and spatial configuration S are constructed in a
sequential manner resembling a breadth-first search. We
start with one part corresponding to the root node located
at the highest level of T. Then a new node and edge are in-
serted in T such that the new node is a child to the root
node. The docking locations on the root or parent node that
are covered by the new node must be selected. Next, a
third node and edge are inserted such that the node is
either a sibling or a child to the second node. Again, the
docking locations on the parent node that are covered by
the child node must be selected. Importantly, new nodes
and edges are always added to T such that nodes are in-
serted at a higher level (closer to the root) before nodes
are added at a deeper level (further away from the root).
This sequential procedure provides an ordering to the
nodes and edges of T, and this ordering influences the val-
ues of S. For example, suppose Part 2 covers docking loca-
tions 1, 2, and 3 on Part 1. When adding Part 3 as a child to
Part 1, Part 3 cannot connect to Part 1 at these same
locations.

Suppose that at a particular moment in the sequential
procedure, we are adding a new edge, denoted ek, joining
a new node to a parent node. Let dk denote the number of
unoccupied docking locations on the parent node. Using
this notation, we define the prior probability over T and S as:

pðT; SjXÞ /
YNC�1

k¼1

expð�adkÞ; ð4Þ

where a is a scaling parameter (we set a = 1 in all our sim-
ulations). This prior prefers spatial layouts in which rela-
tively few parts have many connections and most parts
have few connections (e.g., a power law distribution). For
example, the prior distribution might assign a high proba-
bility to a shape with one main part (e.g., the trunk of a
body) and other parts connected to this main part (e.g.,
the head, arms, and legs connected to the trunk).
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Likelihood function p(V1, . . . ,VMjX, T,S): The likelihood
function measures how well the model accounts for the
data. In our simulations, the model was provided with
the visual features of M exemplars from category C, de-
noted V1, . . ., VM, during training. As described below, we
used three images of each Fribble rendered at orthogonal
viewpoints. In addition, pixel values were binary. In this
case, Vi is a binary vector of pixel values from all three
images of the ith Fribble.

The likelihood function is computed in two stages. First,
the prototypical 3-D shape defined by X, T, and S is visually
rendered using the same three viewpoints as used to gen-
erate the training images of Fribbles (Fig. 5). This can be
accomplished by a vision-specific forward model. Next,
the rendered images of the prototype are compared to
the training images. Let R denote the number of pixel-wise
disagreements between the prototype images and the
training images. Then

pðV1; . . . ;VMjX; T; SÞ / expð�RÞ ð5Þ

defines the likelihood function.
Inference: Exact inference in the MVH model is compu-

tationally intractable. Therefore, we developed an approx-
imate Markov chain Monte Carlo inference algorithm that
discovers good point estimates of parameters X, T, and S.
This algorithm is described in the Appendix.

7. Simulation results

In the simulations reported here, we used a slightly
modified version of the See and Grasp data set for the four
categories used in the experiment. We used three images
of each Fribble rendered from three orthogonal view-
points—a top view, a front view, and a right view. In addi-
Fig. 5. Our inference algorithm consists mostly of Metropolis–Hastings
(MH) steps. In each iteration i, a proposal prototype is drawn from the
generative process. Then the visual forward model is used to obtain the
visual features of the proposed prototype. These visual features are
compared against the visual features of the training exemplars to
compute a log-likelihood value. This value is used to evaluate the
proposal with respect to the MH acceptance function and the current
state of the chain. Details of our inference algorithm can be found in the
Appendix.
tion, we simplified the images by using low-resolution
images (80 pixels � 80 pixels) and by converting pixel val-
ues to binary numbers using a thresholding scheme. There-
fore, the visual representation of a Fribble was a 19,200-
dimensional binary vector (3 images � 80 pixels � 80 pix-
els). As discussed above, the haptic representation of a
Fribble was a 32-dimensional real-valued vector (two
grasps � 16 joint angles per grasp).

Four data items used in our simulations are illustrated
in the four rows of Fig. 6. Column 1 of each row shows a
Fribble. Columns 2–4 show binary images of the Fribble
from top, front, and right viewpoints. Columns 5–6 show
the simulated hand grasping the Fribble, once from the
Fribble’s front and once from its rear.

We simulated the MVH model from the perspective of a
subject in Group V–H in our experiment. That is, the model
was trained with visual inputs and tested with haptic in-
puts. As in our experiment, we trained the model with 24
Fribbles, 6 from each of four categories. The model was
then tested with 40 Fribbles, 10 from each of four catego-
ries. Of the 10, 6 were familiar (these were seen during
training) whereas 4 were novel. The simulation results
are presented in two parts. We first examine the multisen-
sory prototypes acquired by the MVH model. Can the mod-
el learn reasonable multisensory prototypes of object
categories based solely on visual features? Next, we exam-
ine the generalization performances of the model when it
was tested with haptic features. Can it correctly estimate
the categories of Fribbles based on haptic inputs even
though it has never previously touched a Fribble?

Multisensory prototypes:Fig. 7 illustrates multisensory
prototypical 3-D shapes learned by the model for each of
the four categories. The top row illustrates three exemplars
from each category. The prototypes learned by the model
are illustrated in the bottom row. Although different simu-
lations of the MVH model produced slightly different re-
sults, the prototypes shown in the figure are typical.

For all categories, the model learned 3-D, part-based,
prototypical representations which are remarkably accu-
rate. Prototypes characterized the major components of
Fribbles—for example, prototypes consistently approxi-
mated the main bodies of Fribbles with large cylinders.
Prototypes also characterized many of the subtle features
of Fribbles—prototypes approximated Fribbles’ smaller
appendages with smaller cylinders attached to the large
cylinders. In other words, the number, positions, and orien-
tations of prototypes’ cylinders, while not always perfect,
were close approximations to the number, positions, and
orientations of Fribbles’ body parts. The accuracies of the
acquired prototypes are especially impressive when one
recalls that the model learned these prototypes from three
binary images of each exemplar.

Testing the model with haptic features: Following visual
training, we tested the MVH model by using it to classify
40 Fribbles based solely on their haptic features. Predic-
tions for category membership were generated as follows.
Using the GraspIt! simulator as a haptic-specific forward
model, we obtained the haptic features of each of the four
category prototypes. For each Fribble in the test set, we
measured the Euclidean distance between the haptic fea-
tures of the test item and the haptic features of each of



Fig. 6. Four data items used in our simulations, one from each category of Fribbles. Column 1 of each row shows a Fribble. Columns 2–4 show binary images
of the Fribble from top, front, and right viewpoints. Columns 5–6 show the simulated hand grasping the Fribble, once from the Fribble’s front and once from
its rear.

Fig. 7. (Top) 3 exemplars from each category. (Bottom) The multisensory prototypes learned by the model, visually rendered at a canonical projection.
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the four prototypes. The item was classified based on the
prototype it was closest to in ‘‘haptic feature’’ space. The
model achieved perfect performance for all test items, both
Fribbles seen during visual training as well as novel
Fribbles.

To better understand why the model performed so well,
we performed a Principal Component Analysis (PCA) using
the haptic features of the 40 test items and the 4 proto-
types. Based on the results of this analysis, we reduced
the 32-dimensional haptic-feature space to two dimen-
sions which accounted for 77% of the variance of the data.
Fig. 8 shows the projections of the haptic features of the
test items and prototypes into this two-dimensional space.
Clearly, exemplars for each category are tightly clustered
in this space, and category prototypes lie close to exem-
plars from the same category.
In summary, the model acquired multisensory categor-
ical representations in the form of prototypical 3-D com-
ponential shapes. The multisensory prototypes learned by
the model preserved with high fidelity the typical shapes
of category exemplars. In addition, the MVH model
achieved excellent performance when, following visual
training, it was tested with the haptic features of Fribbles.
In some sense, this is surprising because the model had
never previously touched a Fribble. Nonetheless, it was
able to use its haptic-specific forward model to predict
the haptic features of each category’s multisensory proto-
type. The model illustrates the potential importance of
multisensory prototypes and sensory-specific forward
models for the transfer of object category knowledge
across modalities, and thus for accounting for subjects’
performances in our experiment.
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8. Discussion

In summary, this article has addressed people’s abilities
to transfer object category knowledge across visual and
haptic domains. Our work has made three contributions.
First, by fabricating Fribbles (3-D, multi-part objects with
a categorical structure), we developed (and are making
freely available on the web) visual-haptic stimuli that are
highly complex and realistic. Second, we conducted an
experiment evaluating whether people transfer object cat-
egory knowledge across visual and haptic domains. Our
data clearly indicate that we do. Third, we developed a
computational model that learns multisensory representa-
tions of prototypical 3-D shape through the use of sensory-
specific forward models that play important roles during
both learning and transfer. The model provides an excel-
lent qualitative account of aspects of our experimental
data.

Many articles in the literature on multisensory percep-
tion emphasize the role of multisensory representations.
Our work is unusual in its additional emphasis on sen-
sory-specific forward models. We hypothesized that for-
ward models allow people to make predictions of sensory
features from multisensory representations. Future work
will need to experimentally and theoretically evaluate
the role of forward models in multisensory perception.

For instance, it would be interesting to know the extent
that deliberate intent is needed for the use of forward
models. Subjects in our experiment were told at the start
of an experimental session that they would be trained with
one sensory modality and tested with another. This knowl-
edge may have encouraged subjects to attempt to use their
forward models during training to facilitate performance
during testing. Consider a subject in Group H–V. During
training, the subject may have deliberately engaged in vi-
sual imagery in the belief that predicting visual features
during haptic training would aid the transfer of knowledge
from haptic to visual domains. In future experiments, sub-
jects should not be given advance knowledge of testing
with an untrained modality. If test performances are signif-
icantly poorer in this case, then this would suggest that the
use of forward models requires deliberate intent. If test
performances are unchanged, then this would suggest that
the use of forward models is automatic.

Our emphasis on sensory-specific forward models also
has theoretical implications for how we interpret existing
data. As mentioned above, Held et al. (2011) studied con-
genitally blind individuals born with dense bilateral cata-
racts. Following surgical removal of the cataracts, these
individuals were tested on a haptic-to-vision match-to-
sample task in which an observer touched an object and
selected an image that he or she thought depicted the same
object. It was found that subjects performed poorly two
days after surgery, but their performances improved signif-
icantly when tested five days after surgery. Why did their
performance improve in the interim? We speculate that
they performed poorly two days post-surgery because they
had poor vision-specific forward models. That is, they
could not accurately predict the visual features of objects
they had touched. Their performances improved after a
few more days, we hypothesize, because the accuracy of
their vision-specific forward models improved.

Whether or not this speculation is correct, our experi-
mental results about cross-modal transfer and our theoret-
ical results about the mechanisms that might underlie this
transfer suggest a close interaction between multisensory
representations and forward models when learning multi-
sensory representations and when transferring knowledge
across sensory domains. Consequently, we believe that the
experimental and theoretical approaches advocated here
provide new perspectives on crucial questions about mul-
tisensory perception, and new opportunities to study old
and new questions.
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Appendix A. An MCMC algorithm for the MVH model

Exact inference in the MVH model is computationally
intractable. Therefore, we developed an approximate Mar-
kov chain Monte Carlo inference algorithm. The input to
the algorithm is a set of images of Fribbles which belong
to the same category. The output is an approximation of
the prototypical 3-D shape for that category (i.e., estimated
values for the prototype’s part collection X, tree T, and spa-
tial configuration S). This appendix describes the
algorithm.

Pseudocode for the inference algorithm is provided in
Algorithms 1–4. Algorithm 1 is the main loop, whereas
Algorithms 2–4 are subroutines. The key idea underlying
the algorithm is as follows. The algorithm is not provided
with the number of parts belonging to the prototype.
Therefore, it forms the prototype by sequentially adding
parts one at a time until the prototype contains a maxi-
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mum number of parts (15). It then prunes parts using a
hypothesis-testing procedure. Readers should be able to
understand the algorithm from the pseudocode. Additional
comments regarding the algorithm are listed here:

� As described in Algorithm 1, parts are added to the pro-
totype one at a time. For each part, multiple (50) itera-
tions are used to generate a final proposal, and a set of
final proposals is created by repeating this iterative pro-
cess multiple (10) times. We concatenate the old state
of the MCMC chain to the proposals. One member of
the set is accepted. The chain is terminated if the
accepted member is the old prototype instead of a
proposal.
� When searching for a new part to add to the prototype,

proposals (i.e., values for X, T, and S) are sampled from
broad distributions. Proposals are either accepted or
rejected on the basis of how well they account for the
visual data (as given by values of the likelihood
function).
� When computing the likelihood function based on val-

ues of X, T, and S, it is important to check that these val-
ues do not specify a spatial layout in which two parts
occupy the same docking locations. If this constraint is
violated, then set the likelihood function to minus
infinity.
� Given a tree T with N nodes, there are only N ways that a

new node can be added such that the resulting struc-
ture is also a tree. Therefore, exhaustive search of the
space of trees with N + 1 nodes is computationally
tractable.
� In Algorithm 3, a new spatial configuration S is sampled

from a mixture distribution for the new node. What is
meant is that a new center docking location is sampled
from this distribution, and this location is concatenated
to previous center locations (for previously added parts)
to form a new spatial configuration.
� After running Algorithm 1, the prototype contains a

maximum (15) number of parts. Next, parts are pruned
using a sequential hypothesis-testing procedure
adapted from Feldman and Singh (2006). Going from
the last part that was added to the first, each part is sub-
jected to a Bayesian posterior ratio test of significance. If
the posterior probability of the prototype with n parts is
less than its probability with n � 1 parts, then the nth
part is pruned. Otherwise, the nth part is retained and
the pruning procedure is terminated.

Algorithm 1. Main loop for sequentially adding parts to
prototype

forpart = 1 to 15 do
//Compute log likelihood for state of MCMC chain
with part � 1 parts.
//Log likelihood is negative infinity when part = 1.
old_log_likeli = log_likelihood (T,S,X)
//Generate 10 full proposals with part parts.
forcounter = 1 to 10 do

//Initialize X for new part randomly.
r � Uniform (1,40)
l � Uniform (1,40)
o � Uniform (1,3)
//Do 50 iterations of sampling to generate one full

proposal of T, S, and X.
foriteration = 1 to 50 do

ifpart = 1 then
//With only one part, there is no spatial layout

among parts (no T and S).
//Only goal is to sample r, l, and o for first part.
Algorithm 4

else
//There is at least one existing part. Now want

to add a new part.
//Sample new T by adding a node and edge to

old T, and sample new S
//by adding a new center docking location to

old S.
Algorithm 2
//Retain T but resample S.
Algorithm 3
//Sample r, l, and o for new part.
Algorithm 4

end if
end for
full_proposal(counter) = log_likelihood (T,S,X)

end for
full_proposal(11) = old_log_likeli
W = normalized full_proposal array such that values
are non-negative, sum to 1
Sample T, S, and X according to discrete distribution
given by W
Break if old state [corresponding to
full_proposal(11)] is accepted.

end for

Algorithm 2. Sample T and S given X

//Possible values for new T formed by adding a node
and edge to old T.

//Sample new S by adding a center docking location to
old S.

old_log_likeli = log_likelihood (T,S,X)
for each possible value of new T (where i indexes this

value) do
forj = 1 to 10 do

S � Uniform (1,108)
log_likeli(i, j) = log_likelihood (T,S,X)

end for
end for
Concatenate old_log_likeli to end of log_likeli array
W = normalized log_likeli array such that values are

non-negative, sum to 1
Sample T and S according to discrete distribution given

by W
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Algorithm 3. Resample S given T, S, and X

old_S = S
old_log_likeli = log_likelihood (T,old_S,X)
forcounter = 1 to 10 do

new_S � [0.5 � Uniform
(old_S � 3,old_S + 3)] + [0.5 � Uniform (1,108)]
new_log_likeli = log_likelihood (T,new_S,X)
//Metropolis–Hastings step
if Uniform (0,1) < exp (min (0,
new_log_likeli � old_log_likeli)) then

S = new_S
break

end if
end for

Algorithm 4. Sample X (i.e., r, l, and o) given T and S

//Sample orientation o.
old_log_likeli = log_likelihood (T,S,r, l,o)
new_o � Uniform (1,3)
new_log_likeli = log_likelihood (T,S,r, l,new_o)
//Metropolis–Hastings step
if Uniform (0,1) < exp (min (0,

new_log_likeli � old_log_likeli)) then
o = new_o
end if

old_log_likeli = log_likelihood (T,S,r, l,o)
//Sample r and l.
forcounter = 1 to 10 do

new_r � [0.7 � Uniform (r � 2,r + 2)] + [0.3 �
Uniform (1,40)]
new_l � [0.7 � Uniform (l � 2,l + 2)] + [0.3 �
Uniform (1,40)]
new_log_likeli = log_likelihood (T,S,new_r,new_l, o)
//Metropolis–Hastings step
if Uniform (0,1) < exp (min (0,
new_log_likeli � old_log_likeli)) then

r = new_r
l = new_l
break

end if
end for
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