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Judgments made about sensory events (i.e., perceptual deci-
sions) rely on the spiking discharge of sensory neurons. For this 
reason, there has been longstanding interest in the observation 

that this discharge tends to be variable given a fixed stimulus1,2. 
In principle, this variability could confound perceptual judg-
ments, impairing the fidelity of sensory information in the brain. 
Even worse, this variability tends to be weakly correlated amongst 
sensory neurons (spike-count correlation, rsc)3, meaning it cannot 
trivially be averaged away4. For this reason, rsc is widely referred to 
as ‘correlated noise’5–8.

This way of thinking has underlain several influential lines of 
research in systems neuroscience. One has sought to understand 
the magnitude of the perceptual impairment introduced by rsc in 
different behavioral contexts5,8–15. When rsc is distributed such that 
correlated fluctuations mimic the sensory events being detected or 
discriminated, it could severely impair perceptual accuracy11,15,16. 
A related line of research has sought to understand how correlated 
variability affects the choices subjects make in perceptual discrimi-
nation tasks from trial to trial17–19. These studies have shown that 
rsc structure can give rise to a weak correlation between variabil-
ity in single neurons and perceptual reports (choice probability; 
CP), consistent with the notion that CP observed in real neu-
rons reflects the causal influence of correlated sensory neuronal  
variability on perception.

However, we currently know very little about the origin of rsc, 
making it unclear to what degree these conclusions are correct. A 
frequent (although typically unstated) assumption is that rsc in sen-
sory neurons is generated by shared variability in common afferent 
inputs. Consistent with this idea, rsc correlates with the physical prox-
imity and similarity in stimulus preference of neuronal pairs8,20–23,  
which are also predictive of the degree of feedforward input con-
vergence. If this explanation is correct, it supports the traditional 
view of rsc as ‘confounding noise’, as it arises from stochastic pro-
cesses in the sensory encoding pathway. However, the bulk of syn-
aptic inputs to sensory cortical neurons are not strictly feedforward 
in nature24,25. Consequently, variation over time in shared inputs  
from downstream areas (i.e., top-down or feedback) may make a 

substantial contribution to rsc. These signals may reflect endogenous 
processes like attention, arousal or perceptual state and could be 
under voluntary control. In principle, this source of correlated vari-
ability need not confound perceptual judgments, but instead may 
reflect ongoing neuronal computations.

Several recent studies have shown that rsc does change to some 
degree with task context12,14,26,27, suggesting a top-down component. 
These studies have shown that rsc in populations of sensory neurons 
can either increase or decrease depending on attentional state or 
other task demands. However, prior studies have made only limited 
measures of rsc structure and how this changes with task, yet these 
are critical for understanding how rsc arises and how it relates to 
task performance. Furthermore, the relative magnitude of feedfor-
ward versus top-down contributions to rsc has not been determined. 
It also unknown whether task-dependent changes in rsc reflect an 
adaptive reduction of sensory noise or whether rsc is, in the first 
instance, generated by variability over time in top-down inputs 
reflecting downstream computations.

In the present study, we used large-scale neuronal population 
recordings in behaving macaques, along with careful behavioral 
control and an innovative analytical approach, to substantially 
advance our understanding of these fundamental questions. 
Subjects performed a variety of orientation-discrimination tasks 
using the same set of stimuli. The only difference between tasks was 
the set of orientations being discriminated. If rsc primarily reflects 
noisy sensory encoding, it should be invariant to changes in the 
task, given fixed retinal input. Alternatively, if it changes dynami-
cally with the task, this would indicate that it reflects top-down sig-
nals. This experimental approach, inspired by a previous study27, 
was combined with large-scale population recordings, allowing us 
to estimate the full rsc matrix—that is, how rsc varies as a function of 
all possible combinations of pairwise orientation preference. This 
made it possible to directly infer which components were fixed 
and which changed with the task. Strikingly, we could not identify 
a component that remained fixed. Instead we observed a pattern 
of task-dependent changes that was highly systematic and could be 
modeled as the effect of a single modulatory input targeting the two 
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task-relevant subpopulations of V1 neurons in an alternating fash-
ion across trials.

These data give unprecedented insight into the functional role 
of rsc structure in task performance. First, they show that the task-
dependent changes in rsc structure appear to degrade the task per-
formance of an ideal observer of V1 activity alone, because they 
mimic task-relevant stimulus changes. However, our discovery of 
the feedback origin of these correlations means that they need not 
degrade performance and points to the possibility that they may 
instead be a signature of ongoing neuronal computations. Indeed, 
recent circuit models of perceptual inference predict feedback 
signals whose statistics reflect the subject’s prior beliefs about the 
task, yielding predictions that closely match our obervations28,29. 
Second, we show quantitatively that these feedback dynamics are 
the primary source of the choice-related activity we observed in V1, 
clarifying an ongoing debate30 about the interpretation of choice-
related signals in sensory neurons. We conclude that rsc in sensory 
neurons reveals less than previously thought about the encoding of 
sensory information in the brain, but potentially much more about 
the interareal computations underlying sensory processing.

Results
We trained two rhesus monkeys (Macaca mulatta) to perform a 
two-alternative forced-choice coarse orientation-discrimination 
task (Fig. 1), used previously31. On a given trial, the subject was 
shown a dynamic, two-dimensional filtered noise stimulus for 2 s, 
after which it reported the stimulus orientation by making a saccade 

to one of two choice targets (oriented Gabor patches). Different task 
contexts were defined by the pair of discriminandum orientations. 
The stimuli were bandpass filtered in the Fourier domain to include 
only orientations within a predetermined range. The stimulus filter 
was centered on one of the two task orientations and its orientation 
bandwidth was used to control task difficulty. We included 0% sig-
nal trials, in which the stimuli were unfiltered for orientation (and 
thus the same regardless of context), to examine the effect of task 
context on rsc in the presence of a fixed retinal input.

To detect any effect of task context on rsc structure, it is critical 
that subjects based their choices on the presence of the correct ori-
entation signals. To ensure this, we used psychophysical reverse cor-
relation31–33 to directly measure the influence of different stimulus 
orientations on the subject’s choices (the ‘psychophysical kernel’). 
We found that subjects required multiple days of retraining after a 
change in the task context to fully update their psychophysical ker-
nel. For this reason, we kept the task context fixed for the duration 
of each recording session and only undertook recordings in a new 
task context after subjects had updated their kernel (Supplementary 
Fig. 1). This is a noteworthy advance over past studies of the effect 
of task context on neuronal responses, which typically have not 
quantified the extent to which behavioral strategy truly matches 
task instruction.

We recorded spiking activity in populations of single V1 neurons 
using multielectrode arrays while the subjects performed the task. 
We determined the preferred orientation of each neuron by mea-
suring its response to oriented stimuli (see Methods) in separate  
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blocks of trials during which subjects passively fixated. Neurons 
were excluded from analysis if they were not well-tuned to orienta-
tion. The final dataset includes 811 simultaneously recorded pairs 
from 200 unique cells across 41 recording sessions. For each pair, 
we calculated its rsc value as the Pearson correlation between the 
set of trial-duration spike-counts across trials of the same stimulus 
condition. While measuring rsc only across 0% signal trials isolated 
any changes due to the task context, we found similar results within 
each signal level. Therefore, to increase statistical power, we report 
rsc values measured across all trials, after normalizing spike counts 
to remove the effect of stimulus drive on firing rates.

Rsc structure changes systematically with task context. Recording 
large populations gave us the power to measure the full ‘rsc matrix’, 
that is, how rsc varied as a function of all possible combinations 
of orientation preference. To our knowledge, this is the first time 
such detailed measures of rsc structure have been made while ani-
mals perform a discrimination task. To assess the presence of task-
dependent rsc structure in the data, we first divided the recording 
sessions into two groups based on the task context used (Fig. 2b). 
We estimated the smoothed, average rsc matrix associated with each 
subset (Fig. 2a,c) by pooling rsc values measured across the subset 
of sessions, along with measures of the neuronal preferred orien-
tation. Across both subsets of sessions, we observed a tendency 
toward higher values of rsc for pairs of neurons with more similar 
orientation preferences (i.e., higher values closer to the diagonal of 
the matrix), consistent with numerous prior observations3 (Fig. 2d).  
Traditionally, such observations were presumed to reflect ‘limited- 
range correlations’ that depend only on similarity in stimulus pref-
erence5,9,10, equivalent to a rotationally symmetric (Toeplitz) correla-
tion matrix. In contrast, in our data this was due to distinct patterns 
in the two matrices: we observed the highest values of rsc among 
pairs that shared a preferred orientation close to a discriminandum, 
and the lowest values of rsc tended to occur amongst pairs prefer-
ring opposite task orientations. Because the task context differed 
between the two subsets, this yielded matrices with a lattice-like  
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context associated with each subset. d, Scatter plot showing a weak, but 
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Black line is a type II regression line and gray line corresponds to rsc =  0. e, 
Average rsc matrix observed across all sessions, shown in a task-aligned 
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pattern offset along the diagonal by an amount reflecting the task 
context. In other words, rsc structure changed dramatically with task 
context, consistent with the presence of task-dependent feedback 
and inconsistent with a fixed rsc structure primarily driven by sen-
sory afferent noise.

To summarize this task-dependent structure across the entire 
dataset (Fig. 2e), we expressed each neuron’s preferred orienta-
tion relative to the task orientations on its respective recording 
session, such that 0° and 90° always indexed the task orientations. 
This combined matrix clearly illustrates the task-dependent pat-
tern of rsc structure in the V1 population, a pattern that was con-
sistent across both subjects (Supplementary Fig. 2). As in previous 
studies, there was a great deal of variability between individual rsc 
values, even among pairs with similar orientation preferences and 
task (Fig. 2d,f), demonstrating that factors not considered here also 
contribute to rsc.

Notably, we observed a different result during separate blocks 
of trials in the same recording sessions, during which the subject 
fixated passively for reward but the same set of stimuli was shown. 
During these blocks, the highest values of rsc tended to occur 
along the diagonal, independent of orientation preference or task 
(Supplementary Fig. 3). This demonstrated that the task-dependent 
pattern observed during task performance depends on active task 
engagement and cannot be explained, for instance, simply as an 
effect of adaptation to task experience. We performed a number 
of additional analyses to rule out any possibility that our findings 
could be explained merely as an effect of changing retinal input 
across task contexts, such as effects related to stimulus history or 
eye movements (Supplementary Figs. 4–7). Taken together, these 
controls strengthen our interpretation that centrally generated 
signals reflecting task engagement underlie the task-dependent rsc 
structure we observed.

Segregating fixed and task-dependent components of rsc structure.  
Our dataset of rsc measurements, made in large, heterogeneous popu-
lations across diverse task contexts, allowed us to directly estimate the 
rsc structure that was fixed versus the structure that was dynamically  

changing with task. To do this, we modeled the raw rsc values using 
two structured components: (i) a fixed rsc matrix describing the 
dependence of rsc on pairwise orientation preference regardless of 
task and (ii) a task-dependent rsc matrix capturing the dependence 
of rsc on pairwise orientation preference relative to the task ori-
entations. We used ridge regression to find the form of these two 
component matrices that best predicted the raw rsc measurements. 
To reduce the number of regressors without constraining the form 
these two components could take, we parameterized the matrices as 
8 ×  8 grids of basis functions (Fig. 3a and see Methods).

This modeling approach allowed us to address two related ques-
tions. First, the form of the fitted components serves to identify the 
nature of the dynamic and fixed rsc structure in the V1 population. 
Second, comparing models that included either or both compo-
nents provided a quantitative test for the origin of the rsc structure 
we observed. When we jointly fit both components to the data, the 
inferred task-dependent component (Fig. 3c) recapitulated the lat-
tice-like structure we observed in the average data (Fig. 2e). The 
fixed component (Fig. 3d) was smaller in amplitude and, notably, 
appeared also to contain a weak lattice-like structure, offset by 
approximately 30°. This is likely due to the fact that we did not 
uniformly sample across all possible task contexts, with tasks dis-
criminating orientations near 30° and 120° being overrepresented  
(Fig. 2b). Next, we compared reduced models in which only one 
of the two components was used. Strikingly, cross-validated model 
accuracy was increased when we removed the fixed component 
entirely, but reduced by about half when we removed the task-
dependent component (Fig. 3b). This suggests that the dependence 
of rsc on orientation preference in our data can be explained as a com-
pletely dynamic phenomenon, with no additional dependence that 
is invariant to the task. We found that all of these modeling results 
could be replicated when the fixed and task-dependent components 
were parameterized in a different way (using a variable number of 
basis functions with locations fit to the data, instead of a fixed grid 
of basis functions; Supplementary Fig. 8 and see Methods), suggest-
ing that the conclusions do not depend on the particular parametric 
assumptions that were made.
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We were interested in the effect of task context on rsc struc-
ture, so it made sense to focus on the dependence of rsc on ori-
entation preference. However, rsc depends on a large number of 
factors irrelevant to the present study, such as physical proxim-
ity between pairs and similarity in tuning along many stimulus 
dimensions apart from orientation3,22. This implies that a model 
that describes the dependency on orientation preference correctly 
will only explain a small fraction of the variance in rsc. (This can be 
appreciated in Fig. 2d,f, where pairs with similar locations on the 
abscissa have substantial variation in rsc.) To estimate this fraction, 
we assessed the accuracy with which we could predict individual 
rsc values from a smoothed matrix built with other pairs. This 
showed that, in principle, 3.6% of the variance is explainable, of 
which the majority was explained by the regression model above. 
We also found that, across cross-validation folds, the fitted model 
components were highly consistent (mean correlation of 0.99), 
suggesting that the inferred structure is robust to noise in the data 
despite the low absolute value of variance explained. Additionally, 
as we will discuss, the task-dependent pattern of rsc we identified 
is likely to be critically important during performance of the task, 
despite the low fraction of total variance in rsc it explains. However, 
it is important to point out that our data cannot directly speak to 
the origin of rsc structure in V1 except as it varies as a function of 
preferred orientation.

Rsc structure during task performance reflects a single mode of 
variability. In the modeling discussed so far, we aimed to describe 

a fixed and task-dependent component of rsc structure with as few 
assumptions as possible. Having established that the observed rsc 
structure can be best described by assuming it is entirely task-depen-
dent, we next sought to identify a more parsimonious and intuitive 
description of this task-dependency. We started with the observa-
tion that the pattern we observed—increased correlation between 
pairs preferring the same task orientation and decreased correlation 
for pairs preferring opposing task orientations—would be consis-
tent with feature-selective feedback that varied in its allocation from 
trial to trial between the two task-relevant orientations, as has been 
shown in recent theoretical studies29,34. To quantify this observation, 
we performed an eigendecomposition of the smoothed, average rsc 
matrix. We found that it had a single eigenvalue significantly larger 
than would be predicted by chance (Fig. 4a), consistent with the 
correlation structure being determined largely by a single mode. 
Moreover, the first eigenvector contained a peak and a trough at the 
two task orientations, respectively, suggesting a mode of variabil-
ity that increases the firing rate of neurons supporting one choice 
and decreases the firing rate of neurons supporting the other choice 
(Fig. 4b). To model this, we assumed all observed rsc values could 
be predicted by a single eigenvector, which we constrained to be 
the difference of two von Mises functions centered 90° apart with 
variable amplitude and width (Fig. 4c). We found that this simpler 
model in fact performed better than the more complex regression 
model in predicting individual rsc values, capturing about 80% of 
the explainable variance in rsc (Fig. 4e). This suggests that the rsc 
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in that the response functions (f1 and f2) are approximately linear over the 
range of signal strengths used. For this reason, we calculated the response 
correlation introduced by tuning similarity as the normalized product of the 
derivatives f1ʹ f2ʹ 16. b, The matrix of fʹ fʹ  values, as a function of task-aligned 
pairwise orientation preference, was obtained using kernel smoothing, as 
in Fig. 2. We observed a pattern that was very similar to the structure of 
rsc we observed during task performance (Fig. 2e). c, Scatter plot of the 
task-dependent (putatively top-down) component of rsc (Fig. 3c) against 
normalized fʹ fʹ  values for each recorded neuronal pair. The two were highly 
correlated across the population (Pearson’s r =  0.61, ***P <  0.001, bootstrap 
test, one-sided).
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structure we observed in V1 could indeed be well described as the 
result of a single source of covariability that changed dynamically 
with the task.

We compared the single-eigenvector model with another simple 
model that more closely reflected standard assumptions about rsc 
structure in sensory brain areas. This model predicted that rsc would 
depend only on the difference in preferred orientation between 
pairs of neurons regardless of task5,9,10 (limited-range correlations 
yielding an rsc matrix with a diagonal ridge) and would be consistent 
with rsc structure due to common afferent inputs. We modeled this 
dependence as a von Mises function of preferred orientation dif-
ference (Fig. 4d). This model performed much worse in predicting 
the observed set of rsc values, failing to exceed chance performance  
(Fig. 4e). (This qualitative difference in model performance was 
replicated in both subjects individually; see Supplementary Fig. 2.) 
Notably, both of these simple models predict a dependence of rsc on 
preferred orientation difference, similarly to what we found in the 
data (Fig. 2d) and to has been observed previously8,20–23; however,  

in the case of the single-eigenvector model, this is due to task-
dependent changes in rsc, while for the diagonal-ridge model there 
is no effect of task context. Notably, we found that during the pas-
sive fixation blocks, the diagonal-ridge model performed better 
(Supplementary Fig. 3c), quantitatively supporting the observation 
that the task-dependent correlations we observed require active 
task engagement.

Effect of task-dependent rsc structure on neural coding. We next 
sought to address the functional importance of the rsc we observed 
on sensory coding. Many studies have shown that rsc in sensory neu-
rons can decrease the sensory information that can be decoded, par-
ticularly when rsc resembles correlations due to task-related stimulus 
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relationship between spike-count correlations, readout weights and CPs, 
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neurons17 (see Methods). Here CP is defined as a continuous function of 
task-aligned preferred orientation, analogous to our description of the  
rsc matrix in Fig. 2e. The dashed black line shows the profile of CP observed 
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changes5,8–15. We estimated this task-related stimulus correlation 
as the product of the slopes of a pair’s mean response functions 
along the task axis (i.e., as a function of orientation signal strength;  
Fig. 5a)16, normalized by the product of the neuronal variances. 
When we plotted these values as a smooth, task-aligned matrix  
(Fig. 5b), we observed a lattice-like pattern strikingly similar to that in 
the observed rsc matrix (Fig. 2e). Confirming this similarity, the task-
dependent component of rsc structure identified by the regression  
model was strongly correlated on a pair-by-pair basis with the 
stimulus-induced correlations (r =  0.61; Fig. 5c). This matches 
our earlier observation that rsc structure was consistent with feed-
back that alternatingly targeted the task-relevant neuronal pools, 
which is similar to the effect of varying the stimulus along the axis  
defining the task.

Thus, the observed rsc structure appears not to improve, but 
rather to degrade, the sensory representation. However, our results 
highlight a problem with this interpretation and any purely feedfor-
ward account of the functional role of rsc. Namely, rsc that is gener-
ated endogenously need not be problematic at all (for example, if 
the decoder had access to those endogenous signals). Indeed, the 
propagation of feedback signals that are matched to the statistics 
of the relevant sensory stimuli may be an adaptive strategy for 
bringing prior knowledge to bear, as predicted by recent models 
of probabilistic perceptual inference28,29. Rsc resembling stimulus-
induced correlations emerges in such models28 as a consequence of 
the subject developing the appropriate priors about the task, yield-
ing predictions that both match our empirical findings and offer a 
normative explanation.

Relationship between rsc structure and perceptual choice. 
Correlations between trial-to-trial variability of single neurons and 
choice35,36 have been frequently observed throughout sensory cor-
tex. Theoretical studies have emphasized that this suggests the pres-
ence of spike-count correlation with a particular structure17–19,36,37. 
After all, if many sensory neurons have variability that is correlated 
with choice, this implies that neurons supporting the same choice 
are themselves correlated. However, this could be compatible with 
either or both of two causal mechanisms: (i) correlated fluctuations 
directly affect the choices a subject makes trial to trial (a feedfor-
ward source of choice-related activity); or (ii) the correlated fluc-
tuations reflect variation across trials in a feedback signal related to 
the upcoming choice (a feedback source). As we show, our detailed 
measures of rsc structure during task performance can address this 
ongoing debate.

First, we reasoned that a signature of feedback related to the 
upcoming choice would be an rsc structure in V1 whose magnitude 
depends systematically on variability in choice. Consistent with 
this prediction, we found that the amplitude of the rsc structure 
was attenuated on high-signal trials relative to 0% signal trials, in 
a manner that depended systematically on signal strength (Fig. 6a, 
b). However, this attenuation was modest, even at the highest signal 
level we analyzed (11% reduction), despite the highly uneven dis-
tribution of choices. This rules out the extreme scenario in which 
feedback perfectly reflects choice. Supporting this conclusion, we 
found that the rsc structure, when calculated using only spikes from 
different 200-ms windows during the trial, showed a stable time-
course (after a precipitous drop at the first timepoint) and did not 
grow in amplitude with decision formation (Fig. 7). Taken together, 
these observations support the conclusion that rsc structure reflects 
variation in feedback signals only partially correlated with the sub-
ject’s final choices. These could include a combination of bias, atten-
tion to orientation, prior beliefs and/or a decision variable.

Next, we assumed standard feedforward pooling (i.e., linear 
readout weights applied to the sensory pool) to determine whether 
the observed rsc structure would be quantitatively consistent with 
the observed choice-related activity. To do this, we made use of 

recent theoretical work that analytically relates rsc structure, readout 
weights and choice-related activity17. We calculated CP, which quan-
tifies the probability with which an ideal observer could correctly 
predict the subject’s choices using just that neuron’s responses35,36, 
for each recorded neuron. We found an average CP of 0.54 for task-
relevant neurons, significantly above chance level (Fig. 8a) and 
similar in magnitude to that found by another study using the same 
task31. We found that the rsc structure we observed would be suf-
ficient to produce a pattern of CP across the population consistent 
with the data (Fig. 8b,c), across a wide range of possible readout 
schemes (Supplementary Fig. 9). Next, we considered the contri-
bution of the different inferred sources of rsc to CP. (For top-down 
sources of correlation, this is equivalent to assuming that the sensory 
population is read out without taking into account the top-down  
signal.) This allows us to treat all sources of rsc equivalently and 
compare them quantitatively. When we considered a population 
containing only the task-dependent component of rsc structure 
identified in the regression model (Fig. 3c), predicted CP was only 
slightly reduced. Assuming only the fixed component (Fig. 3d), 
however, drastically reduced predicted CP below what we observed 
(Fig. 8b, c). Thus, our data rule out the view that a substantial com-
ponent of CP merely reflects the feedforward effect of stochastic 
noise in the afferent sensory pathway. Instead, the main source of 
CP appears to depend on task-dependent changes in rsc structure 
related to perceptual judgments.

Discussion
Spike-count correlations between sensory neurons have typically 
been described as reflecting noise that corrupts sensory encod-
ing5,8–15. However, little is known about the origin of rsc, and it 
may instead be due to changes over time in feedback signals. We 
addressed this by recording from populations of V1 neurons using 
multielectrode arrays while macaque subjects performed a set of 
orientation discrimination tasks. This approach allowed us to esti-
mate the entire matrix describing the dependence of rsc on pairwise 
orientation preference (Fig. 2), providing an unprecedentedly clear 
picture of rsc structure in a behaving animal. By determining to 
what extent the rsc matrix was fixed and to what extent it changed 
with task, we inferred the relative importance of feedforward and 
feedback pathways in generating it (Fig. 3). We found systematic 
and novel structure in the rsc matrix that changed in a predictable 
manner with the task. Using multiple modeling approaches, we 
found that the fixed rsc structure was much smaller than the task-
dependent structure, so much so that we could not estimate a fixed 
component reliably. Notably, a single source of task-dependent 
feedback captured the pattern we observed (Fig. 4). This feedback 
input increased and decreased the firing rate of neurons tuned for 
the two task-relevant orientations in a push–pull manner.

Our results suggest the possibility that variability in feedback is a 
major source of rsc structure in sensory cortex. The role of feedback 
may be even more pronounced in areas downstream of V1 that typi-
cally show a greater degree of extrasensory modulation31,38–40. At the 
same time, we cannot rule out a larger role of feedforward inputs 
in generating patterns of rsc defined in different ways than those 
uncovered here. For example, because our measures of rsc structure 
involved smoothing, we cannot rule out the possibility that the fine-
grained structure of rsc behaves in ways not captured by our analysis.

Our results are consistent with, and expand upon, those of a 
prior study that also measured task-dependent changes in rsc

27. In 
that study, single pairs of direction-selective neurons from area MT 
were recorded while subjects performed two direction-discrimina-
tion tasks chosen by the experimenters to probe the effect of task 
context: one in which the neurons contributed to the same choice 
(‘same-pool’ condition) and one in which they contributed to oppo-
site choices (‘opposite-pool’ condition). This amounts to a selective 
subsampling of the rsc structure. While this identified some degree 
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of task-dependence, the implications remained unclear. By contrast, 
the present study involved recordings from large, simultaneously 
recorded populations, which achieved much better coverage of the 
full rsc structure. This revealed the detailed structure of the task-
dependence and provided the basis for quantitative modeling and 
previously unpublished conclusions. For the purposes of compari-
son, we plotted our data in an analogous way to the prior study and 
found qualitatively similar results (Supplementary Fig. 10).

Consistent with several past studies30,41,42, we found evidence for 
choice-related feedback, as shown by the finding that correlated 
fluctuations in V1 are more pronounced on trials where the subject’s 
choices were more variable (Fig. 6). However, this effect was rela-
tively weak, and we observed that task-dependent rsc structure did 
not grow in amplitude with decision formation (Fig. 7), suggesting 
that processes indirectly related to choice may be responsible for the 
feedback generating the correlations. More importantly, we found 
that the standard assumption—that correlated fluctuations influ-
ence choice through feedforward pathways17–19,36,37—predicted CP 
values in the V1 population that matched the data (Fig. 8), the first 
empirical test of the theoretical relationship between rsc in sensory 
neurons, CP and readout17. However, the rsc structure responsible 
changed with the task, demonstrating that it does not simply reflect 
afferent noise. Taken together, our results instead favor the notion 
that choice-related activity comes about through self-reinforcing 
loops of reciprocal connectivity between cortical areas, as has also 
been suggested by other studies29,42,43.

The task-dependent modulation of rsc we observed did not appear 
to be beneficial to task performance (Fig. 5), at least not in the man-
ner this has typically been examined (i.e., feedforward decoding of 
the sensory population alone). Instead, the inferred feedback signals 
appeared to mimic task-relevant stimulus changes, confounding the 
choices of an observer using only the sensory population. However, 
because the correlations reflect downstream computations, they 
need not be limiting in this way to the subject. Thus our results 
highlight the fundamental insufficiency of considering the theoreti-
cal implications of rsc in terms of purely feedforward frameworks, as 
almost all such studies have done to date.

The inferred source of task-dependent feedback resembles pre-
vious reports about the effects of feature-based attention on visual 
cortical neurons34,44. Feature-based attention enhances the firing rate 
of neurons tuned for the attended stimulus feature and decreases the 
firing rate of neurons tuned for unattended stimulus features. One 
possibility is that our task engages feature-based attention, which 
varies over time in its allocation between the two task-relevant ori-
entations. This does not appear to provide an adaptive increase in 
the amount of relevant stimulus information encoded, contrary 
to traditional descriptions of attention45,46. However, as discussed 
above, once a top-down contribution to correlations is recognized, 
it is not possible to infer the amount of sensory information avail-
able to a decoder from the activity of a population of sensory neu-
rons alone.

Our findings thus emphasize the need for new normative models 
that predict context-dependent feedback during perceptual process-
ing. Currently, models based on hierarchical probabilistic infer-
ence28,29,47 do predict such feedback signals and account for many 
of our experimental findings. This work builds on the longstanding 
idea that the goal of a perceptual system is to generate valid infer-
ences about the structure of the outside world, rather than to faith-
fully represent sensory input48,49. This requires combining sensory 
input with prior beliefs, both of which can introduce correlated vari-
ability. During perceptual decision making, correlations resembling 
those induced by the stimulus naturally emerge as a consequence of 
the subject acquiring the appropriate prior beliefs about the struc-
ture of the sensory environment28. Clearly, further development of 
this and other models of perceptual processing are needed to gener-
ate quantitative predictions that can be further tested empirically.

Methods
Methods, including statements of data availability and any asso-
ciated accession codes and references, are available at https://doi.
org/10.1038/s41593-018-0089-1.
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Methods
Electrophysiology. We recorded extracellular spiking activity from populations 
of V1 neurons in two male, awake, head-fixed rhesus monkeys (Macaca mulatta), 
LEM and JBE. For the majority of the recordings, LEM was 14 while JBE was 
16 years old, before which time they had each experienced extensive behavioral 
training, including on other behavioral experiments for LEM. LEM could not 
be pair-housed due to antisocial behavior. Both monkeys were implanted with a 
head post and scleral search coils under general anaesthesia51. In LEM, a recording 
chamber was implanted over a craniotomy above the right occipital operculum, 
as described previously52, by which we introduced linear microelectrode arrays 
(U- and V-probes, Plexon; 24 contacts, 50- or 60-µ m spacing) at an angle 
approximately perpendicular to the cortical surface with a custom microdrive. 
We positioned the linear arrays so that we roughly spanned the cortical sheet, as 
confirmed with current-source density analysis, and removed them after each 
recording session. In JBE, a planar Utah array (Blackrock Microsystems; 96 
electrodes, 1 mm in length inserted to target supragranular layers, 400-µ m spacing) 
was chronically implanted, also over the right occipital operculum. All procedures 
were performed in accordance with the US Public Health Service Policy on the 
humane care and use of laboratory animals, and all protocols were approved by the 
National Eye Institute Animal Care and Use Committee.

Broadband signals were digitized at 30 or 40 kHz and stored to disk.  
Spike sorting was performed offline using custom software in Matlab. First, 
spikes were detected using a voltage threshold applied to highpass-filtered 
signals. Next, triggered waveforms were projected into spaces defined by either 
principal components or similarity to a template. Clusters boundaries were 
finally estimated with a Gaussian mixture model, and then rigorously verified 
and adjusted by hand when needed. In the linear array recordings, spike sorting 
yield and quality was substantially improved by treating sets of three or four 
neighboring contacts as ‘n-trodes’. As this was not possible with the Utah array 
due to the greater interelectrode spacing, we excluded pairs of neurons recorded 
on the same electrode to avoid contamination by misclassification. Neurons  
from separate recording sessions were treated as independent. To reduce the 
possibility that a single neuron from the Utah array contributed to two datasets, 
we included only sessions that were separated by at least 48 h (with a median 
separation of 5 d). We excluded from analysis those neurons whose mean evoked 
firing rate across the set of stimuli presented in the discrimination task did not 
exceed 7 spikes/s.

Visual stimuli. All stimuli were presented binocularly on two gamma-corrected 
cathode ray tube (CRT) monitors viewed through a mirror haploscope, at 85 
or 100 Hz. The monitors subtended 24.1° ×  19.3° of visual angle (1,280 ×  1,024 
pixels). The stimuli presented during performance of the discrimination task 
consisted of bandpass-filtered dynamic white noise, as described previously31. 
Briefly, stimuli were filtered in the Fourier domain with a polar-separable Gaussian. 
The peak spatial frequency was optimized for the recorded neuronal population 
(1 and 4 cpd medians for LEM and JBE, respectively), while the peak orientation 
could take one of two orthogonal values the animal had to discriminate in a given 
session. The angular s.d. of the filter modulated the orientation bandwidth and 
was varied from trial to trial. A 2D Gaussian contrast envelope was applied to the 
stimulus so that its spatial extent was as small as possible while still covering the 
minimum response fields of the neuronal populations being recorded. The median 
envelope s.d. was 0.6° for both animals. The median stimulus eccentricity was 5.4° 
for LEM and 0.5° for JBE. In Fig. 1, we quantify orientation bandwidth as percent 
of signal strength. This was calculated as 100 ×  R, where R is the length of the 
resultant vector associated with the angular component of the stimulus filter. To 
perform psychophysical reverse correlation (PRC) for orientation (Supplementary 
Fig. 1), we summarized the orientation energy of the stimulus on each trial as 
the radial sum of its 2D amplitude spectrum (averaged across frames) to remove 
information about spatial frequency and phase.

We estimated neuronal orientation preferences in separate blocks of trials, 
using 420-ms presentations of the following types of stimuli, presented at a range  
of orientations: (i) an orientation narrowband version of the stimulus described 
above (10° angular s.d.); (ii) sinusoidal gratings; and (iii) circular patches of 
dynamic 1D noise patterns (random lines). The preferred orientation of a neuron 
was calculated as the circular mean of its orientation tuning curve. For each 
neuron, from among the set of tuning curves elicited by the different stimulus 
types described above, we chose as the final estimate of preferred orientation the 
one with the smallest standard error, obtained by resampling trials. We excluded 
from further analysis all neurons where this exceeded 5°. On a subset of sessions, 
we also used these orientation-tuning blocks to present examples of the 0% signal 
orientation-filtered noise stimuli. These were presented at the same location and 
size as during task performance, allowing us to calculate rsc structure in the absence 
of task engagement but with identical retinal input.

Orthogonal orientation discrimination task. The animals performed a coarse 
orientation-discrimination task using the orientation-filtered noise stimuli, as 
described previously31. To initiate a trial, the subject had to acquire a central 
fixation square. After a delay of 50 ms, the stimulus appeared for a fixed duration 
of 2 s. The trial was aborted if the subject broke fixation at any point during the 

stimulus presentation, defined as either (i) making a microsaccade covering a 
distance greater than a predefined threshold (typically 0.5°) or (ii) a deviation in 
mean eye position from the center of the fixation point of more than a predefined 
threshold, typically 0.7°. At the end of the stimulus presentation, two choice targets 
appeared. These were Gabor patches of 2–3° in spatial extent, oriented at each 
of the two task orientations. The locations of the choice targets depended on the 
task. For orientation pairs near horizontal and vertical (–22.5° to + 22.5° and 67.5° 
to 112.5°), the choice targets were positioned along the vertical meridian, at an 
eccentricity of about 3°, with the more vertically oriented target always appearing 
in the upper hemifield. For orientation pairs near the obliques (22.5°–67.5° and 
112.5°–157.5°), the choice targets were positioned along the horizontal meridian, 
at the same range of eccentricities, with the smaller of the two orientations always 
appearing in the left hemifield. (We use the convention that horizontal is 0° and 
that orientation increases with clockwise rotation.) To penalize random guessing, 
the volume of liquid reward delivered after correct choices was doubled with each 
consecutive correct choice, up to a maximum of four times the initial amount. 
Since we were primarily interested in the effect of task engagement on neuronal 
activity, we applied a behavioral criterion to our data, excluding sessions where the 
subject’s psychophysical threshold (defined as the signal level eliciting 75% correct 
performance) exceeded 14% signal.

To determine the influence on rsc of random fluctuations in the stimulus 
introduced by the use of white noise, we used a double-pass experimental design53, 
in which each exact stimulus sequence was presented on two separate trials. 
We calculated the stimulus-induced rsc for each pair, as described below, after 
permuting the indices of the paired-repeat trials for one neuron’s trial sequence. 
This eliminated the temporal alignment of the two trial sequences, abolishing 
stimulus-independent covariability, while preserving the identity between the 
stimuli associated with the two trial sequences.

We attempted to use as wide a range of task contexts as possible over the course 
of data collection from both animals, but task contexts were not presented in a 
randomized way to the subjects, since performing a new task context required 
several days of retraining. Additionally, data collection and analysis was not 
performed blind to the experimental conditions—in particular, experimenters were 
aware of the instructed task context.

Spike-count correlation measurements. Spike-count correlations were calculated 
as the Pearson correlation between spike counts, counted over the entire duration 
of the stimulus, with a 50-ms delay to account for the typical V1 response latency. 
Spike counts were first z-scored separately within each experimental block 
(typically a set of 100–200 trials lasting about 10 min) and each stimulus condition. 
This removed correlations related to long-term firing rate nonstationarities 
and allowed us to combine trials at different signal levels without introducing 
correlations related to similarity in stimulus preference. We used a balanced z-
scoring method proposed recently to prevent bias related to differences in choice 
distributions across signal levels54. We excluded pairs that were not simultaneously 
isolated for at least 25 trials total. The median number of trials per pair during task 
performance was 752.

Despite the use of z-scoring, any influence of stimulus history on firing  
rates could, in principle, introduce a source of covariability that depended  
on the task context, since the set of stimuli used was not identical across  
task contexts (only the 0% signal condition was identical). We ruled out this 
confound by adapting the z-scoring procedure described above to further remove 
any information about the preceding stimulus contained in the spike rate on the 
current trial. To do this, we z-scored spike counts separately within groups of 
trials for which the current stimulus and the stimulus on the preceding trial were 
the same. This produced identical results to those shown in the main analysis 
(Supplementary Fig. 5).

A main goal of the study was to measure how spike-count correlation varies 
with pairwise orientation. We illustrate this dependence in several figures as a 
smoothed function estimated from measures of rsc combined across multiple 
recording sessions, which we then sampled discretely with 1° resolution. The 
smoothed estimates were obtained using a bivariate von Mises smoothing kernel.  
A point in the correlation matrix C was given as:
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zi is the ith rsc measurement, θi and ϕi are the preferred orientations of the 
ith pair, and κ is the von Mises width parameter. We set κ =  1.3π , yielding a 
smoothing kernel closely approximating a bivariate wrapped Gaussian with 
15° s.d. (Note that this smoothing procedure was only performed to generate 
figures in the manuscript and was not applied as a preprocessing step in any 
of the quantitative analyses.) In some cases, we expressed the rsc matrix in a 
task-aligned coordinate frame (for example, Fig. 2e), for which the preferred 
orientations of the ith pair relative to the task orientations were used for θi and 
ϕi. Since there were always two orthogonal task orientations, we averaged across 
both possible alignments, such that C(x,y) =  C(x +  90°, y +  90°). All angular 
quantities were doubled for the calculations, as orientation has a period of 180°. 
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To generate the kernel-smoothed profile of CP (Fig. 8), we used a  
one-dimensional equivalent of the procedure above, in which preferred 
orientations were parameterized only by a single parameter.

We considered using covariance instead of correlation to measure the 
covariability of neuronal pairs. However, a key advantage of correlation is that it is 
insensitive to the variance of the spike counts. By contrast, measures that do not 
normalize for spike-count variance will give larger weights to more variable pairs 
in any population analysis. In addition, using spike-count correlation allowed 
us to combine z-scored counts across stimulus conditions. This substantially 
increased the signal-to-noise ratio of our measurements. As a confirmation that 
this approach yielded results that generalize, we measured the average, task-aligned 
spike-count covariance matrix, using the same approach as we used to generate the 
rsc matrix in Fig. 2e. To estimate the spike-count covariance between a given pair of 
neurons without including an effect of common stimulus drive, we used an average 
of the covariance values measured separately for each stimulus condition, weighted 
by number of trials. We found that the pattern in the spike-count covariance 
matrix was closely similar to the rsc matrix (Supplementary Fig. 11). This confirms 
that our main results are not dependent on the use of rsc measured with normalized 
spike counts.

Regression model. We used a multilinear regression model to identify fixed 
and task-dependent components of the structured correlations we observed. 
We describe the set of observations (811 individual pairwise rsc measurements) 
in terms of a set of two underlying correlation structures: one defining rsc as a 
function of pairwise preferred orientation alone (‘fixed’) and the other defining 
rsc as a function of pairwise preferred orientation relative to the task orientations 
(‘task-dependent’). To provide a continuous and smooth description of the data, 
each component was parameterized as the sum of an array of n × n evenly spaced 
basis functions. Each observation, yi, was expressed as:

β β ε= ⋅ + ⋅ + +y x x c (2)i i i i
fixed fixed task task

xi
fixed and xi

task  are length-n2 vectors of loadings onto the basis functions, which 
were given by evaluating the basis functions at the location corresponding to the 
pairwise orientation preference of the ith pair. β fixed and βtask  are the length-n2 
vectors of amplitudes of the basis functions (coefficients to be fit), c is a model 
constant, and ∙  is the element-wise product. For the basis functions, we used 
bivariate von Mises functions, with no correlation and equal width in both 
dimensions. Thus the kth loading (x k( )i

fixed or x k( )i
task ) was given by:

= +κ θ μ ϕ μ κ ϕ μ θ μ− + − − + −
x k e e

z
( ) (3)

i

cos cos cos cos( ( ) ( )) ( ( ) ( ))i k i k i k i k
1 2 1 2

where θi and ϕi are the preferred orientations of the ith pair (relative to the task 
orientations in the case of the task-dependent loadings), µk is a pair of orientations 
defining the location of the kth basis function, z is a normalization constant such 
that the sum of all loadings for observation i ( +x xi i

fixed task) is 1, and κ is the basis 
function width. Two terms are needed to express the loadings because the data are 
correlations: the first term describes the upper triangular portion and the second 
describes the lower triangular portion. Again, angular quantities were doubled. κ 
acts as a smoothing hyperparameter. We found that arrays of 8 ×  8 were sufficient 
to describe the structure of the two components. It was sufficient to fit only the 
upper triangular portion of the array of basis functions. Thus, each component 
was described by 36 parameters (although the effective number of parameters 
is substantially lower because of the basis function smoothness and the ridge 
penalty). We fit the model using ridge regression. The unique optimal solution 
could therefore be derived analytically as α= +

−
B X X I X Y( )T T1

, where X is the 
concatenated design matrix combining xi

fixed and xi
task  and κ is the ridge parameter, 

which penalizes the squared amplitude of the basis functions. The optimal values of 
the hyperparameters α and κ were chosen under 50-fold cross-validation.

To ensure that our results were not due to the particular way the above model 
was constructed, we compared them to those obtained using a conceptually similar 
regression model. In this alternative model, instead of a grid of basis functions with 
fixed locations, we described each component as the sum of a variable number of 
von Mises basis functions with locations (as well as width and amplitude) fit to 
the data, again using least-squares. This alternative model allowed, in principle, 
for using fewer parameters and for capturing fine details in the rsc structure by 
allowing some basis functions to have small widths. The relative contribution of 
the fixed and task-dependent components of rsc structure could be tested in terms 
of the number of basis functions needed to best explain the data. In this case, the 
kth loading (x k( )i

fixed or x k( )i
task ) was given by:

= +κ θ μ ϕ μ κ ϕ μ θ μ− + − − + −x k e e( ) (4)
i

cos cos cos cos( ( ) ( )) ( ( ) ( ))k i k i k k i k i k
1 2 1 2

where θi and ϕi are the preferred orientations of the ith pair (relative to the task 
orientations in the case of the task-dependent loadings), μk is a pair of orientations 
defining the location of the kth basis function (fit to the data), and κk is the width 
of the kth basis function (fit to the data). Because each basis function has an 

independent width and location fit to the data, the model predictions are nonlinear 
functions of the parameters, unlike in the previously described regression model. 
Furthermore, the fitting surface has many local minima because the basis functions 
can simply be permuted to produce an identical model. Therefore, the optimal 
parameters were identified using numerical optimization with an array of starting 
points to identify a globally optimal solution. Since each basis function required 
four parameters (amplitude, width and location in two dimensions), the total 
number of parameters was 4 ×  m +  1, where m is the sum of the number of allowed 
fixed and task-dependent basis functions and we add an additional parameter for 
the model constant.

Simple parametric models. We modeled the observed set of rsc values using 
two simple parametric models: a single-eigenvector model and a diagonal-ridge 
model. In the single-eigenvector model, each observation yi was modeled as the 
outer product of an eigenvector X, evaluated at the relevant pair of orientations. 
The eigenvector was parameterized as the difference of two von Mises functions 
separated by 90°:

μ α α= −κ μ κ μ π+ + +X e e( ) (5)cos b cos b
1

( )
2

( )1 2

where μ is the difference in preferred orientation and the task orientation (in angle-
doubled radians), α is the amplitude to be fit, κ is the width to be fit, and b is the 
offset of the eigenvector peak and trough from the task orientations (allowing a 
mismatch between the model eigenvector and the task, as well as being fit to the 
data). An observed rsc value yi was described as:

θ ϕ ε= + +y X X c( ) ( ) (6)i i i i

where θi and ϕi are the task-aligned preferred orientation of the pair and c is a 
model constant. The model contained six total free parameters, which were fit 
using gradient descent to minimize the squared error in the rsc predictions.

In the diagonal-ridge model, rsc values were modeled as a decaying function of 
the difference in preferred orientation, independent of task. The dependence was 
modeled as a von Mises function. A given rsc value yi was modeled as:

α ε= ⋅ + +κ θ ϕ−y e c (7)i
cos

i
( )i i

where θi and ϕi are the preferred orientation of the pair, c is a model constant, and 
α and κ parameterize the von Mises function. The model contained three total free 
parameters, which were fit using gradient descent to minimize the squared error in 
the rsc predictions.

Estimating explainable variance. While the above models did not explain more 
than a small percentage of the variance of the raw observed rsc values, this is 
not surprising as the raw correlation data do not vary smoothly with preferred 
orientation (reflecting both noise and the fact that rsc is known to depend on 
parameters other than orientation3,22,23). For this reason, we measured goodness-of-
fit relative to an estimate of the explainable variance, which we took as the variance 
explained simply by a smoothed version of the raw data (sum of values in fixed 
and task-aligned matrices was 3.6%). Smoothing was performed with a von Mises 
kernel, with width chosen to maximize variance explained.

Eye movements. Both animals tended to make anticipatory microsaccades near the 
end of the trial that predict their upcoming choice, consistent with a prior study31. 
This raised the possibility that choice-related eye movements gave rise to task-
dependent changes in retinal input that explained the correlated fluctuations we 
observed. To rule this out, we measured the task-aligned rsc matrix using a subset of 
trials on each session for which fixational eye position was not predictive of choice. 
To identify these trials, we used linear discriminant analysis (LDA) to predict the 
subject’s choices using the timeseries of mean binocular eye-position recorded on 
each trial. Then, we iteratively removed trials, starting with those furthest from 
the classification boundary, until classification performance no longer exceeded 
chance. This analysis (Supplementary Fig. 7) was restricted to the first 1.5 s of the 
trial, because we found that considering later timepoints (where most anticipatory 
microsaccades occurred) required discarding too many trials.

Choice probability predictions. Choice probability was calculated in the standard 
way35. We only used 0% signal trials, as the uneven choice distributions elicited 
by signal trials yield noisier CP measurements. Assuming feedforward pooling 
with linear readout weights, the relationship between the covariance matrix 
for a population of neurons, the readout weight of each neuron and the choice 
probability (CP) of each neuron is:

π
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β β
= + − =− −
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where CPk is the CP of neuron k with respect to choice 1, β is the vector of readout 
weights and C is the covariance matrix17. We used this known relationship to 
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quantify the CPs that would be associated with the rsc structure we observed 
and the fixed and task-dependent components we identified, assuming only a 
feedforward source of CP (Fig. 8). CPs, rsc structure and readout weights were 
described as task-aligned functions of preferred orientation. This is equivalent to 
assuming a population of infinite size that is homogeneous at a given orientation. 
For the fixed component of rsc, which was indexed relative to raw orientation 
preferences, we generated a task-aligned version by substituting the observed 
rsc values with model fits (using only a fixed component of the model) and then 
generating a smoothed task-aligned matrix, as in Fig. 2e, using these substituted 
values. To guarantee real-valued CPs on [0,1], we performed the calculations using 
a symmetric positive definite approximation55 of the rsc matrices, which introduced 
negligible error.

Since the readout weights were unknown, we generated a random distribution 
of 1,000 plausible readout weight profiles that could support task performance. 
To generate a sample from this distribution, we started with a vector of random 
weights (drawn from a normal distribution) and applied the 90° symmetry 
inherent in the task, such that β β= −θ θ+90, where βθ is the weight assigned to 
neurons with task-aligned preferred orientation θ. Then, we smoothed with a 
wrapped Gaussian kernel with 15° s.d. and excluded profiles that did not have 
a circular mean within 22.5° of choice 1 (0°). In practice, we found the CP 
predictions to be insensitive to the readout weights (Supplementary Fig. 9), which 
is not surprising for a nearly rank-1 matrix (since for exactly rank-1 matrices, the 
CPs are independent of the weights)17.

We can use correlations interchangeably with covariances in equation (8), 
under the simplifying assumption that the variance is uniform as a function of 
preferred orientation. If Σ is the correlation matrix for a population with uniform 
variance α, then it follows that:

Σ

Σ

Σ
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α β
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where Σ ≡ 1kk  for all k. We felt that spike-count variance that depended 
systematically on preferred orientation was unlikely to be a feature of the V1 
representation and thus that the advantages of using correlations outweighed the 
cost.

Noise in the decision process after pooling (pooling noise) has the effect 
of uniformly scaling down CPs, such that ξk in equation (8) is substituted with 

β

β β σ+C

C

C

( )

( )
k
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T

pool
2 , where σpool

2  is the variance of the pooling noise6. We found that 
nonzero pooling noise was needed to avoid overestimating the magnitude of 
CP from the observed correlation structure. We used a fixed value of pooling 
noise in our predictions, such that the average squared difference between the 
CP profile predicted from the observed correlation matrix and the observed 
CP profile was minimized. Empirically, we found that a pooling noise variance 
of 0.6 was optimal. Since our spike counts were normalized to have unit 

variance, this implies a pooling noise whose variance is 60% of the average 
spike-count variance of single neurons. This should be interpreted with care, 
as overestimation of CPs may also be an artifact related to the assumption of a 
homogeneous population17. Alternatively, the need to invoke pooling noise may 
be due to nonuniform sensory integration across the trial, which is distinct but 
which would also have an attenuating effect on CP when measured over the 
entire trial.

Statistics. Statistical tests were performed nonparametrically using bootstrapping 
or other resampling methods, as described, with 1,000 resamples. Nonparametric 
statistical testing is superior when the underlying distribution of the data 
cannot be assumed. When P values <  0.001 are reported, this indicates the null 
hypothesis can be ruled out with the most confidence possible given the number 
of resamples performed. In most cases, resampling was performed from the set 
of recorded neuronal pairs (n =  811), and always with replacement. In all figures, 
one asterisk indicates significance at the P <  0.05 level, two indicates P <  0.01 and 
three indicates P <  0.001. When standard error bars are shown, this makes the 
assumption of normality in the bootstrap distribution of the test statistic. However, 
this assumption was not formally tested. No statistical methods were used to 
predetermine sample sizes, but our sample sizes are similar to those of previous 
publications22,23,27.

Life Sciences Reporting Summary. Further information on experimental design is 
available in the Life Sciences Reporting Summary.

Code availability. All computer code used to generate the results is available upon 
request from the authors.

Data availability. All relevant data are available upon reasonable request from the 
authors.
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    Experimental design
1.   Sample size

Describe how sample size was determined. Sample size was 811 pairs of single neurons from two rhesus monkey subjects. Two rhesus 
monkeys is typical for comparable studies and the number of neuronal pairs far exceeds 
similar prior studies in awake monkeys. No statistical analysis was performed to 
predetermine sample size.

2.   Data exclusions

Describe any data exclusions. To reduce the possibility that a single neuron from the Utah array contributed to two 
datasets, we included only sessions that were separated by at least 48 hours (with a median 
separation of 5 days). We excluded from analysis those neurons whose mean evoked firing 
rate did not exceed 7 spikes/second or which were poorly orientation tuned (prefered 
orientation could not be estimated to within a standard error of 5 degrees).   We finally 
excluded some sessions where behavioral was poor. These exclusion criteria are described in 
greater detail in Online Methods.

3.   Replication

Describe the measures taken to verify the reproducibility 
of the experimental findings.

The main results were reliably reproduced in both subjects, as described in the manuscript 
and the Supplementary Materials.

4.   Randomization

Describe how samples/organisms/participants were 
allocated into experimental groups.

Because our study was on the task-dependence of neuronal activity, each subject was its own 
control. The control consisted of identical measurements made across task contexts and in 
the absence of any task, as described in detail in the Methods.

5.   Blinding

Describe whether the investigators were blinded to 
group allocation during data collection and/or analysis.

Investigators were not blind.

Note: all in vivo studies must report how sample size was determined and whether blinding and randomization were used.
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6.   Statistical parameters 
For all figures and tables that use statistical methods, confirm that the following items are present in relevant figure legends (or in the 
Methods section if additional space is needed). 

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement (animals, litters, cultures, etc.)

A description of how samples were collected, noting whether measurements were taken from distinct samples or whether the same 
sample was measured repeatedly

A statement indicating how many times each experiment was replicated

The statistical test(s) used and whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of any assumptions or corrections, such as an adjustment for multiple comparisons

Test values indicating whether an effect is present 
Provide confidence intervals or give results of significance tests (e.g. P values) as exact values whenever appropriate and with effect sizes noted.

A clear description of statistics including central tendency (e.g. median, mean) and variation (e.g. standard deviation, interquartile range)

Clearly defined error bars in all relevant figure captions (with explicit mention of central tendency and variation)

See the web collection on statistics for biologists for further resources and guidance.

   Software
Policy information about availability of computer code

7. Software

Describe the software used to analyze the data in this 
study. 

Stimulus generation and behavioral control were performed using custom software written in 
Matlab and C. Neural data acquisition was done using Spike2 (Cambridge Electronics Design) 
and Cerebus (Blackrock). All spike sorting and data analysis was performed using custom 
software written in Matlab. Code is compatible with Matlab version 2014b and above.

For manuscripts utilizing custom algorithms or software that are central to the paper but not yet described in the published literature, software must be made 
available to editors and reviewers upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). Nature Methods guidance for 
providing algorithms and software for publication provides further information on this topic.

   Materials and reagents
Policy information about availability of materials

8.   Materials availability

Indicate whether there are restrictions on availability of 
unique materials or if these materials are only available 
for distribution by a third party.

No unique materials were used.

9.   Antibodies

Describe the antibodies used and how they were validated 
for use in the system under study (i.e. assay and species).

No antibodies were used.

10. Eukaryotic cell lines
a.  State the source of each eukaryotic cell line used. No cell lines were used.

b.  Describe the method of cell line authentication used. Describe the authentication procedures for each cell line used OR declare that none of the cell 
lines used have been authenticated OR state that no eukaryotic cell lines were used.

c.  Report whether the cell lines were tested for 
mycoplasma contamination.

Confirm that all cell lines tested negative for mycoplasma contamination OR describe the 
results of the testing for mycoplasma contamination OR declare that the cell lines were not 
tested for mycoplasma contamination OR state that no eukaryotic cell lines were used.

d.  If any of the cell lines used are listed in the database 
of commonly misidentified cell lines maintained by 
ICLAC, provide a scientific rationale for their use.

Provide a rationale for the use of commonly misidentified cell lines OR state that no commonly 
misidentified cell lines were used.
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    Animals and human research participants
Policy information about studies involving animals; when reporting animal research, follow the ARRIVE guidelines

11. Description of research animals
Provide all relevant details on animals and/or 
animal-derived materials used in the study.

Two male macaque monkeys (Macaca mulatta) were used. One ('jbe') was pair housed, while 
the other ('lem') could not be, due to antisocial behavior. Both animals were housed in the 12 
hour light cycle and given at least weekly access to a play area. Monkey 'jbe' was 16 while 
monkey 'lem' was 14 for the majority of recording sessions. All procedures (described in 
greater detail in Methods) were performed in accordance with the U.S. Public Health Service 
Policy on the humane care and use of laboratory animals and all protocols were approved by 
the National Eye Institute Animal Care and Use Committee.

Policy information about studies involving human research participants

12. Description of human research participants
Describe the covariate-relevant population 
characteristics of the human research participants.

No human subjects were used.
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