Hierarchical motion perception as causal inference
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One-sentence summary: Recursive generative model motif with most prior mass on
stationarity quantitatively explains hierarchical motion perception

Since motion can only be defined relative to a reference frame, which reference
frame guides perception? A century of psychophysical studies has produced
conflicting evidence: retinotopic, egocentric, world-centric, or even object-
centric. We introduce a hierarchical Bayesian model mapping retinal velocities
to perceived velocities. Our model mirrors the structure in the world, in which
visual elements move within causally connected reference frames. Friction
renders velocities in these reference frames mostly stationary, formalized by
an additional delta component (at zero) in the prior. Inverting this model au-
tomatically segments visual inputs into groups, groups into supergroups, etc.
and ’perceives’” motion in the appropriate reference frame. Critical model
predictions are supported by two new experiments, and fitting our model to
the data allows us to infer the subjective set of references frames used by in-
dividual observers. Our model provides a quantitative normative justification
for key Gestalt principles providing inspiration for building better models of
visual processing in general.

Introduction

If motion can only be defined relative to a reference frame (/), what is the brain’s reference
frame for the perception of a moving object? A century of psychophysical studies has provided
us with evidence that motion is alternatively perceived in a retinotopic reference frame (2),
in allocentric (world) coordinates (3), or coordinate frames defined by other objects in a visual
scene (4-8). Interestingly, perceived motion can rarely be explained by a single reference frame.
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For instance, in the famous Johansson illusion (4), while the perceived velocity of the center
dot is clearly biased away from the observed retinal velocity, it is not vertical as predicted by a
reference frame defined by the flanker dots. Equally, the “flow-parsing” hypothesis (3) proposes
that the brain subtracts optic flow signals that are compatible with self-motion in order to make
us perceive object motion in allocentric coordinates; yet, the empirically observed subtraction
is rarely complete (9)

Importantly, our perception of motion appears to be closely linked to an observer’s percep-
tion of the “Gestalt” of a scene, its structure, or configuration (/0). Recent work has made some
progress in mathematically formalizing this elusive concept of a Gestalt: first in information-
theoretic terms (5, /1), and more recently in closely-related Bayesian terms (/2—/4). A Bayesian
formulation, compatible with the widely influential idea that the brain combines incoming sen-
sory information with prior expectations to form subjective beliefs about the outside world
(15, 16), has the advantage that these priors can be justified by the statistics and structure of the
outside world. Yet, existing Bayesian accounts of motion perception are either formulated in a
purely retinotopic reference frame (/7, 18) or use priors that are not justified by our knowledge
about the world but instead “put in the Gestalt law that we want to get out” (/4). Furthermore,
quantitative empirical tests of these models are based on explicit questions like “Do you per-
ceive structure A or B?” (7, 19-21) which are known to be susceptible to decision biases (22).

On a mechanistic level, motion signals are processed locally in early visual areas, and the
brain needs to combine information across these local motion detectors to form a coherent
percept. A long line of research has modeled how these early areas detect local motion (2, 23)
and how, through a series of linear-nonlinear stages, this local motion can be combined into
a more global motion percept (2, 24). While integrating these local motion signals allows the
brain to solve the ‘aperture’ problem (25), it is not always useful for the brain to integrate
information. In fact, local motion differences are a powerful segmentation cue, and several
studies (6, 25) have shown how our brain contrasts local motions to perceive relative motion. It
is however unclear how the brain decides between these two opposing operations, integration
and segmentation.

A separate line of research (26) in multisensory integration has modeled how the brain
solves a similar problem of deciding when to combine information across cues in a Bayesian
framework (‘causal inference’ ). Given the general nature of this problem of deciding when
to combine information, causal inference has been proposed to be a universal computational
motif across the sensory cortex (27). In motion perception, causal inference has been used
to successfully explain biases in estimating heading direction from both visual and vestibular
cues (28, 29), but not the perception of moving objects.

Here we present a hierarchical causal inference model that overcomes all of the above chal-
lenges by performing joint inference over the hierarchical structure of a scene and the motion
of individual visual elements within it. Importantly, the motion priors in our model are justified
by motion in the real world, in which most objects are not merely slow, but exactly stationary
with respect to their canonical reference frame (/6). We also present new data from two psy-
chophysical experiments in humans that probe the hierarchical perception of motion and that



provide strong support for the key elements of our model, in particular its hierarchical structure,
novel prior, and approximate computations.

Results

Motion is perceived in dynamically inferred reference frames that reflect
the causal structure of the world

Much of the world consists of approximately rigid objects who in turn are made up of approxi-
mately rigid parts. During translation, all points on a rigid object move in the world at the same
speed. Consequently, a common velocity for multiple moving elements in a visual scene acts
as a strong cue that the elements belong to a single object. Not surprisingly, when we observe
a group of dots moving at the same speed (Figure 1A, top), our brain combines them into one
object that it perceives as moving (Figure 1A, bottom), rather than perceiving the individual
parts as moving independently (/0, 30). This common velocity cue also allows the brain to
segment the scene into multiple moving objects. For example, when we observe the dots mov-
ing as shown in Figure 1B, top, we perceive two partially overlapping objects moving at their
respective velocities (Figure 1B, bottom).

Importantly, objects do not simply move independently in the world, but are related to each
other through hierarchical whole-part relationships. When a part moves differently from the
whole, the whole becomes a natural frame of reference in which to represent that part’s motion.
For example, the body is the natural frame of reference for the motion of an arm because of
the causal whole-part relationship between the two: any change in the motion of the body is
directly translated into a change in the motion of the arm.

Our key idea linking retinal observations to percepts in Figure 1A-D is that the brain dy-
namically constructs reference frames within which most of the visual elements it contains are
stationary. We formalize this aspect of the physical world by extending the traditional slow-
speed prior (/8) over moving objects to include a mixture component consisting of a delta at
0. This is shown graphically in Figure 1E, where o denotes the prior probability that an ob-
ject is stationary. This prior acts on the relative velocities of the visual elements represented
in this reference frame. This brings us to the central motif in the generative model we propose
is used by the brain to perform inference (Figure 1F). The motif specifies how the velocity
of an object is the sum of the velocity of the reference frame and the velocity of the object
within that reference frame. This sum is probabilistic, allowing for computational imprecision
as quantified by 0% . Inference within this generative model motif leads to a decomposition of
the observed velocities of visual elements into the velocity of a (shared) reference frame and
each element’s velocity relative to that reference frame. The degeneracy of this decomposition
is broken by the mixture prior over the relative velocities, which leads to an automatic “chunk-
ing” of moving elements into groups that are inferred to move together. We hypothesize that
the perceived velocity of a visual element moving in a reference frame is its relative velocity to



the reference frame velocity if the relative velocity is non-zero and the reference frame velocity
otherwise. This is compactly illustrated in our model by adding a shaded gray box around the
candidate variables for perception in the generative model. Under this illustration, the percept
corresponds to the candidate velocity that is non-zero and lowest in the model hierarchy (closest
to the observations).

Recursively applying this motif leads to our proposed hierarchical causal inference model
describing velocity percepts in a scene consisting of dots moving according to hierarchical
causal relationships. Our model combines dots into groups, groups into supergroups, and so
on (Figure 1G). At the bottom of the model are the actually observed velocities in retinal co-
ordinates, 0, which are linked to the latent variables ¢ by a Gaussian likelihood whose width
represents the observational noise. The top level of the hierarchy is the velocity corresponding
to the stationary objects in the world in the egocentric reference frame. For stationary observers
this is zero, but for moving observers it is equal to the optic flow velocity caused by self-motion.
This allows for a natural extension of this model to explain deviations in perceived velocities
due to self-motion (3).

Performing Bayesian inference in this generative model requires computing a posterior be-
lief over all possible structures in which the visual elements could be grouped, and over all the
velocities in each of the structures. Before empirically testing the quantitative predictions of
this model, we next explain the intuitive impact of its key elements using an increasing number
of moving dots, building up to explain the classic Johansson illusion.

Ilustrating the causal inference model for dot stimuli consisting of 1-3 dots

We illustrate the key features of the model by applying it to very simple stimuli consisting of
two or three dots. The model infers full posteriors over all possible structures and the velocities
within each structure. For compactness, we focus on the most probable structures and show
the most likely inferred velocity using vectors instead of variables in the generative model, as
shown in Figure 2A for a simple stimulus in which a single dot is moving. We explicitly show
the variables for the rest of the structures in Figure S1.

When observing two dots that move with the same velocity, there are two primary structures
that can explain the observations: one in which both dots are moving independently, each rep-
resented in the egocentric coordinate system as an individual dot (Figure 2B, left structure), or a
structure in which each dot can be inferred to be stationary with respect to a group (an abstract
object), consisting of both dots, with the velocity of the group corresponding to the retinal ve-
locity of the dots (Figure 2B, right structure). The delta component of our mixture prior over the
relative velocities ensures that the latter hierarchical structure has the highest likelihood given
the data since it has the fewest non-zero relative velocities. Furthermore, since the observed
velocities for each dot will slightly deviate from each other due to observation noise, the group
velocity combines both observations to obtain a more reliable velocity percept of the group (31).
This combination of dots into a single group occurs for all dots in the scene that are inferred to
move with the same velocity.



If a third dot is added to the scene that moves with a different velocity from the other two
dots, the two plausible structures to explain the observations are: (a) an object consisting of the
two coherently moving dots plus an independently moving third dot (Figure 2C, left) and (b)
a single object consisting of all three dots in which the differently moving dot is represented
as moving in the object’s reference frame (Figure 2C, right). The slow speed component in
our mixture prior favors the latter structure if the differently moving dot has a smaller speed
in the object’s reference frame than in the stationary egocentric reference frame. For instance,
in the Johansson illusion (Figure 2C), the third dot has a small relative velocity with respect to
the two coherently moving dots, and its perceived velocity is indeed biased towards its velocity
in the reference frame provided by the group made up of the two dots (dark green vertical
arrow in Figure 2C, right). However, it is important to recognize that even for as little as
three moving elements, there are 16 different structures, for instance one in which dots 2 & 3
move relative to dot 1 rather than the other way around, or where all dots move relative to a
reference frame defined by all of the dots together, moving at an intermediate velocity. So it
may not be surprising that structure (b) alone cannot explain human observers’ percepts which
sometimes correspond to the retinal velocity suggesting structure (a), sometimes correspond to
the relative velocity (structure (b)), and sometimes lie in between (32, 33), suggesting that the
brain performs inference over multiple, if not all, of these possible structures.

Furthermore, model predictions will depend on how perception is related to the posterior
over structures and velocities. Prior work (7) has suggested the mean for the most likely struc-
ture, but it could also correspond to the mean across structures as in other work on causal
inference (26), or posterior sampling (34, 35).

New empirical tests of model predictions

In order to quantitatively distinguish between our model and previous proposals, we designed
two motion estimation tasks that tested the key elements of our model: (i) the novel mixture
prior over relative velocity with a delta at zero, and (ii) the linking hypothesis mapping the
posterior distributions over velocities in the model to the distribution over perceived velocities.
Importantly, by using a motion estimation task, we test both causal inference over reference
frames, and the perception of motion within a reference frame.

Experiment 1: Test using stimuli with two potential levels of hierarchy

In order to test our model, and to constrain its parameters, Experiment 1 was designed to pre-
cisely measure human motion perception during the transition from integration to segmentation.
Observers used a dial to report their perceived motion direction of a patch of green dots, sur-
rounded by a variable number of patches of red dots (Figure 3A). Surround dots were either
stationary, or moving horizontally (direction O degrees). The number of surround patches was
randomly chosen every trial from {1,2, 3,5, 10}, while the center always consisted of a single
patch of dots. Additionally, the retinal center direction (direction on the screen) was randomly



chosen on each trial from the set {0, +2.5, £5, +10, 20, £45}°. The center and surround had
a common horizontal velocity (0°), such that the direction of the center’s velocity relative to the
surround was £90° depending on the sign of the center direction (more details in Methods). As
expected, reported directions lie along the identity line when the surround is stationary (Figure
3B).

When the surround is moving, observer responses systematically deviate from the identity
line (Figures 3C-G, S4). Specifically, responses are biased towards zero degrees (surround
direction) for small center directions, consistent with the observer integrating the center and
surround velocities and reporting the cue-combined velocity. The reported velocities are biased
towards 90° for larger center directions, consistent with the observer perceiving the relative
velocity between the center and surround.

The responses are in excellent agreement with our causal inference model predictions which
are overlaid as violin plots. The absolute goodness of fit was measured by variance explained
(VE) to be between 92-96% across observers. Also note the clear evidence of causal inference
— uncertainty whether to integrate or segment — in the form of bimodal responses (or increased
variability) for intermediate center directions around 5° visible in both empirical responses and
model fits. These characteristic deviations between retinal motion and perceptual reports de-
pend on the number of surround patches, also in agreement with the model fits (Figure S3 with
an average VE of 94%).

We also found clear quantitative empirical signatures of the shift from integration to seg-
mentation using a model-free analysis. To get an interpretable estimate of the effect of the
surround on the center, we mapped responses to a modulation index. This index lies between
—1 and +1, where —1 corresponds to complete integration (perceiving the surround direction),
0 corresponds to the surround having no effect, and 41 corresponds to complete segmentation
(perceiving the relative velocity between the center and surround; see Methods for details).

The mean modulation index, averaged across observers (Figure 3H) is negative indicating
integration, for 2.5° (p < 0.001 for the group, p < 0.05 individually for 4 out of 5 observers,
based on 5000 bootstrapped samples). For larger separations (greater than 10°), the average and
individual mean modulation indices are positive indicating segmentation for larger separations
(p < 0.001). The standard deviation of modulation index, averaged across observers (Figure 3F)
is largest for intermediate separations (p < 0.01 for the difference in the standard deviations of
the modulation index at 5° and at 2.5° and 45°) indicating a higher variability due to uncertainty
over causal structures, in agreement with our model predictions.

Insights from model fitting

We next fit the model to individual responses and obtained posterior distributions over the pa-
rameters for each observer (Methods). This allowed us to gain three key insights about the
model: (a) whether the mass in the delta component was required to explain the pattern of re-
sponses, (b) how observers map the inferred posteriors to responses on each trial, and, (c) how
the different causal structures contribute depending on center direction.



Remarkably, for all observers, most of the prior mass was in the delta-component, indicating
the strength the brain’s expectation that relative motion in the world is exactly zero, rather than
merely slow (Figure 4A). We further confirmed the presence of a delta component in the mixture
prior by a formal model comparison (Figure 4B, leftmost column) and found strong evidence
against a model without as compared to models with mass in the delta component.

Our model comparison (Figure 4B) also revealed that observers’ responses are best de-
scribed as arising from approximate inference (posterior sampling) in the full Bayesian model.
We compared this to other previously proposed maps from posteriors to responses: (a) reporting
the posterior mean (model averaging) which is the optimal strategy for estimation tasks (36),
(b) reporting the conditional mean under the most probable structure (model selection) which
maximizes consistency (37) and minimizes the description length (38), and (c) reporting the
mean by sampling the structure (structure sampling) which is a more precise approximation
than posterior sampling (35) (Figure S7). For all observers, the model favored by the evidence
had different prior widths and different masses on the delta component for different velocity
variables (center, surround, group), performed joint inference over structure and motion, and
converted posteriors into responses by sampling.

Our model also allowed us to determine the causal structures underlying each observer’s
subjective percepts. We found that for all observers, only four out of 16 possible structures
were assigned a significant posterior mass (Figure 4C-F for 10 surround patches, and Figures
S5, S6 for all other conditions). Under structure 1, the observer integrates center and surround,
thus perceiving the cue-combined velocity (Figure 4C). As expected, the posterior probability
of this structure was highest when the center and surround moved with the same velocity and
decreased with an increase in separation between center and surround velocities (Figure 4G).
The bias in the perceived center velocity towards the surround was determined by the weight
given to the surround (Figure 4K), which we quantified using the modulation index (as in the
previous section). Under structure 2, center motion is perceived in the reference frame defined
by the surround — the canonical structure typically assumed for center-surround motion segmen-
tation (Figure 4D,H, L). Unexpectedly, this structure is dominant for only 1 out of 5 observers,
plays a transient role for intermediate differences between center and surround motion direc-
tions for just 2 observers, and only plays a very minor role for the remaining observers. The
same is true for structure 3, under which the surround is perceived in the reference frame of the
center, and perception of center motion mostly coincides with retinal motion (Figure 4E,I,M).
Finally, structure 4 implies that both center and surround motion are perceived with respect to a
reference that moves at a velocity intermediate to both center and surround (Figure 4F,J,N). This
is the structure that carries primary responsibility for intermediate percepts (i.e. the apparently
incomplete subtraction of the surround from center velocity) at large differences between center
and surround motion directions. Surprisingly, none of the observers places any mass on the pos-
sibility that center and surround might belong to different causal structures (the 99th percentile
of mass on this structure is below 1% for all observers) — an alternative potential explanation for
intermediate percepts. However, one prediction of such a structure would have been to find a
substantial fraction of responses along the identity line (given that responses are best explained



by posterior matching overall), something that we did not observe (Figure 3C-G). The reason
that structure 4 has higher posterior mass than structures 2 and 3 for large separations is the
Gaussian slow speed component in the prior: the smaller relative velocities under structure 4
overpower the mass in the delta component of the prior.

As predicted by the model, we also find that both the integration effect (quantified by the
model predicted modulation index at 0°) and segmentation effect (quantified by the model
predicted modulation index at 45°) become stronger with increase in the number of surround
patches (Figure S8B and S8C respectively).

Experiment 2: Test using stimuli with three potential levels of hierarchy

Next, we added a second surround of moving dots to test three key qualitative behavioral pre-
dictions of the hierarchical replication of our causal inference motif (possible structures shown
in Figure S9). First, motion perception during segmentation is local, i.e. the perceived motion
of an element inferred to be moving relative to a group is independent of other motion in the
visual scene. Second, if a visual element is integrated with a group, then it inherits the reference
frame of that group. Third, the retinal velocity of a group, and not the velocity with which the
group is perceived, determines the reference frame velocity for the elements that are part of that
group (compare the alternative model in Figure S10 to Figure 1G).

As in Experiment 1, observers reported the direction of the center patchmoving in the pres-
ence of a surround but in Experiment 2, the surround consisted of inner and outer rings of dots
(Figure 5A). The inner and outer ring velocities were on opposite sides of the center patch ve-
locity with the inner ring moving at {0°, —3°, —10°, —30°, —45°} counter-clockwise from the
center. The outer ring moved at 60° counter-clockwise from the center when the inner ring
moved at 0° and the outer ring’s velocity was adjusted to maintain a constant relative velocity
between outer and inner rings as the direction of inner ring was varied.

The data clearly confirms our model predictions: when the center and inner ring are inte-
grated to form a group, this group is perceived in the reference frame formed with the outer ring
(significant biases towards —90°, Figure 5B magenta box, p<0.01 for all observers). However,
when the center is segmented from the inner ring (when its velocity is very different than that
of the inner ring), then the center is perceived as moving in the reference frame formed with
the inner ring, ignoring the outer ring (reports are biased towards 90°, Figure 5B orange box,
significant for 7/9 observers with p<0.01).

Our data also supports our model’s prediction that the retinal velocity of the inferred group
determines the group’s reference frame velocity (Figures 5C and 5D respectively). Specifically,
as the center is perceived relative to the inner ring when they move differently, the outer ring
should have no effect on the percept. Consistent with this, we found no significant difference
in reported center directions for different outer ring directions, for inner ring directions of —30°
and —45° (p> 0.05 evaluated through bootstrapping with 1/9 observers showing significant
difference for both inner ring directions). For these inner ring directions, the observers pre-
dominantly segment the center and inner rings (Figure 5B, orange box). The individual trial



responses are shown in Figure S11.

In addition to the conditions shown in Figure 5B, we also test how: (a) the observers perceive
the inner ring in the presence of the center and/or surround, (b) how the center ring percept is
biased by just the inner ring moving coherently (similar to Experiment 1) and just the outer
ring moving coherently. Responses in these conditions also agree with predictions of the causal
inference model (Figure S12C-J).

Discussion

We have presented a new model of complex motion perception, and new data to support this
model. The key normative ingredients, reflecting the structure of the physical world, are that
the motion of visual elements should be represented in reference frames that they are causally
connected to, that due to friction forces, the velocity in such a reference frame is mostly zero,
and that the world is compositional and hierarchically organized. We designed two experiments
in order to test all key elements of our model, to constrain its parameters, and to generate new
insights for motion perception in scenes with a richer motion structure than earlier experiments.

Our work advances the large body of work trying to understand sensory processing in terms
of natural input statistics (39-42). Whereas prior work started with the input statistics at the
sensory periphery, our model explicitly incorporates causal relationships (moving the whole
will move the part) and the importance of friction (the relative velocity is zero for most objects
that are touching each other) for giving rise to these statistics. Strikingly, fitting our model to
perceptual reports revealed that most prior mass is in fact at zero for all of our human observers
(Figure 4A).

The richness of our our psychophysical data, together with formal model comparison, also
allowed us to answer the important question of how the often-complex posterior distributions of
a Bayesian observer are related to our deterministic-appearing percept (43, 44). In prior work,
inference over motion structures and velocities within each structure are treated as separate
problems in which either the most likely structure is inferred (7) or the structure is assumed
to be known or learned over longer time scales (20). Our experiments and analyses provide
overwhelming evidence that, at least in the context of motion processing, the brain performs
joint inference over both structure and motion, and that perceptual reports are best described by
samples from this joint distribution (Figure 4B).

Approximate joint inference in our model can also explain why effect sizes in prior studies
usually deviated from previously proposed theories like (Bayesian) Vector Analysis (4, 33) or
flow-parsing (3): a range of different causal explanations are all consistent with the presented
impoverished psychophysical stimuli. We confirmed a closely related prediction of our model
— the increase in integration and segmentation effect sizes with the number of dots, i.e. the
uncertainty in the surround (45) of our experiment 1 (Figure S8).

Fitting our model to individual responses revealed unexpected variability in the causal struc-
tures inferred by different observers. We had expected that partial segmentation for large dif-



ferences in motion direction between center and surround was best explained by observers’
lack of confidence that center and surround were indeed part of the same object. However, our
quantitative analysis showed this not to be true: partial segmentation was actually explained
by observers perceiving both center and surround to be slowly moving with respect to an ab-
stract reference frame moving with an intermediate velocity. A corollary to this result is that
the larger the integration bias (i.e. the more the reference frame velocity aligns with the sur-
round), the larger is the segmentation bias, in agreement with earlier work (8). This result also
demonstrated the importance of the ‘slow-speed’ component of the prior on relative motion —
in contrast to the otherwise analogous spike and slab prior (46) common in machine learning.

Earlier work on the influence of context on perception found this influence to be a function
of the percept of the context, not the direct sensory input defining the context — both for temporal
context effects (47), and during binocular rivalry (48). Our data from Experiment 2 differs from
these findings, confirming that our percepts reflect inference in a model based on the physical
laws of motion and suggesting differences between the causal models underlying the ventral
and the dorsal processing streams.

While it has long been recognized that both integration and segmentation are key operations
underlying motion perception (25), our model shows that there are in fact two qualitatively dif-
ferent kinds of segmentation: (1) do two visual elements belong to the same causal structure,
and, if the answer is yes, (2) is a visual element moving with respect to its reference frame?
While our model answers both questions using the framework of ‘causal inference’ from multi-
sensory integration (26), which has been proposed as a ‘universal computation’ for cortex (27),
only the first question corresponds to a question about causality as statistically defined (49).

Our model also lends itself to making predictions for neurophysiological data. We leave
for future work the tantalizing possibility that the two kinds of variables in our model (corre-
sponding to the left and right sides of Figure 1G) are represented by the two major classes of
neurons who have been reported (50) in cortical motion area MT (surround-suppressed and not
surround-suppressed).

Bayesian causal inference has recently been proposed as a unifying theory for neuroscience
(27). Our model extends the simple ‘same’ or ’different’ scenarios in previous causal inference
work to hierarchical whole-part relationships reflecting the compositionality of the world (57).
The computations at the lowest level of our model in fact resembles a recent probabilistic model
of neural responses in primary visual cortex (52), and the hierarchical architecture of our model
directly suggests an equivalent one for the ventral stream, potentially allowing us to understand
both dorsal and ventral stream as performing inference in closely related generative models.
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Figure 1: Causal inference model for hierarchical motion perception. (A-D) Illustration of
four different dot patterns that are observed to move as shown in the top row with the arrows
indicating retinal velocity vectors. The bottom row shows our predicted motion percept where
the brain uses common velocity information to combine dots into objects and group objects into
a hierarchical structure. (E) Prior that consists of a mixture of a delta distribution at 0 and a
Gaussian distribution centered at zero, reflecting the knowledge that elements are either exactly
stationary in an appropriate reference frame or are likely to move with a slow speed. (F) Gen-
erative model motif in which the object’s observed retinal velocity is the sum of the reference
frame velocity (7™¢""*"°®) and its velocity with respect to the reference frame (7 fgg‘;ce). (G)
Hierarchical causal inference model obtained by repeatedly applying the motif in F. Inference
in this model leads to hierarchical grouping of dots, and representing dot motion in reference
frames defined by the groups they belong to. The percept is determined by the non-zero relative
variable lowest in the hierarchy.
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Figure 2: Model predictions for simple dot stimuli. (A) The motion of a single dot is inferred
in the reference frame of a stationary world. In our shorthand notation, velocity variables have
been replaced by their most likely value shown as a motion vector. Darker shades are used to
indicate relative velocities and filled circles indicate zero velocity. (B) Two moving dots are
explainable by two possible structures (left and right). If they move coherently, such that both
are stationary with respect to a moving group, the delta component in the prior implies that most
posterior mass lies on the combined structure (right). As a result we perceive a moving object
consisting of both dots. (C) If a third dot is added to the display in (B), the observations are
explainable by 8 different structures (Methods, Figure S9), two of which are shown here. On
the left, the green dot is perceived as independent of, and unaffected by the motion of the red
dots. On the right, the green dot is part of the same structure as the red dots, and perceived in
a reference frame defined by a group in which two out of the three dots are stationary (favored
by the delta component in the prior). The Gaussian component of the prior favors the right
structure over the left one since the velocity of the green dot in the reference frame defined by
the red dots is smaller than its velocity with respect to the stationary world. This explains the
Johansson illusion (4).
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Figure 3: Experiment 1 — design and results. (A) During fixation, two groups of dots (red
and green) appear and move back and forth three times for 4.5 seconds before disappearing.
During the last phase of the movement, the fixation dot turned green. The observers adjusted a
dial to report their perceived direction of the green dots during the last movement phase. The
red (surround) dots were either stationary or moved horizontally (0°), while the green (center)
dots varied in direction from trial to trial while keeping the horizontal component of their ve-
locity matched with the surround. (B) Responses of all five observers overlaid for the condition
where the surround is stationary. Each dot represents a single trial. All responses lie around
the identity line (warped due to non-linear spacing of the xr—axis). Responses were flipped
for negative center directions to match the positive directions after verifying that the responses
were symmetric. (C-G) Responses for each observer when the surround is moving. The hori-
zontal lines at 0° and 90° indicate the predicted reports for complete integration (perceiving the
surround) and complete segmentation, i.e., perceiving the relative velocity, respectively. (B-G)
The overlaid violin plots show the model predictions (not data distributions). One model was
fit jointly on all data for each observer. (H,I) Mean and standard deviation in modulation index
(68% confidence intervals) defined such that —1 corresponds to pure integration, +1 to pure
segmentation, and 0 to retinal motion. Different colors indicate different observers; black line
denotes the average across observers.
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Figure 4: Model fitting insights from experiment 1.(A) Fitted mass on the delta component
in the prior for center and surround. Each colored line show the mean and 95% CI for each
observer. (B) Model comparison. For each model, the difference in AIC score to the posterior
sampling model is show. We find strong evidence against all alternative models as compared to
the posterior sampling model. (C-F) The four causal structures that have a non-zero probability
in our model fits. (See main text for description.) (G-J) The posterior probability assigned to
each structure by each of the observers as a function of center direction. All observers integrate
the center and surround for center directions close to zero (C+G) and segments the center and
surround otherwise. However, they differ to what degree they rely on each of the three different
reference frames implied by D, E, and F. (K-N) As in Figure 3E, the modulation index predicted
under each structure quantifies the influence of the surround on the perceived center direction.
The modulation index for a structure is independent of the probability assigned to that structure.
Together, they determine the influence of the surround on the center.
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Figure 5: Design and results of Experiment 2 (three moving groups). (A) The observer per-
forms an estimation task in which they have to report the direction of green dots (center) using
a dial. While center dot directions are randomized from 0 to 360°, results are combined after
rotating all velocities such that 7°"**" moves horizontally (0°). (B) Our model predicts that we
will perceive the center dots in the inner ring’s reference frame if both move in noticably differ-
ent directions (segmentation, orange box) and cue combine the center and the inner ring motion
if they are sufficiently similar (integration, magenta box). In the latter case, our percept would
be the cue-combined center and inner ring’s velocity in the outer ring’s reference frame. The
observer responses support these model predictions. (C) The causal inference model predicts
that during segmentation, the percept of center motion should only depend on the retinal inner
ring motion, not the perceived inner ring motion. The data clearly supports this prediction since
the outer ring motion as no influence on the reported center directions (even though it influences
the inner ring percepts, see Figure S11). (D) Same as (C) but for conditions where the inner
ring moves at —45° and the outer ring moves at either 11° or 36°. We consider the two inner
velocities that are most different from the center in our experiment to minimize the probability
that the observer integrates the center and the inner ring velocities.
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Methods

Observers

Five naive observers participated in Experiment 1, and 10 naive observers participated in Ex-
periment 2. Observers provided written informed consent, and were financially compensated
for their time. Experiments were approved by the Office for Human Subject Protection (OHSP)
at the University of Rochester (IRB number 0003909). 1/10 observers in Experiment 2 was
excluded based on their large response variability (standard deviation greater than 30deg) in the
control condition and their data was omitted from further analysis.

Experiment 1 details: two moving elements

The stimulus consisted of a ‘center patch’ of green dots, presented at 5 degree eccentricity.
Dots were 0.1 degree in diameter and distributed uniformly within the patch with a density of
6.88 dots/degreeQ. The center patch had a radius of 0.68 degrees and was surrounded by a
ring of radius 2.72 degrees, consisting of a variable number of patches of red dots (Figure 3A).
Each surround patch had a radius of 0.54 degrees and a dot density of 10.91 dots/ degree2. Dot
displays were viewed binocularly, and no disparity cues were added, such thatall the dots moved
in the plane of the display. The stimuli were presented on a 27-inch monitor with a refresh rate
of 60 Hz and a resolution of 1920 x 1080 at a viewing distance of 105 cm. Eye movements were
tracked using an Eyelink 1000 system and trials were discarded in which eyes moved within 1
degree of the center patch.

The stimuli were presented at an eccentricity of 5 degrees in the periphery. The number of
dots in a patch was fixed to 10. There was one center patch and the number of surround patches
was chosen in every trial from the set [1,2,3,5,10]. The center retinal direction was chosen from
the set [0, +2.5, £5, +10, 20, £45] and the surround was either stationary (stationary surround
always had 5 patches) or moved at 0 degrees (horizontally rightwards) at a speed of 1 deg/sec.

After a fixation period of 0.5s, the stimulus appeared and moved back and forth for 1.5
cycles. The patch envelopes moved at a constant velocity and reversed their velocity after 1.5
seconds (square wave velocity profile with a time period of 3 seconds). The back-and-forth
movement ensured that the envelopes stayed within a fixed area of the screen. In the last half
cycle, the fixation dot turned green indicating that the observer had to report the direction during
the last half cycle.

After stimulus offset, an arrow appeared at the location of the center patch, and observers
used a dial to adjust the arrow direction to match their motion direction percept. The stationary
surround condition served as a control. Observers who had a response standard deviation larger
than 30 degrees in this condition were removed from subsequent analysis. The fixation period
and stimulus had a total duration of 5 seconds following which the observers could make a
response at any time to proceed to the next trial. Each observer participated in three sessions to
get 22 trials per condition on average for a total of 1446 trials per observer on average.



Experiment 2 details: three moving elements

In experiment 2, the stimulus consisted of a center patch, an inner ring, and an outer ring, all
arranged concentrically centered at 5 degrees eccentricity (Figure SA) separated by 0.5 degrees.
On every trial, either the center dots, or the inner ring dots, were colored green, indicating
whose direction had to be reported. The other parts of the stimulus contained red and blue dots,
respectively, with the color assignment randomly drawn every trial. The number of dots in the
center was 10 (density of 3.2 dots/degrees” with a center patch radius of 1 degree), the inner
ring contained 50 dots (density of 4 dots/degrees® with a inner ring width of 1 degree) and the
outer ring contained 250 dots(density of 11.4 dots/degrees? with a outer ring width of 1 degree).
The viewing distance, eye recording details, and the criteria for discarding trials due to fixation
breaks and control condition response variability were the same as in experiment 1.

Each trial started with a 0.5 s fixation period during which only the fixation dot was shown
on the screen. This was followed by the random-dot stimulus which moved for 2 seconds within
an aperture at a constant velocity. Unlike for Experiment 1, the moving dots were presented in-
side fixed apertures, and the stimulus direction was not reversed. The center moved with a speed
of 0.5 degrees/sec and the center direction was randomized across trials, within a range of 360°,
to minimize the effect of reporting biases. The inner ring’s retinal direction was chosen from
the set [0, —3, —10, —30, —45] relative to the center where negative angles indicate clockwise
rotations. The outer ring moved in a counter-clockwise direction chosen such that the same
relative velocity was maintained between the outer and inner rings across different inner ring
directions. Furthermore, the speeds of inner and outer ring were chosen such that the relative
velocity between either ring and center was perpendicular to the center direction.

Different conditions were interleaved across trials in which the inner and outer rings could
either move randomly or coherently and the observer had to report the direction of the center or
inner ring. As in experiment 1, the observer made their responses by adjusting the direction of
the arrow that appeared at the location of the center or inner ring after the stimulus offset with
its size matched to the size of the corresponding target. Each observer performed three sessions
to get 46 trials per condition on average for a total of 2239 trials per observer on average.

Modulation index to summarize observer responses in Experiment 1

We defined the modulation index, wy, such that the percept of the center patch (v ey,) pre-

dicted for a given wyy is given by

- conter 6’center o wMIé'surround W 2 0 (1)
v =
t — —
percep (1 + wMI)O center __ W10 surround W S 0
where & " and ¢S are the observed center and surround velocities from the brain’s per-

spective for a given trial. This definition incorporates partial subtraction of the surround (case
wyp > 0) for relative velocities when the effect on perception is repulsive (53) and cue com-



bination (37) when the effect is attractive (case wy;; < 0). Under the simplifying assumption
that ¢’ ™" and ¢’ *""™°""d correspond to the experimenter-controlled velocities on the screen (ig-
noring observation noise), and that the perceptual reports exactly reflect the perceived variable
6;;2@ (ignoring motor noise), one could estimate a per-trial modulation index to obtain a dis-
tribution over wy for each separation of center and surround in order to estimate means and
standard deviations which unfortunately would be biased. In order to obtain the unbiased esti-
mates reported in Figures 3H and I, we therefore modeled observation noise, motor noise, and
motor bias explicitly which allowed us to infer the distribution over wy; from the distribution

over perceptual reports (see supplementary section S1 for details).

Causal inference model for hierarchical motion perception
Generative model in a scene with two moving elements

The observed retinal velocities, o ™" and ¢ s"™°""d were modeled as the true retinal velocities,

@ center and g swround corrupted by additive Gaussian noise with variance o2, ., and 0% 1,
respectively (I refers to a 2 x 2 identity matrix) :

— center — center 2 — surround — surround 2

0 ~ N(,U ? Ucenter ]I) and o ~ N(/U ? Usurround ]I) * (2)

The velocities were parameterized as two dimensional vectors reflecting the x and y compo-
nents. In order to model the inference over the different causal structures (here, whether center
and surround are part of the same moving group), we follow (26) in introducing a binary (logi-
cal) variable Seentersurround ¢ £() 11 (corresponding to the left and right side of Figures 2B and
S2B). This allows us to write the conditional probabilities compactly as:

27center ~ N(Scenter,surroundggroup + Ucenter + (1 o Scenter,surround),l—fworld’ O_QA ]I) and (3)

relative
— surround center,surround —group —surround center,surround\ —»world _2
v ~ N(S v + Urelative + (1 -5 )U yOA I[) (4)

where 04 models the uncertainty in the velocity composition, e.g. due to computational noise.
The prior over Seentersurround g ojyen by goentersurround ywhich represents the prior probability
that center and surround belong to a common structure (based on prior experience, or other
non-motion cues). In a scene with only two moving elements, the group velocity is inferred in
the stationary world reference frame with 7V°"'¢ = ( (Figure 1G):
TENP ~ N (g + 0, 03 1), (5)
The prior over each of the relative velocities is a mixture prior of a delta function at zero and a
normal distribution centered at zero
1—;center/surround/group ~ 5(0) + (1 B Of)N(O, 0_2 ]I) (6)

relative prior

where « represents the expectation that the (relative) motion is exactly zero (Figure 1E,F).
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Mapping inferred latent variables to percepts

Our model predicts that if the center is inferred to be part of the same group a the surround,
then the perceived center motion corresponds to the center’s relative velocity if it is inferred to
be nonzero, and to the group velocity if the center’s relative velocity is inferred to be zero. If
the center is not inferred to be part of the same group as the surround, then its motion relative to
stationary world is perceived. By defining C*) € {0, 1} to denote whether the velocity vr(ela)me
is zero (C*) = 0) or not (C") = 1), we can compactly write the percept as:

—center center —center center center,surround /ygroup ~group
Upercept =C Urelative + ( - C )S 7 C Urelative- (7)

Therefore, the distribution over the observer’s percept is a mixture distribution with the mixture
weights corresponding to the posterior probability of the different causal structures (character-
ized by possible S) and the different nested structures within each causal structure (character-
ized by possible C'):

—center
( percepta‘)_ § : E E : § :
c1={0,1} c2={0,1} ¢3={0,1} ca={0,1}
(Ccenter = Crsurround = ¢y, Cgroup = c3, Scenter,surround — C4|(_7)

8)

—center | = Ccenter .

surround __ group __ center,surround
p(vpercept ) — C1, C = Co, C = C3, S

= 64).
where for compactness we define o' = (o', 'swround)  For any number of moving elements,
this posterior has the general form:

— i —» - — t — /= 2
p(TEenter |5) sz G N (Teemer - ji:(3;), o2 1) 9)

where w;, y;, and o? correspond to the probability, mean and variance associated with each
causal structure, respectively. For n moving elements, the total number of mixture components
in the posterior is N = #5(n) 2#¢(™ where #5(n) is the number of possible causal structures
and #C'(n) is the maximum possible number of relative velocities (each of which could be zero
or not thereby resulting in 27#“(™) nested structures). #S5(n) satisfies the recurrence relation
givenby #S(n) = 2+> ,f;; (1)#S(n—Fk+1) as in addition to all elements being independent
or part of the same group, grouping k elements results in n — k + 1 moving groups. #C(n) =
@ as at each hierarchical level i, we can have n — i moving elements where i € {0, N —1}.
The expressions for the terms in Eq. 9 are derived in supplementary section S2.

The distribution over perceived velocity can be mapped onto the distribution over the per-

center : 3 3 3 : 3 .
ceived center direction, 6 ¢ c , by mapping each velocity to its corresponding direction:

P(O5creeil) = P(0Tycrecp)P(Tpereent 1) (10)

7> center
percept



Inserting Eq. (9) into (10), we can approximate the integral to get:
N
p(egglctg;t |§j) = Z Wy (Q)A[circular{e; 92 (§)> Kq } . (1 1)
i=1

Neireular TEpresents the von Mises distribution pdf with mean parameter

~

0;(0) = arctan(f; ,, ii; ) and concentration parameter x; = T(0?/||fi;||3) which can be com-
puted numerically. We allow for lapses in responses by adding another component to the dis-

tribution over the center direction that is a von Mises distribution characterized by p!*P*® and
lapse
K .

N

p(gl(;gﬁ:ts;t |§) = )‘Mircular(e; Iulapse’ Kjlapse) + (1 - )‘) Z w; (@Mircular{e; éz (5)7 K'i}- (12)

=1

Perceptual estimation

We consider the following four, previously proposed (26, 35), ways in which the brain may

3 center | =\ 1 3 1 center .
convert the posterior p(f5cree |0) into a perceptual point estimate, 6. :

center
estimate

M(])Vdel averaging: 05 is the mean of the joint posterior over all structures: 6
im0 Wikt (9).

Model selection: 6" s the posterior mean over direction for the most likely structure:

estimate

fecnier. = 1. (6) where i* — arg max u,.

Structure sampling: 6 ™" s the posterior mean over direction for a single structure sam-

estimate
= 1,(0) where probability of 1(0) o< w}(0).

pled from the posterior over structures: . enter

estimate

Posterior Sampling: 0.2 s a direction sampled from the joint posterior over all structures
center ~

: : . center
and directions: 6 Seher  ~ p(Qpercept| 0)

Predicted distribution over observer responses

—

The distribution over observer reports, [?, for a set of experimenter-defined directions V =

(,center 7 surround) cap he obtained by marginalizing out all possible sensory observations (26,

54):
p(RIZ) = / p(RIDP(@D). (13)



We model the distribution over observer reports, R, as a von Mises distribution centered on

center : : : : .
0 . allowing for a reporting bias b and a motor noise kK, :

p(RJy) = / Norourar (R 0525 11 e \p(61). (14)

Since this integral is intractable to evaluate analytically, we approximate this using Gaussian
quadratures evaluated at points 0; with weights w?“ad:
d
P(RIY) =Y w0 Neireutar (B; 055 + b, Fom)- (15)
J
The distribution over observer responses for different perceptual estimates described in the
previous section are give in supplementary section S3.

Model fitting details

We obtained the maximum a posteriori (MAP; for initializing the sampler) and maximum like-
lihood estimate (MLE; to compute AIC) for the model parameters under weakly informative
priors (details in Table S1) using a quasi-newton Broyden-Fletcher-Goldfarb-Shanno (BFGS)
unconstrained optimization procedure (fminunc in MATLAB). We obtained full posteriors over
all model parameters using generalized elliptical slice sampling (55) which allowed us to get
uncertainty estimates for all parameter estimates. We used 144 chains with 25000 samples per
chain to estimate the posterior distribution over the parameters (average R<1.1).

To evaluate the absolute goodness of fit of the model, for each combination of center and
surround velocities, we compared the empirical CDF from the reported directions with the
corresponding model prediction. We quantified the overall match as variance explained across
all conditions.

Supplementary Text

S1 Estimating the distribution over modulation indices

In this section we present the details of the procedure to compute the distribution of modulation
indices described in the main text. The predicted distribution over reports across trials for
a given combination of veridical center and surround velocities can be expanded for a given
modulation index wyy; assuming Gaussian observation noise:
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where @ denotes the normal CDF. The Variance over reports in the stationary surround
condition, given by Var(Rstationary) = Totor —|— 02 onter 18 an upper bound on the a entor (@S
02 tor > 0). This allowed us to parameterize o2 ... = Var(Rationary )Ccenter and 020 =
Var(R statlonary)csurround where 0 S Ccenters Csurround S 1. In order to estimate Ccenters> Csurround,
and 7y;;, we minimized the L2 norm between the predicted CDF over the reported directions
and the empirically estimated CDF in the moving surround condition. The predicted CDF can
be expanded as a mixture of the CDF predicted for each wy; weighted by the corresponding

probability:

CDF(R' — center D" surround wMI) —

o

CDF<R| — Center —’ surround Z CDF R| — CtheI‘ —’ surround w%vII)ﬂ_llv[IAwMI (3)

wi; are the bin centers separated by Awy. We assumed a weakly informative lognormal
prior over 02, ... and o2 . (with logarithmic mean —3.75 and standard deviation 1.15). We
also added two costs on 73 as regularization to ensure convergence: (a) L1 regularization pe-
nalizing the sum of absolute values of 7i;; that ensured that 7};; corresponding to non-required
regions of wf\/ﬂ went to zero, and (b) regularization on the curvature (second derivative) to en-
sure smooth distributions over w};;. The regularization constants \; and )\, corresponding to
the two terms of the regularization were estimated by cross validation on synthetic ground truth
data.

S2 Inference in the hierarchical causal inference model

In this section, we derive the expressions for posteriors over the inferred latents in our causal
inference model. Eq. 9 in the main text can be expanded in the context of our model as



s R S S S

c1:{0,1} 02:{0,1} 63:{0,1} C4:{0,1}

center surround rou center,surround ) (4)
p(C :ClaC :CQ7Cg P :C37S :C4|Q)
—center | = center surround Tou center,surround __
p(vpercept|gvo :CLO == CQ,Cg b= 0375 —64).
Where wz( —’J) _ (Ccenter — Csurround — 2, Cgroup = cs, Scenter,surround — C4|§),
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The joint distribution over the latents and observations for a given structure can be expanded
in terms of their definitions (main text)
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We have assumed the inferred o"rld 0 since our stimuli in the experiment are local
moving patches and are unlikely to introduce non-zero self motion velocities. Marginalizing
out the center and surround velocities

—center —surround ~group —group center center,surround group surround\ __
p(O 0 7Urelative7v |C 7S ’ 70 70 ) -
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By defining
2 2 2 center surround _2
05 =0 center to surround + ZUA O prlor C Uprlor (12)
2 surround 2
_ 0 surround + UA +C O prior 13
Vs = (13)
o3
we can apply the formula for product of Gaussian pdf to get
—center —surround —group center Qcenter,surround group surroundy) __ — center, = surround
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Similarly by defining
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we can apply the product of Gaussian pdf to get
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We can substitute the above equation into the likelihood for the posterior over the group
relative velocity. By marginalizing the group relative velocity, we can also substitute the above
equation to the posterior over the different causal structures

—group | —center —surround center Ccenter,surround ,vgroup surroundy __
p(vrelative O ) C ) S ) C ) C ) -
—group _ — center ~surround (1 __ group _2 __ Qcenter,surround
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Ccenter Scenter,surround Cgroup Csurround —center —surroundy) __
9 ) 9 o Y

p(

) (1 _Scenter,surround)

(19)

To get the posterior over the center relative velocity, we start with joint distributions over the
latents for each causal structures and repeatedly apply the Gaussian pdf products and marginal-

: : >center
ize out the variables other than v,
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we can apply the formula for product of Gaussian pdf to get
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By marginalizing the group relative velocity
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Rearraging the different terms
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09

we can apply the formula for product of Gaussian pdf and marginalizing the surround rela-

tive velocity to get
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By rearranging terms
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we can apply the formula for product of Gaussian pdf
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By rearranging terms
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By defining

O_i — 0';(1 . 71)2(1 o Scenter,surround,y?)) +C cerltero_?)rior (55)
C centero.IQ)rior
Y= (56)
04

We can apply the rule for multiplying Gaussians and substitute the expression in the defini-
tion of the posterior of relative center velocity to get

—center | = center
p( relative|0

—center , / = center — surround
N( relative’ ( +o

— surround center Qcenter,surround group surround) _
5 O center g N Ne -

1 — Scenter,surround

9)74, 05 (1 —71)%( V3)74)
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which can be simplified as follows

—center |5»center

= surround center Qcenter,surround group surround
p( relative 0 ) C 9 S ’ ) C ) O )

?

N(Ucenter . (5 center + 5'8urroundg),}/47 [OZ _ C Center0.2 ]74>

relative’ prior

(58)
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—center , / = center — surround center _2
N (v (0 +0 9)74,C 0 ior(1 —74))

relative’ prior

(59)

S3 Distribution over responses under perceptual estimates

The distribution over responses can be evaluated for the different perceptual estimates by sub-
stituting the different estimates detailed in the main text (Section: Perceptual estimation) into
Eq. 15.

Posterior sampling

N
p<R’2) = Z Z w;‘luadwg (Q_j /Mircular(R; 0 + b; Hm)-/\[circular [9; ,u; (@7 Ké] (60)
j =0 o

which can be simplified using the product rule of von-Mises pdf (56) to get
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p(R|y) = Z Z w4y (5) Io[\/(KL)? + K + 26k cos(R — b — 115(0)))] 61

o J 21 lo(Km) Lo(KL)

Structure sampling

p(Rlv) = ZZ 9990 (3) Nosveutar (B 1(8) + b, ). (62)

Model averaging
p(R|E) = Z U);luad( circular <R Zw + b Km) (63)

Model selection

p(Rlv) = wi™(0)Neireutar (R; 14 () + b, Fim) (64)
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Figure S1: Generative model in Figure 2 with the inferred velocities indicated. Dot veloci-
ties and the corresponding inferred structures for stimuli with one moving dot (A), two moving

dots (B) or three moving dots (C)
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Figure S2: Scenes with two moving elements. A Stimulus with two coherently moving groups
of dots whose velocities are chosen such that the target (green dots) moves perpendicularly to
the surround (red dots). The stimulus is designed to separate three possible percepts of the
target velocity as predicted by our model: (a) perceiving the retinal velocity (light green vector)
if the target and group are not inferred to be part of the same motion structure (b) perceiving the
group velocity (red vector) if the target is inferred to be part of the same motion structure as the
surround and the target moves with the surround (c) perceiving the relative velocity (dark green
vector) if the target is inferred to be part of the same motion structure as the surround but the
target moves differently from the surround B The different motion structures that the model can
infer with two moving elements. The colored arrows indicate the relative velocities inferred in
each motif for the stimulus in A. Black dots indicate stationary relative velocities.

19



stationary surround

(deg.)

num.

(deg.)

reported center direction reported center direction reported center direction
(deg.)

):3

(deg.)

a88

num. dots ratio (surround/ce!

nter) :

(deg.)

reported center direction reported center direction

nter) :

Bid I
0 2551020 45 0 2551020 45 0 255102045 0 2551020 45 0 255 1020 45
center direction (deg.)  center direction (deg.)  center direction (deg.) center direction (deg.) center direction (deg.)

-
o]
o o

reported center direction
(deg.)

Figure S3: Individual observer responses in experiment 1. Response across all observers
and different ratios of surround to center dots along with best fit model predictions. Each
color indicates a different observer and each row corresponds to a different number of surround
patches (indicated by the title).
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Figure S4: Summary statistics of observer responses. (A) Difference in median reports be-
tween moving and stationary surround conditions with 68% confidence intervals. Negative
values indicate integration and positive values indicate segmentation.(B) Difference in report
variability between moving and stationary surround with 68% confidence intervals, quantified
by the difference in median absolute deviation (MAD). The MAD (57) is a robust estimate of
variability defined as the median absolute difference between individual trial reports and median
reports across trials. Each color corresponds to a different observer and the black line shows
the average across observers. The average difference in median reports is consistently negative
for 2.5° (not significant with p = 0.07 across observers, with p < 0.05 individually for 3 out of
5 observers) indicating integration, and is significantly positive for larger separations (greater
than 10 degrees; p < 0.001 across observers, also p < 0.001 individually for all observers)
indicating segmentation. The small effect sizes for integration are a consequence of the experi-
ment design as the maximum possible difference in median reports for a retinal center direction
2.5° 1s —2.5° which is small compared to the reporting noise. This shortcoming is addressed
in Experiment 2 described in the next section. The average MAD at 5° (Fig. 3D) is signifi-
cantly greater than the MAD at 2.5° and 45° (p < 0.001 across observers, with p < 0.05 for 3
out of 5 observers individually) indicating greater variability in reports for intermediate sepa-
rations reflecting the higher uncertainty in causal structures expected from the causal inference
model.Significance was estimated by bootstrapping using 10 samples.
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Figure S5: Posterior probability of structures for varying numbers of dots. Posterior prob-
ability of the four structures in Figure 4A-D similar to those shown in Figure 4E-H for 10
surround patches, but for all numbers of surround patches (1,2,3,5 and 10).
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Figure S6: Modulation indices corresponding to each structure for varying numbers of
dots. Modulation indices predicted under the four structures in Figure 4A-D similar to those
shown in Figure 4I-L for 10 surround patches, but for all numbers of surround patches (1,2,3,5
and 10).
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Figure S7: Factorial model comparison. Factorial model comparison using relative log like-
lihood (shown in grayscale) computed using AIC as in Figure 4B but across all simplifications
of the model depicted in (B) shown for each observer in (C) and across all observers in (A).
The filled green circle indicates the best model through model comparison and the open green
circles show models that are not the best but the evidence against them is not strong as com-
pared to the best model. The most simplified model had the same prior parameters (weight on
the delta and width of the slow speed prior) for: (a) the different velocities variables (i.e. center,
surround, group) in our model, and (b) the inferred velocities for stimuli with different numbers
of surround patches. We systematically allowed these parameters to vary to get to the most
complex model where all parameters were allowed to vary (but with a weak prior preferring a
shared value).
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Figure S8: Experiment 1: dependency on number of surround dots. (A) The posterior pre-
dictive distribution over modulation indices across observers. (B) Predicted modulation index
at 0° from (A) plotted as a function of the number of surround patches. 4/5 observers show a
decrease in the predicted modulation index at 0 degrees (3 significantly with p< 0.001) with in-
creasing number of surround patches indicating a higher strength of integration as the reliability
of the surround increases. (C) Predicted modulation index at 45° from (A) plotted as a function
of the number of surround patches. All observers show a significant increase in modulation
index (p< 0.001) with increasing number of surround patches indicating a higher strength of
segmentation as the reliability of the surround increases. The square markers in (B,C) indicate
that these are model-predicted transition directions and not empirically measured data. All the
statistical tests were done using samples obtained through posterior sampling of the model pa-
rameters. Two statistical tests were done to assess change in modulation indices as a function
of the number of surround patches. First, the probability of modulation indices for 10 surround
patches was estimated as being greater/lesser than those for 1 surround patch by comparing
the posterior samples over the corresponding modulation indices. Second, the posterior slope
distribution of the line fit to the modulation indices as a function of the number of dots was
used to assess the increasing/decreasing trend by estimating the proportion of samples from the
slope distribution that were greater/lesser than zero. (D) We quantify the region of integration
by defining a transition direction difference which is the difference in direction between cen-
ter and surround where the probability of integration is 0.5. The probability of integration is
plotted in Figure S5 (first column) for different number of surround dots. (E) We find that the
transition direction difference decreases with increase in number of surround dots in agreement
with earlier causal inference studies that the region of integration increases with increase in cue
uncertainty. The difference is significant (p< 0.05) for 4/5 observers.
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Figure S9: Scenes with three moving elements. (A) Stimulus with three coherently moving
groups of dots whose velocities are such that the center (green dots) move perpendicularly to
the surrounding inner and outer rings. The three velocities share a common component such
that the relative velocities between any two elements are either 90 degrees or -90 degrees. (B) A
compact notation for the causal inference motif where an object is inferred in a reference frame
by inferring whether its relative velocity to the reference frame is zero or not. (C) The different
motion structures that the model can infer with three moving elements. Each gray outline box
implies two nested tructures corresponding to whether the relative velocity is inferred to be zero
or not. The colored arrows indicate the inferred relative velocities for the stimulus in A.
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Figure S10: Alternative (hypothetical) model for hierarchical motion perception. The motif
presented in Figure 1F could be stacked alternatively to Figure 1G such that the perceived
velocity (gray shaded box) forms the reference frame for the level below. Such a model would
be consistent with previous work in orientation perception (47, 48) where the perceived context
value influences the perception of target stimuli. Experiment 1 cannot separate between this
structure and Figure 1G as both the perceived and retinal group velocities are the same. But
results from experiment 2 (with an additional level of hierarchy) flalsify this model and support
our causal inference model presented in Figure 1G.
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Figure S11: Individual responses in experiment 2. Individual responses across trials for
observers in experiment 2 for the experimental condition shown in Figure SA. Each dot cor-
responds to the response on a single trial and the violin plot is the empirical histogram of
responses. The responses are summarized using the circular marginal median along with 95%
CI as indicated by the errorbars to the left of each violin plot.
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Figure S12: Additional empirical results with three moving elements. (A) Stimulus
schematic. The observer performs an estimation task in which they have to report the direc-
tion of green dots (center) using a dial. (B) Stimulus schematic. The observer performs an
estimation task in which they have to report the direction of green dots (inner ring) using a
dial.(C,D,G,H) Observer responses (and 95 % CI) for center percept for different stimulus con-
ditions that define the velocities of the center, inner ring, and outer ring. The group of dots
that are displayed in the inset are the coherently moving dots in that condition with velocities
indicated by the vectors. The dots not displayed move randomly. The velocities are chosen
such that the center always moves at 0 degrees (horizontally) and the two rings move with the
same horizontal component but opposite vertical components such that the relative velocities
are either 90 degrees (center and inner ring) or -90 degrees (center and outer ring). This ar-
rangement is rotated around the circle across trials to account for any reporting biases. (E,F,LJ)
Observer responses (and 95 % CI) for inner ring percepts for different stimulus conditions sim-
ilar to C,D,G,H. The observer always reports the direction of the green dots and in these trials
the green dots form the inner ring whereas they formed the center in C,D,G,H. For (I), the tick-
labels indicate the absolute angular difference between the inner and outer ring directions and
the brackets indicate the inner ring direction.

In two control conditions (C,E), the observers reported either the center or the inner ring’s di-
rection respectively, which was found to be aligned with the presented retinal direction demon-
strating no reporting biases. When the center and inner ring moved coherently (D,F), the center
direction reports followed the same pattern as predicted in experiment 1 (integration for small
inner ring directions and segmentation for larger inner ring directions). The inner ring percepts
(F) were largely unaffected by the center suggesting that the inner ring predominantly deter-
mines the group velocity. When the center and outer ring moved coherently (G), seven out of
nine observers displayed significant negative biases. This outcome supports the notion of per-
ceiving the relative velocity of the center to the outer ring, albeit with a low modulation index
suggesting the effect of a surround on the center diminishes with increasing spatial separation
between them. Similarly, when the inner and outer rings moved together (I), a weak integration
was visible (flattening of the curve beyond the dashed line) for an absolute angular difference is
8 degrees (significant with p<0.05 across observers; significant with p<0.05 for 5/9 observers).
We also see significant biases (p<<0.001 across observers and also for each observer) consistent
with perceiving the inner ring relative to the outer ring for larger separations. Reporting the in-
ner ring directions in the condition in which all the elements move coherently (J), the observer
responses are significantly negative across and for individual observers (p<0.001) consistent
with the model predicts that the observers perceive the inner ring relative to the outer ring. The
absolute angular differences between the inner and outer ring lie between 60 to 81 degrees and
are similar to the responses when only the inner and outer rings move coherently (for large
separations) supporting the model prediction that the percept of the inner ring is the perceived
velocity of the center-inner group in the outer ring reference frame and that the group velocity
is predominantly determined by the inner ring.
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Parameter Prior \ Remarks ‘
O sior Lognormal(—2,2) ~ 90% mass € [0.5°,75°[;
oA Lognormal(—2, 2) see previous

chosen this way such that
weight on the observation
O nter/ Tovior Betaprime(1, 1) in tl}f; posteri(?r gi\fen by
<—U?cmci10;§rior> is uniformly
distributed

Beta prime(1, 1) see previous

weakly informative prior with

2

2
Osurround / Uprior

o Beta(1.25,1.25) 2 mode at 0.5

(3 center,surround Beta(1.25,1.25) see previous
prior incorporating knowl-

A Beta(1,5) edge that lapse rates are likely
to be small

Japse symmetric prior over lapse

a Normal(0, ) mean probabilities in radians

g 1apse Lognormal(0, 2.35) 95% mass € [0.01, 100]

b Normal(0, /2) symmetr'w _prior over re-
sponse biasin radians

Km Lognormal(0, 2.35) 95% mass € [0.01, 100]

Table S1: The weakly informative priors used over parameters for MAP and posterior esti-
mation. When different parameters for agrior are estimated for center and surround, and for
different number of surround patches, a Normal prior [A(0,4)] is placed on the difference be-
tween the parameters incorporating knowledge that apriori all parameters are likely to be similar
for reduced displays. Similarly, a Normal prior [N/(0,0.5)] is placed on the log odds between
the estimated « values for center and surround, and for different number of surround patches
preferring similar estimates
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