Causal inference can explain hierarchical motion perception and is reflected in neural
responses in MT

Causal inference (Cl) has recently been proposed as a universal computational motif in the brain

. However, how Cl is implemented by neural circuits, and its signatures in terms of single
neuron responses, are still unclear. We have investigated this question in the context of complex motion
processing. Motion perception deviates from retinal motion a computation that can be
understood in terms of hierarchical Cl over which moving elements to integrate into coherent ’groups’ vs
segment into different ones . Yet, most of our understanding
of the neural basis of motion processing is in terms of retinal motion, delegating potential Cl computations
to downstream cortical areas

Our work makes two contributions: first, we present new psychophysical evidence for the hierarchical na-
ture of this process using a display of hierarchically nested groups of moving dots. Second, we use the
hierarchical Cl model fit to psychophysical data to derive quantitative neural predictions for neurons rep-
resenting the variables in our model. At each level, our model contains two types of variables: one that
represents the retinal motion predicted by the larger surround, and one that represents the difference be-
tween the actual local motion and that predicted from the surround. The predicted neural responses show
remarkable similarity to two classes of neurons found in area MT: neurons with suppressing and with re-
inforcing surrounds . Finally, we present new neurophysiological data from area MT
in a macaque monkey where the velocity-dependent pattern of surround suppression of neural responses
agreed with that predicted for the relative variable in our Cl model. Our results show that signatures of Cl
are already present at the early stages of sensory processing, and suggest that they may be implemented

by local computations.

Our work builds on a recent model that modified and
reformulated the model by as
hierarchical causal inference based on local compu-
tations . The key elements
of this model (Fig. 1A) are a decomposition of the
motion at every location (‘dot’) into motion that is
predicted by a larger entity ("group’) that the mo-
tion at that location is inferred to belong to, plus a
relative motion: v4ot = VP 4 ydet . This pro-
cess is repeated hierarchically with groups being in-
ferred to be part of ’supergroups’ etc. A key innova-
tion of this model is the mixture prior consisting of a
delta around zero plus a slow speed prior

that ensures that the model
only infers non-zero relative motion if the local mo-
tion sufficiently deviates from the predicted motion.
As a result of this prior, the model 'chunks’ the vi-
sual scene into a hierarchical structure consisting of
parts that are inferred based on their coherent mo-
tion (each consisting of elements with zero relative
motion). Since human motion perception has been
shown to be relative to the next-larger entity a visual
element belongs to, it corresponds to the non-zero
relative motion variable in this model that is lowest
in the hierarchy. E.g. if V"% = 0 for some k, then this
dot is perceived to move at the velocity of the group

retina
that it belongs to, V*.>"" if that is non-zero, other-

relative ?

wise the relative velocity at the next higher level etc.

We psychophysically tested the three key predictions
of this model: integration of similarly moving ele-
ments with an inferred motion that is based on cue-
combination, segmentation of differently moving el-
ements leading to the perception of relative motion

, and percepts of increased uncer-
tainty in between. Experiment 1 (Fig 1B) consist-
ing of only red and green dots found clear evidence
for both segmentation (perception of relative motion)
and a bimodal distribution of responses in the tran-
sition region between integration and segmentation.
However, since integration in this case implies only a
minimal change in percept compared to retinal mo-
tion, we designed a 2nd experiment with an addi-
tional, larger surround (blue dots in Fig. 1B). Now,
whenever the motion of the green dots is integrated
with that of the red dots, they are predicted to be per-
ceived relative to the blue dots, implying (by experi-
mental design) a deviation in the opposite direction
from that predicted when the green dots are inferred
to be moving differently from the red dots. The data
from this experiment (Fig 1D) now clearly demon-
strates both integration and segmentation, allowing
us to quantitatively test our Cl model and infer its
parameters.
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Figure 1. A: Generative model. B: Stimuli with corresponding velocity vectors. C: Example observer reporting per-
ceived motion direction of green dot. D: Responses of 6 observers (thin) plus average (thick line).

Our computational model allows us to generate pre-
dictions for the responses of neurons representing
the individual latent variables in our model. Here we
focus on the lowest hierarchical level in our model
and compare to neural recordings in area MT. We
map the posteriors computed in our model to neu-
ral responses in the following way: we start by mea-
suring the speed tuning and motion direction tun-
ing of each MT neuron for a simple stimulus consist-
ing only of one the central motion element (green in
Fig 1B), with a stationary surround (red in Fig 1B;
both white on black for the neurophysiological ex-
periments). This yields the neuron’s tuning to the
posterior over the underlying variable regardless of
whether it represents a retinal or relative variable in
our model since the posteriors over each variables
are identical for a stationary surround. However, as
soon as we introduce motion into the surround, the
posteriors over the retinal and relative variables in
our model diverge sharply in their mean. As long
as there is little uncertainty over the causal struc-
ture, the respective posteriors have approximately
the same means and variances as those encountered
when measuring the speed and direction tuning with

to an example neuron

a stationary surround, allowing us to look up the cor-
responding neural response. When center and sur-
round velocities are similar and the implied poste-
rior is bimodal, we compute the neural prediction as
a combination of both mixture components.

Fig. 2A+B show the neural predictions for different
combinations of center and surround directions as-
suming both to have the same speed, and assum-
ing a linearly increasing speed tuning for the neuron.
While the retinal neuron’s response is largely inde-
pendent of the surround direction (with the excep-
tion of the integration zone), the relative neuron’s re-
sponse is highly sensitive to center and surround di-
rections. Focusing on the surround-suppressed neu-
rons in a newly collected dataset, we find a good
agreement between the model predictions and data
when comparing tuning curves for stationary sur-
round with a surround moving at —90deg relative
to the preferred direction of the neuron (Fig. 2C+B).
Since each neuron has somewhat different speed and
direction tuning, we only show a model fit for an ex-
ample neuron (Fig. 2C+D). But the qualitative pat-
tern holds across our population (Fig. 2E).
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Figure 2. A & B: Neural prediction for neuron representing

Center direction (deg.)

-0.34%
-180 -135 -90 -45 0
Center direction (deg.)

-0.3
-180 -135 -90 -45 0
Center direction (deg.)

135 -90 45 0

vaet (A)and V4. (B).C: Example unit with moving (red

error bars) and stationary surround (black error bars) as a function of center motion direction with surround motion
at —90°. Lines are model fits. D: The normalized response difference between moving and stationary surround (blue
error bars) for the example unit in (C) along with the Cl model’s prediction (blue line). E: Same as (C), but showing
the individual response differences for 10 neurons (gray lines). Blue line indicates the example neuron from C & D.
Individual lines not expected to be identical since neurons differ somewhat in direction and speed tuning.



