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When you perceive or remember something, other related things come to
mind, affecting how these competing items are subsequently perceived and
remembered. Such behavioural consequences are believed to result from
changes in the overlap of neural representations of these items, especially
in the hippocampus. According to multiple theories, hippocampal overlap
should increase (integration) when there is high coactivation between
cortical representations. However, prior studies used indirect proxies for
coactivation by manipulating stimulus similarity or task demands. Here,
we induce coactivation in visual cortex more directly using closed-loop
neurofeedback from real-time functional magnetic resonance imaging
(fMRI). While viewing one object, participants were rewarded for activating
the representation of another object as strongly as possible. Across multiple
real-time fMRI sessions, participants succeeded in using this neurofeedback
to increase coactivation. Compared with a baseline of untrained objects, this
protocol led to memory integration in behaviour and the brain: the trained
objects became harder for participants to discriminate behaviourally in
a categorical perception task and harder to discriminate neurally from
patterns of fMRI activity in their hippocampus as a result of losing unique
features. These findings demonstrate that neurofeedback can be used to
alter and combine memories.

This article is part of the theme issue ‘Neurofeedback: new territories
and neurocognitive mechanisms of endogenous neuromodulation’.

1. Introduction
Unlike a hard drive that stores files in dedicated blocks, the brain partially
re-uses neurons that already store existing memories when forming a new
memory. Because of the resulting overlap, when we later attempt to retrieve
one memory, other related memories can come to mind. The competition
between these coactivated memories can cause interference and behavioural
errors in the moment. At the same time, such coactivation can also induce
learning, with consequences for how the target and competitor memories
are subsequently represented [1–3]. Namely, this learning can increase the
amount of subsequent overlap between the neural populations representing
each memory (integration), or it can reduce overlap (differentiation).

Both integration and differentiation have been reported at the level
of distributed representations captured by functional magnetic resonance
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imaging (fMRI). Integration has been observed in statistical learning tasks in which arbitrarily chosen objects reliably co-occur
in time or space [4–7]. For example, when participants view a continuous sequence of fractal images containing temporal pairs,
in which one image is always followed by another, the paired images come to evoke more similar patterns of fMRI activity in
the hippocampus [4]. Integration has also been observed in tasks involving deliberate associative learning: linking two arbitrary
cues to a common associate increases the similarity of fMRI activity patterns for the two cues in the hippocampus and other
regions [8–11]. Strikingly, closely related studies (in some cases, other conditions within the same study) have observed the
exact opposite result of differentiation [4,11–17]. For example, pairing two cues with the same associate can sometimes lead to
differentiation in the hippocampus [11,15].

Accounting for these discrepant findings poses a major theoretical challenge for the field of memory research. According
to Hebbian plasticity [18–20], coactivation between memories should strengthen synaptic connections to and among the neural
populations these memories share, resulting in integration that scales monotonically with the amount of coactivation. This
diverges from the non-monotonic plasticity hypothesis (NMPH), which posits that representations change as a U-shaped
function of coactivation between memories [3,21]: no coactivation leads to no representational change, moderate coactivation
leads to differentiation, and high coactivation leads to integration. Prior attempts to study these theories have relied on stimulus
similarity [14] or retrieval task instructions [11] to manipulate coactivation. Here, we develop a framework for manipulating
memory coactivation more directly with closed-loop neurofeedback. As a first step, this study focuses on a point of agreement
between Hebbian and NMPH theories of learning—that strong coactivation should lead to memory integration. If successful,
this framework could be used to target moderate levels of coactivation to adjudicate between these theories.

Our approach is grounded in developments from the field of real-time fMRI over the past decade [22]. Real-time fMRI refers
to conducting an fMRI study in which the blood oxygenation level-dependent (BOLD) data are analysed immediately after
collection, such that the resultant estimates of brain activity can be provided as feedback to the participant or used to modify
the task in a closed-loop manner [23,24]. This technique has found increasing success in clinical studies to modulate disordered
brain activity, such as in depression [25,26], and for basic science discovery, to train or test theories of cognitive abilities such as
sustained attention [27], perceptual learning [28], category learning [29] and episodic memory [30].

This study includes five fMRI sessions per participant: a pre-training session, three real-time neurofeedback training sessions
and a post-training session. During the neurofeedback sessions, participants are trained to incept activation of a ‘competitor’
object (e.g. a chair) in visual cortex while another ‘presented’ object (e.g. bed) is being shown on the screen. To the extent that
participants learn to strongly activate the competitor, we hypothesize that the representations of the presented and competitor
objects will integrate. From pre- to post-training sessions, this integration should worsen behavioural discrimination of the
objects in a categorical perception task and worsen neural discrimination when classifying patterns of hippocampal activity
evoked by the objects. In addition to assessing change over time for the trained objects from pre- to post-training, we also
include a baseline condition in these sessions consisting of two other objects (e.g. a table and a bench) that did not undergo
neurofeedback training.

2. Methods
(a) Participants
A total of 20 healthy young adults (mean age = 23.55; age range = 19−28; 14 female) with normal or corrected-to-normal visual
acuity participated in this study. They completed five fMRI sessions lasting 1.5 hours each and were paid $20 per hour. Sessions
were scheduled on separate days but as close together as possible, from a minimum of five days in a row to a total span of eight
days. Two additional pilots and eight additional participants who did not complete all five sessions were excluded from the
analysis.

(b) Data acquisition
Data were acquired using a 3T Siemens Prisma scanner with a 64-channel head coil at the Brain Imaging Center at Yale
University. For recognition and feedback functional runs, an echo-planar imaging (EPI) sequence was used to collect BOLD
data (TR = 2 s; TE = 30 ms; voxel size = 3 mm isotropic; FA = 90°; IPAT GRAPPA acceleration factor = 2; distance factor =
25%), yielding 36 axial slices. Each recognition run contained 145 volumes, and each feedback run contained 176 volumes.
Two field map volumes (TR = 5 s; TE = 80 ms; otherwise matching the EPI scans) were acquired in opposite phase encoding
directions. For anatomical alignment and visualization, we collected a three-dimensional T1-weighted magnetization-prepared
rapid acquisition gradient echo (MPRAGE) scan (TR = 2.5 s; TE = 2.9 ms; voxel size = 1 mm isotropic; FA = 8°; 176 sagittal slices;
IPAT GRAPPA acceleration factor = 2), and a three-dimensional T2-weighted fast spin echo scan with variable flip angle (TR =
3.2 s; TE = 565 ms; voxel size = 1 mm isotropic; 176 sagittal slices; IPAT GRAPPA acceleration factor = 2).

(c) Real-time system
After image reconstruction, the DICOM files were streamed in real-time to Milgram, a high-performance cluster mounted on
the Siemens console. The RT-Cloud software package [31] was used for preprocessing and analysis of each image, with the
results transmitted to the task computer at the scanner over the network. This output was used to update the task on the next
time point.
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(d) Data preprocessing
For real-time analyses, motion correction was applied by aligning each new DICOM file with a template volume acquired
from the middle of the first recognition run in the current session using 3dvolreg [32]. The BOLD activity of every voxel was
normalized by z-scoring over time using the running mean and standard deviation from the prior TRs in the current run; this
ensured that baseline differences in the mean or scaling of BOLD activity across voxels did not confound or bias classifier
training. The data were masked to include only voxels in the region of interest (ROI) used for feedback prior to classifier
training and testing. For offline analyses, the functional data were field map corrected with the topup tool in FSL [33], registered
to the middle volume of the current run with MCFLIRT [34], and z-scored based on the full-time series from that run.

(e) Study design
The study consisted of five sessions (table 1). Session 1 contained eight recognition runs in which the presented, competitor
and control objects were shown repeatedly. These data were used to train classifier models that could distinguish between all
pairs of objects. The trained models were then tested on the feedback runs in sessions 2, 3 and 4 to measure the amount of
evidence for the competitor object during the viewing of the presented object. Participants were encouraged to increase the
activation level of the competitor through adaptive, closed-loop neurofeedback, inducing coactivation between the presented
and competitor objects. Session 5 mirrored the first session with eight recognition runs in order to assess representational
change. We based the use of three neurofeedback sessions (and five total sessions) loosely on other real-time fMRI studies in our
lab [26] and in other labs [35].

This design employs a within-participant control condition rather than a separate sham or yoked control group. Specifically,
one pair of objects served as the target of neurofeedback (trained) and the other pair of objects was a no-neurofeedback baseline
(untrained). The assignment of pairs to conditions was counterbalanced across participants. For 10 of the participants (figure
1a), the bed (presented object) and chair (competitor object) were the trained pair, and the table and bench (control objects) were
the untrained pair. For the remaining 10 participants, the assignments were reversed with table (presented object) and bench
(competitor object) as the trained pair and bed and chair (control objects) as the untrained pair. By comparing behavioural and
neural changes for trained versus untrained pairs, each participant serves as their own control when assessing the effects of
neurofeedback. We based this within-participant control approach on prior neurofeedback studies of learning [28]. Such designs
can be efficient because they avoid between-subject variability (e.g. individual differences, cohort effects) that can complicate
group comparisons.

(f) Recognition runs
During each trial of the recognition runs (figure 1c), participants were presented with one of four rendered furniture objects
(bed, bench, chair, table) in one of several potential viewing angles [36,37]. After 1 s, the object was removed from the
screen, and two furniture labels appeared below, from which participants had to choose which matched the object with an
MRI-compatible button box. This response occurred during a jittered interval between trials of 4, 6 or 8 s. Each recognition run
contained 48 trials, allowing 12 repetitions per object and run. Three repetitions of each object appeared in each quarter of a run
(no back-to-back repetitions) to ensure an even distribution of objects over time.

The data from the recognition runs in session 1 were used to train six binary classifiers, corresponding to all combinations
of the four objects. We used logistic regression classifiers with L2-norm regularization (penalty = 1). Each of the six classifiers
contrasted one pair of objects (e.g. chair versus bench). The training data consisted of patterns of BOLD activity across voxels in
a feedback ROI (described below) extracted 4 s after the onset of the object on each trial to account for the hemodynamic lag,
labelled by the identity of the object. We validated that the amount of training data was sufficient by quantifying the sensitivity
and specificity of the classifiers (electronic supplementary material, figure S1).

(g) Feedback runs
During each trial of the feedback runs (figure 1d), the presented object was shown dynamically on the screen, appearing to
wobble in size and shape [29]. BOLD activity patterns were extracted from the feedback ROI and supplied as input to the
classifiers. To determine the activation level of the competitor object (figure 1b), we averaged the output of the two classifiers
trained to discriminate the competitor object from each of the control objects (i.e. competitor versus control1; competitor versus
control2). Similarly, the activation level of the presented object was determined by averaging the output of the two classifiers
trained to discriminate the presented object from each of the control objects (i.e. presented versus control1; presented versus
control2).

Note that we did not use a classifier trained to discriminate activation of the presented object from activation of the
competitor object because we wanted separate estimates of the evidence for these objects. For example, if both objects were
active (desirable coactivation), the output of this classifier would be at chance, but this result would also be obtained if neither
object is active. Instead, we relied on the control objects as a neutral baseline. An alternative approach for obtaining separate
estimates of presented and competitor activation could have been to use a multi-class classifier trained to discriminate activation
patterns across all four objects. However, the presented object may still dominate the output of this classifier because it was
the only object available perceptually. Indeed, a bias towards the presented object was another reason we did not use a binary
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presented versus competitor classifier for neurofeedback, as we suspected that the evidence would always favour the presented
object. This is problematic because it may have resulted in a ceiling effect, rendering the classifier insensitive to the subtler
fluctuations in competitor activation that were needed for training. We felt that pitting the competitor object against the control
objects would place them on a more equal footing in that none were available perceptually.

Participants received multiple forms of feedback to help motivate them to increase the activation level of the competitor
object and foster its coactivation with the presented object, including visual feedback via wobbling, monetary feedback via an
increase in their bonus compensation, and valenced feedback via an emoji. If participants successfully raised the activation
level of the competitor above an adaptive threshold, the magnitude of wobbling decreased: wobbling began each feedback trial
(consisting of 5 TRs) at level 13 (maximal) and reduced to level 9 after 1 TR above the threshold, level 5 after 2 TRs above the
threshold, and level 1 (minimal) after 3–5 TRs above the threshold. Participants also received a monetary reward and an emoji
after the trial based on the final number of above-threshold TRs: 0 TRs means no money and an unhappy face; 1 TR means no
money and a neutral face; 2–3 TRs means 5 cents bonus and a smiling face; and 4–5 TRs means 10 cents bonus and a laughing

Table Bench

Bed Chair

Recognition trial Feedback trial

(b)

(a)

(c) (d)

Get ready...

Lead-in (no feedback) Neurofeedback

4 s / 2 TR 6 s / 3 TR 10 s / 5 TR 8 s / 4 TR

Inter trial interval Inter trial interval

Get ready...

Emoji feedback

4 s / 2 TR

Presented object Competitor object Control objects

Direction of neurofeedback

Stimulus onset

asynchrony

4/6/8 s jittered

Image 1 s

+10¢

Figure 1. Study design. (a) Each participant received two objects for neurofeedback, and the other two objects served as a baseline. (b) The presented object (e.g.
bed) was shown on neurofeedback trials and began oscillating in size and shape. The goal of the participant was to make this wobbling stop, which they could
achieve by activating the representation of the competitor object (e.g. chair) in their mind. Evidence for the competitor object was quantified based on a classifier
trained to decode the competitor object relative to two control objects (e.g. table, bench). The amount of classifier evidence for the competitor needed to reduce
the magnitude of wobbling was staircased to maximize coactivation between these objects. (c) Recognition trials showed one of the four objects at a time with no
neurofeedback. These trials were used to train the classifier models and to measure neural snapshots of how the object is presented in the hippocampus. (d) Feedback
trials were conducted during real-time fMRI to induce coactivation. The main neurofeedback occurred during the object presentation (the amount of wobbling),
though participants also received feedback at the end of the trial (monetary reward, valenced emoji). The real-time analysis of each test TR occurred during the
acquisition of the next TR by transferring the reconstructed DICOM file instantaneously to a high-performance computing cluster. Because of the hemodynamic lag,
we fixed the wobbling at the maximum level for a lead-in period of the first three TRs and began updating it on the fourth TR based on a running average of all TRs
collected in the current trial up to that point.

Table 1. Multi-session study protocol for each participant.

session 1 (~1.5 h) session 2 (~1.5 h) session 3 (~1.5 h) session 4 (~1.5 h) session 5 (~1.5 h)

task order categorical perception task 2 recognition runs 2 recognition runs 2 recognition runs 8 recognition runs

8 recognition runs 10 feedback runs 10 feedback runs 10 feedback runs categorical perception task

2 recognition runs 2 recognition runs 2 recognition runs
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face. We combined multiple indicators of performance in order to provide participants with rich feedback that was both timely
and accurate, and to make the task more fun and engaging.

The wobbling was produced by showing a series of morphed images on a spectrum from 1 to 100, where 1 is the object at one
end of the morphing axis, and 100 is an object at the opposite end. The four magnitudes of wobbling reflected different ranges
of morph values: level 13 changed the image linearly from morph 1 to 40 and back (or 100 to 60 and back); level 9 morph [1,28]
(or [100, 72]), level 5 morph [1,16] (or [100,84]), and level 1 morph [1,4] (or [100,96]). The same number of steps were used for
each level, resulting in the fastest motion for 13 and slowest motion for 1.

Participants were informed about these types of feedback and that the feedback depended on their performance in the task.
However, they were not instructed that the feedback was based on competitor activation, nor were they instructed on what
mental strategy to use. Instead, they were instructed to explore different strategies that seemed to improve feedback. After the
study, participants completed a debriefing questionnaire.

The threshold used for determining feedback was adjusted dynamically using an adaptive staircase procedure (electronic
supplementary material, table S1). The goal in using staircasing was to start participants at a difficulty level they could achieve
at the beginning during their strategy exploration but then to increase difficulty across runs and sessions such that they
would be incentivized to activate the competitor object more and more strongly as they gained control of the feedback. When
participants exhibited poor performance, the threshold was decreased, giving them an opportunity to improve and catch up.
Conversely, the threshold was increased to create room for further improvement when participants demonstrated higher levels
of control.

(h) Feedback region of interest
The BOLD activity patterns used to train and test the object classifiers were extracted from a data-driven ROI. To define this
feedback ROI, we used the neuroSketch dataset [37], in which the same four objects were shown multiple times to other
participants. Each of the 300 parcels in the Schaefer atlas [38] classified as gray matter by Freesurfer [39] were retained
for further analysis. Individual classifiers were trained for each parcel, and their test performance was quantified using a
leave-one-run-out methodology. The performance from each parcel was averaged across all 25 participants in the neuroSketch
dataset, resulting in a ranking of parcel performance. To identify the set of parcels that yielded the best performance, we built
a mega ROI, adding in the voxels from the top-N parcels and re-calculating test performance for each value of N using a
leave-one-run-out approach. The mega ROI composed of the 78 highest-performing parcels yielded the best object classification
performance in the neuroSketch dataset.

This mega ROI with 78 parcels served as the starting point for each participant in the current study but was further refined
per individual through a greedy approach. We first removed the voxels from one parcel (77 parcels remaining) and trained and
tested a four-way classifier on the recognition runs from session 1 with leave-one-run-out cross-validation, and then iterated
until all 78 parcels had been the one parcel left out; the iteration in which the remaining 77 parcels yielded the highest decoding
performance was retained. Then we repeated the whole procedure, dropping one parcel (76 parcels remaining), iterating until
all 77 remaining parcels had been left out, and then retaining the best set of 76 parcels. This process repeated until the voxels
from only one parcel remained, yielding performance values for mega ROIs containing 1−78 parcels; the mega ROI with the best
performance of all of these combinations was used as the feedback ROI for this participant. As a result, different participants
had a different number of parcels in their mega ROI. However, there was good consistency in which parcels were selected,
especially in the visual cortex (figure 2a).

Our design does not require a control ROI for sham or other feedback. We are not making a claim about which brain
region(s) contain the most useful activity for neurofeedback. Instead, our conclusions pertain to the impact of neurofeedback
training on representational change in the hippocampus and categorical perception in behaviour based on the within-partici-
pant comparison between trained and untrained pairs. Thus, the hippocampus and other ROIs were used to measure the neural
outcomes of learning.

(i) Representational change regions of interest
To examine how cortical coactivation related to representational change in the hippocampus, we segmented the hippocampus
and its subfields anatomically for each participant using the automatic segmentation of hippocampal subfields (ASHS) software
package [40] and a reference library of 51 manual segmentations [41,42]. These segmentations defined participant-specific ROIs
for the bilateral hippocampus and subfields CA1, CA2/3, dentate gyrus and subiculum. We also explored broader effects in the
cortex by using Freesurfer [43] to create masks for V1, V2, lateral occipital (LO) cortex, inferior temporal (IT) cortex, fusiform
gyrus (FG) and parahippocampal cortex (PHC).

(j) Representational change analysis
We assessed representational change in the primary hippocampal ROIs and the exploratory cortical ROIs by comparing the
overlap of neural patterns for the presented and competitor objects in session 1 versus session 5 (using the same metric for
control objects 1 and 2 as a baseline). The hippocampal ROIs were outside of the (cortical) mega ROIs used for neurofeedback.
The cortical ROIs (V1, V2, LO, IT, FG, PHC) partially overlapped with the mega ROI in some cases. The use of some of the
same cortical data from session 1 to assess representational change was not circular because the key dependent measure is
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the difference between trained and untrained objects, and the selection of the mega ROI was blind to which objects would be
trained or untrained. Moreover, the cortical ROIs were defined a priori based on anatomy, and thus the selection of the mega
ROI did not impact which cortical ROIs we analysed or bias the results of these analyses.

For session 1, we built eight regularized logistic regression classifiers for each participant and ROI, each using seven of the
recognition runs for training, and the remaining recognition run for testing in a leave-one-run-out manner. The performance of
each classifier was quantified using the area under the receiver operating characteristic (ROC) curve.

The ROC curve plots the true-positive rate (TPR, or sensitivity) against the false-positive rate (FPR, or 1-specificity) to
illustrate the diagnostic ability of a binary classifier at various thresholds. TPR is defined as TPR = TP/( TP+FN ), where TP
denotes the true positives and FN denotes false negatives. FPR is defined as FPR = FP/( FP+TN ), where FP denotes false
positives and TN denotes true negatives. The area under the curve (AUC) for the ROC quantifies the classifier’s overall ability
to distinguish between positive and negative outcomes, ranging from 0.5 (no discrimination) to 1.0 (perfect discrimination). The
AUC for each classifier was computed using the ‘roc_auc_score’ function from Python’s sklearn package [44], which requires the
classifier’s probability outputs and the actual labels.

For session 5, we tested the eight trained classifiers from session 1 on the eight recognition runs and averaged the AUCs to
obtain an overall performance score for each participant. A decrease from session 1 to session 5 indicates reduced discriminabil-
ity from greater neural overlap. We thus defined a neural integration index for each ROI as the average session 1 AUC minus
session 5 AUC.

(k) Geometric analysis of shared versus unique features
We decomposed this measure of overall representational change into the neural features shared between the presented and
competitor objects and the neural features unique to each object (and repeated this analysis for control objects 1 and 2 as a
baseline). Neural integration (i.e. a reduction in AUC) could reflect an increase in the expression of shared features and/or a
decrease in the expression of unique features. We tested both possibilities by comparing how hippocampal patterns of activity
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Figure 2. Neurofeedback validation. (a) The mega ROI used to provide neurofeedback was customized for each participant in a data-driven manner. This plot shows
the number of participants whose feedback ROIs contained each voxel. The greatest consistency (virtually every participant) was observed in the early visual cortex,
extending ventral and lateral. (b) Participants succeeded in self-generating classifier evidence for the competitor object based on neurofeedback, as indicated by an
increase across the feedback sessions in the threshold from the staircasing procedure. A higher threshold over time indicates that participants were able to activate
the competitor object more and more strongly. Black lines depict individual participants, the purple line depicts the linear fit combining across participants, and the
light purple band indicates the 95% confidence interval of the linear fit. (c) As a corollary of this effect, we also found an increase across feedback sessions in the
coactivation between the presented and competitor objects, quantified as the product of the classifier evidences for these objects relative to the control object baseline.
** p < 0.01, * p < 0.05.
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evoked by the presented and competitor objects in the recognition runs (and control objects 1 and 2) changed from session 1 to
session 5. For each participant and recognition run, we mean-centred the timecourse of activity in each voxel from the primary
hippocampal ROI then calculated the average voxel pattern across all trials and recognition runs for each of the four objects,
resulting in four voxel-length vectors.

To identify shared and unique dimensions for each participant, we normalized the vectors for the presented and competitor
objects to unit length. The shared direction was identified as the sum of the presented and competitor objects (intuitively, a new
vector halfway between the two unit vectors). The unique direction was identified as the difference of presented and competitor
objects (intuitively, a new vector orthogonal to the sum, connecting the two unit vectors). We then projected the un-normalized
vectors from sessions 1 and 5 onto these two orthogonal directions and calculated the difference in projections for session
5 minus session 1. We repeated this procedure for control objects 1 and 2, including defining their own shared and unique
directions and then calculating the projections on these directions across sessions.

Note that we used the session 1 data to identify the shared and unique directions and then to calculate the pre-training
projections. This was necessary because, by definition, the shared features need to be estimated from the initial representations
themselves. If measured from other trials or participants, there would be no guarantee that these were the actual shared
and unique features. Critically, any bias induced by this procedure applies equally to both the trained axis (presented and
competitor objects) and the untrained axis (control objects 1 and 2), as these axes were treated identically in session 1. Thus,
in the analyses below, the change in shared and unique projections for the trained axis is compared with the change for the
untrained axis as an important baseline.

We quantified the change in shared features for each participant as the session 5 minus session 1 difference in projections on
the shared direction for the trained axis minus the equivalent change for the untrained axis; a positive value indicates a relative
increase in shared features. We likewise quantified the change in unique features as the session 5 minus session 1 difference
in projections on the unique direction for the trained axis minus the equivalent change for the untrained axis; a negative value
indicates a relative decrease in unique features. Using this vector geometry, we recomputed the overall neural integration effect
in the hippocampus for each participant as the sum of the magnitude of increase in the shared direction and decrease in the
unique direction.

(l) Categorical perception task
To assess the impact of representational change on behaviour, we conducted a categorical perception task [29,36] before fMRI
data collection in session 1 and after fMRI data collection in session 5. During this task, participants categorized images sampled
from along a morph continuum between two object endpoints (e.g. bed to chair). Because the objects were rendered from
three-dimensional models with a matching number of vertices, it was possible to smoothly morph between them. The morph
percentage (of the second object) was sampled at 13 steps: 18 (i.e. 18% chair, 82% bed), 26, 34, 38, 42, 46, 50, 54, 58, 62, 66, 74 and
82. These morphs were shown 12 times each during both the pre-test and post-test, always from a trial-unique viewpoint. On
each trial, participants were briefly presented (1 s) with the morph and asked to make a forced-choice judgement about which
object they saw by clicking one of two buttons that appeared below the image. The assignment of labels to left versus right
buttons was randomized across trials. A logistic regression model was used to analyse the relationship between the morphing
parameter and categorization responses:

p(x) = 1
1 + e−(x − μ)/s

For the session 1 categorical perception task, the slope and μ parameters were estimated. In session 5, the μ value from session
1 was fixed (to reduce noise and enhance model capability), and we estimated the slope. The change in slope indicates the
type and degree of representational change between the two objects being discriminated. In particular, a decrease in slope
(reduced discriminability) when comparing the presented and competitor objects would be consistent with the integration of
their representations, whereas an increase in slope (improved discriminability) would be consistent with differentiation. We
thus defined a behavioural integration index as the session 1 slope minus session 5 slope (positive for integration, negative for
differentiation). Importantly, these changes can be evaluated with respect to the analogous change observed for the untrained
control objects.

(m) Brain–behaviour relationship
To the extent that categorical perception is a behavioural readout of neural overlap in one or more ROIs, the behavioural and
neural integration scores should be positively correlated across participants. We quantified this association in each ROI by
calculating the Pearson correlation coefficient.

(n) Statistics
We used non-parametric statistics where possible to avoid assumptions of parametric tests. To estimate the sampling distribu-
tion of an effect, we performed bootstrap resampling at the group level. Namely, from the original sample of 20 participants, for
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each of 1000 iterations, we sampled 20 participants with replacement and averaged their values. The mean and 95% bounds of
the resulting sampling distribution were used to generate the bar plot. For hypothesis testing, we determined the p-value as the
proportion of iterations on which the average had the opposite sign from the original effect.

3. Results
(a) Validation of real-time neurofeedback
We sought to use real-time fMRI neurofeedback to generate coactivation between an object being perceived (presented object)
and an object being internally activated from memory (competitor object). We tested whether participants succeeded in using
neurofeedback to activate the competitor object in the feedback sessions (sessions 2−4) in two ways. First, we examined how
the adaptive threshold from the feedback staircasing procedure changed over time; an increase in the threshold would indicate
that participants were able to activate the competitor object more and more strongly. Indeed, using linear regression we
found a reliable increase in the adaptive threshold across feedback sessions (figure 2b, p = 0.004). Second, we more directly
tested whether coactivation between the presented and competitor objects increased over time. We quantified coactivation
by multiplying the classifier evidence from the feedback ROI for the presented object (relative to control objects) by the
classifier evidence for the competitor object. Again, we found a significant rise in this neural ‘competition index’ over feedback
sessions (figure 2c, p = 0.025). Importantly, these analyses of the feedback ROI were performed on data (sessions 2−4) that were
independent of the data (session 1) used to define the ROI.

(b) Behavioural integration
We next examined the impact of this induced coactivation on the representations of the presented and competitor objects from
before (session 1) to after (session 5) neurofeedback training. We used a categorical perception task [36] as a behavioural assay
of the overlap between representations. Participants were shown a morph of two objects and had to indicate which of the two
objects they saw by selecting the label (figure 3a). To the extent that coactivation led to integration, greater reliance on the shared
features of the two objects should make it harder for participants to discriminate the morph and lead to a shallower logistic
slope; alternatively, if differentiation occurred, then greater reliance on the unique features of the two objects should exaggerate
those features when perceiving the morph and lead to easier discrimination and a steeper slope.

A logistic regression was fitted to the categorization responses as a function of the morphing parameter (figure 3c), sepa-
rately for sessions 1 and 5, and for the trained (presented versus competitor objects; e.g. bed, chair) and untrained (control 1
versus 2 objects; e.g. bench, table) axes. We calculated a behavioural integration index as the difference in the slope for session
1 minus session 5 (figure 3b); positive indicates that the slope got shallower. This index was reliably positive for the trained
axis (p = 0.009; figure 3d) but not for the untrained axis (p = 0.314); the difference in indices between trained and untrained axes
did not reach significance (p = 0.242). This provides behavioural evidence of integration between the presented and competitor
objects as a result of neurofeedback.

(c) Neural integration
We hypothesized the coactivation of object representations in the cortical inputs to the hippocampus would lead to representa-
tional changes in the hippocampus. According to the NMPH, strong coactivation should lead to integration, whereas moderate
coactivation should lead to differentiation. To examine these representational changes, we applied binary classifiers to patterns
of BOLD activity from hippocampal ROIs before (session 1) and after (session 5) neurofeedback training using cross-validation
(figure 4a). If two objects integrate, their greater neural overlap should lead to misclassifications and reduced AUC; in contrast,
differentiation and lower overlap should make classification easier and increase AUC. We calculated AUC from the ROC curve
in the recognition runs from sessions 1 and 5, separately for the trained axis (presented vs. competitor) and untrained axis
(control 1 versus 2). As with behavioural integration, we calculated a neural integration index for each ROI as the classification
AUC in session 1 minus session 5 (positive indicates classification worsened).

In the overall hippocampus (figure 4b), there was a significant difference between indices for the trained and untrained
axes (p = 0.041); the trained axis (p = 0.042), but not the untrained axis (p = 0.820), was reliably positive. These results indicate
that integration occurred as a result of neurofeedback in the hippocampus. We next investigated how these results were
distributed across subfields within the hippocampus. This was an exploratory analysis for which we did not correct for multiple
comparisons, as these tests were not independent of the overall hippocampal results. We were especially interested in the
CA1 subfield, which has previously been linked to integration [11,45]. Indeed, the pattern from the broader hippocampus of
a difference in neural integration between trained and untrained axes was reflected most clearly in the CA1 (p = 0.023) and
subiculum (p = 0.021) subfields; none of the other subfields reached significance (ps > 0.175). Neither the trained axis (ps > 0.067)
nor the untrained axis (ps > 0.396) on their own significantly differed from chance in any subfield.

In the cortical ROIs, the PHC mirrored the hippocampus in showing integration as a result of neurofeedback, with a
significant difference in neural integration index between trained and untrained axes (p = 0.002), a reliably positive index for the
trained axis (p = 0.004), and no difference from chance for the untrained axis (p = 0.949). None of the other cortical ROIs showed
a difference in neural integration indices between trained and untrained axes (ps > 0.148).
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(d) Geometric analysis
The neural integration observed in the hippocampus could reflect an increase in the expression of features that were shared
between the representations of the presented and competitor objects and/or a decrease in the expression of features that were
unique to each representation (figure 5a). To isolate these changes, for each participant, we identified shared and unique
directions in the voxel-dimensional representational space of their overall hippocampus in session 1 and examined the change
in how neural patterns from session 5 projected onto these directions. We repeated this analysis for the untrained axis as a
baseline.

Using this vector-based geometric approach, we replicated the main neural integration effect in the overall hippocampus as
the sum of the magnitude of increase in shared features and decrease in unique features for the trained relative to untrained
axes (p < 0.001). Considering these two types of change separately (figure 5b), there was a highly reliable decrease in the
expression of unique features for trained versus control axes (p < 0.001), but no reliable increase for shared features (p = 0.363).
This analysis indicates that the hippocampal integration we observed reflected the pruning of unique features, perhaps because
the unique features of the competitor object were harder to activate under competition from the presented object.

(e) Relationship between behavioural and neural integration
Given that we observed both behavioural and neural integration after neurofeedback training, we next asked whether these
effects were related. Namely, we tested whether the increased neural overlap of the trained objects observed in the hippocam-
pus and PHC had behavioural relevance for categorical perception. There was a significant positive correlation between neural
integration in PHC and behavioural integration (r = 0.637, p = 0.003), but not for the hippocampus (r = 0.334, p = 0.150). We
repeated this analysis for the untrained objects as a control, and as expected, neither PHC nor hippocampus showed a reliable
correlation (ps > 0.105).

4. Discussion
The current study used closed-loop neurofeedback from real-time fMRI to provide a direct test of how the coactivation of
object representations in the visual cortex drives representational change in the hippocampus. The key findings are that: (i)
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Figure 3. Categorical perception. (a) On each trial of the categorical perception task, participants were shown a morph on a continuum between two objects and asked
to indicate via forced-choice responses which of the two objects they perceived. (b) Behavioural categorization responses can be modelled with logistic regression as
a function of morph level. For each participant, separate models were fit to the first (session 1) and last (session 5) session and to discrimination of trained objects
(presented versus competitor) and of control objects (control 1 versus 2). (c) The fitted slope parameters (see insets) were then used to calculate a behavioural
integration index of session 1 minus session 5. (d) This index was reliably positive for the trained axis, reflecting a shallower slope after neurofeedback indicative
of integration. However, there was no reliable change for the untrained axis, suggesting that neurofeedback was necessary for integration. Each dot represents an
individual participant and the error bands reflect the 95% confidence interval from bootstrap resampling. ** p < 0.01.
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participants succeeded in using implicit neurofeedback to increase activation of the cortical representation of the competitor
object while viewing the presented object; (ii) neurofeedback training reduced behavioural discrimination of this trained pair
of objects but not a control pair of objects in a categorical perception task; (iii) neurofeedback training also reduced neural
discriminability of the trained objects in the hippocampus, CA1, subiculum and PHC, relative to the control objects; (iv)
neural integration in PHC was correlated with behavioural integration across participants; and (v) neural integration in the
hippocampus was driven by a decrease in unique features of the trained objects, relative to the control objects. These results
indicate that increasing coactivation of objects in the visual cortex can drive their neural representations in the medial temporal
lobe to integrate by losing unique features and that this can have behavioural consequences for perception.

By encouraging participants to activate the competitor objects more and more strongly with a staircasing procedure and
through additional feedback and monetary incentives, the coactivation levels of the presented and competitor objects may have
been high enough to foster synaptic strengthening between their neural features. At a population level, such plasticity may
increase the overlap of fMRI activity patterns evoked by the trained objects when presented individually in recognition runs
from before to after neurofeedback training. This neural integration based on strong coactivation is predicted by both Hebbian
learning [18–20] and the NMPH [3,21].

Distinguishing non-monotonic (NMPH) and monotonic (Hebbian) learning would have required exploring a broader
range of coactivation levels under which these theories make different predictions. Namely, NMPH predicts that moderate
coactivation would lead to synaptic weakening between the features of the presented and competitor objects, decreasing the
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Figure 4. Representational change in the hippocampus. (a) We collected neural snapshots of how the four objects were represented in each ROI before (session
1) and after (session 5) neurofeedback training. Participants viewed the objects (intact, no wobbling or morphing) during a recognition task in these sessions. For
each participant, we built regularized logistic regression classifiers to discriminate multivoxel patterns of BOLD activity in each ROI evoked by the presented versus
competitor objects (trained axis) and by the control 1 versus 2 objects (untrained axis). Using leave-one-run-out cross-validation, we quantified the neural overlap
along these two axes from the test classifier area under the curve (AUC). A neural integration index was defined for each ROI and axis as AUC in session 1 minus session
5 (positive reflects a decrease in AUC or reduced discriminability). (b) In the whole hippocampus, there was reliable neural integration along the trained axis relative
to the untrained axis. The integration for the trained but not untrained axis was reliably above chance. (c) The difference in neural integration between trained and
untrained axes was reflected most clearly in the CA1 and subiculum subfield. The insets depict the location of the ROI in red on an example participant’s T2 scan. Each
dot in the bar plots represents an individual participant and the error bands reflect the 95% confidence interval from bootstrap resampling. * p < 0.05.
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similarity of fMRI activity patterns from before to after neurofeedback training (differentiation). In contrast, Hebbian learning
predicts that moderate coactivation would still lead to synaptic strengthening and integration, just to a lesser degree. Future
studies could employ different feedback regimes and/or stimuli to aim for more moderate coactivation. For example, rather than
trying to maximize competitor activation through ever-rising staircasing and incentives, the amount of competitor activation
could be titrated into a moderate band. Different groups of participants, or even different object pairs within-participant,
could target different activation bands (e.g. low, medium, high) to better cover the hypothetical curve. Alternatively, our same
feedback approach could be used but with pairs of objects with lower similarity in colour, shape and category; this reduced
baseline similarity may make it more difficult to strongly activate the competitor object while perceiving the presented object,
resulting in moderate competitor activation and possibly leading to differentiation [14]. It may also be possible to induce
differentiation by changing the basis of the neurofeedback. By quantifying competitor activation relative to the control objects,
we may have encouraged participants to activate features shared with the presented object (which was visible on the screen)
and thus favoured integration; basing neurofeedback instead on the amount of competitor activation relative to the presented
object may have encouraged them to activate unique features of the competitor object and thus favoured differentiation.

Our findings from real-time fMRI complement previous offline fMRI studies of representational change in the hippocampus
[11,13–15,46]. These studies used a stimulus or task manipulation to achieve coactivation between competing memories, such
as by increasing stimulus similarity [14] or by encouraging retrieval of related experiences [11]. We directly manipulated
coactivation by using neurofeedback to incept a competing memory. Following the logic of prior real-time fMRI studies [28],
this demonstrates that neural coactivation is sufficient for hippocampal integration. This is a stronger and more causal test of
the hypothesis that neural competition drives representational change.

The role of the hippocampus, and CA1 in particular, in memory integration accords with existing findings [11] and computa-
tional models [45]. CA1, which receives cortical input from the entorhinal cortex along the monosynaptic or temporoammonic
pathway, is a key site for integration because it has lower inhibition between neurons, which allows more neurons to become
active and increases baseline overlap across memories. As a result, CA1 is more likely to enter a regime in which a target and
competitor memories are active enough to strengthen their synaptic connections, resulting in integration at a population level.
PHC, a key relay between the visual cortex and the hippocampus, has also previously been implicated in memory integration
[47] and here was the only region to show a reliable brain–behaviour correlation. Based on studies showing that patients with
hippocampal lesions but intact parahippocampal cortex fail to show behavioural integration, it is unclear whether PHC is
sufficient [48]. We also observed a neural integration effect in the subiculum, a structure traditionally considered a relay from
the hippocampus to other brain regions [49]. For example, the subiculum links to the brain‘s reward systems, which may have
been engaged by the neurofeedback received [50]. An exciting direction for future research could be to examine how reward
processing, for example, in the ventral tegmental area (VTA) [51] and ventral striatum [52–54], can modulate coactivation in
visual cortex and representational change in the hippocampus.
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summing the increase of shared projection and (absolute) decrease of unique projection from session 1 to 5, for trained versus untrained axes. This overall effect was
driven by a reliable decrease of the unique projection, without a change in the shared projection. *** p < 0.001.
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In sum, this study employs real-time neurofeedback to induce memory competition and drive representational changes in
the hippocampus. This approach may be more efficient than using predefined stimuli or tasks to manipulate competition, as
it personalizes neurofeedback to the most proximal variable of interest—cortical activation of the competing memory. With
further development and more portable and affordable neural recording technologies, this approach could find a variety of
applications. As a technique for modifying specific memories, it could be used to develop innovative treatments for a range
of neurological and psychiatric disorders. Daily functioning and quality of life could be enhanced in individuals suffering
from age-related memory decline or memory impairments due to stroke by creating interventions to strengthen interconnected
memories, such as associating the members of a category or re-linking the names of loved ones with their faces. The emotional
impact of traumatic memories in PTSD could be reduced by integrating these memories with positive or rewarding experiences.
Beyond healthcare, the ability to modify specific memories could be used for classroom education or occupational training to
accelerate the learning of concepts and skills.
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