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Abstract

Identifying an optimal search strategy for a given set and maintaining its efficiency under dynamic
operations (i.e. insertion and deletion) is a fundamental problem in data stuctures. The classical
variant of this problem considers underlying sets which are total orders. In this case, the problem
can be solved optimally by balanced binary search trees such as AVL trees and Red-Black trees.
We consider the related problem where the structure of the underlying set is relaxed to a tree-like
partial order. Recent results have shown that an optimal search strategy can be built in linear time
for such partial orders in the static case. However, due to structural properties inherent to partial
orders, such solutions cannot easily be extended to the dynamic case of the problem. Previous to
the work described in this thesis, the dynamic setting of the problem has not yet been investigated.

We present the Leaf-Line Tree, a data structure that supports efficient insert, delete, test member-
ship, and neighbor operations on a set S of n elements drawn from a partial order whose underlying
Hasse diagram is a tree. The data structure requires O(n) time and space to be built initially and
each of the operations above requires at most a factor of O(log w) more steps than the optimal
number in the worst case. Here w is the width of the poset (w is bounded above by n).
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Chapter 1

Introduction

Maintaining a dynamic set S of n elements drawn from a universe U of m � n elements is a
fundamental problem in data structures. When S is totally ordered, the operations

• insert,

• delete,

• test membership, and

• neighbor

are all supported in O(log n) time with classical balanced search trees like AVL trees and Red-Black
trees [9].

In this thesis, we address the problem when S is partially ordered. One way to view a totally
ordered set S is as a line where element x appears to the left of element y if and only if x < y.
Similarly, a partial order can be described by a directed acyclic graph, called its Hasse diagram.
Here two nodes are comparable if there is a directed path from one node to the other. However,
nodes may also be incomparable if no such path exists.

Given a node x from a totally ordered universe, one can test whether x is in S by binary searching
the line representing S. This search strategy defines an optimal binary search tree for S. However,
finding an optimal binary search tree for a general partial order is NP-hard [2]. Thus, our results
focus on partial orders whose underlying universe forms a directed tree. We call these tree-like
partial orders. Searching in tree-like partial orders has been studied extensively [1, 7, 8, 10, 11, 12,
14, 15, 16, 17, 18, 20]. Recent results have shown that, in contrast to directed acyclic graphs, one
can find an optimal binary search strategy for trees in linear time [15].

Just as balanced binary search trees maintain asymptotic optimality for a dynamic set that is
totally ordered, we are interested in maintaining asymptotic optimality for a dynamic set when S

is partially ordered. Presently, the only viable solution to the problem of searching in dynamical
partial orders is to recompute the optimal search strategy after each change to the underlying set.
This operation is very expensive: it takes linear time in the size of the set. Our work provides the
first efficient solution to the dynamic setting of the problem.

11



12 CHAPTER 1. INTRODUCTION

A reasonable place to start our investigation is by attempting to find decision tree restructuring
strategies similar to the rotations which allow asymptotically optimal balanced binary tree restruc-
turing (i.e. similar to AVL trees and Red-Black trees). However, as we show in Section 2.4, we
cannot straightforwardly apply the same transformations to the optimal partial order search trees
from [15] as we would to the total order structures. This leads to invalid search trees because partial
order elements may be incomparable. Furthermore, it is unclear how to redefine the rotation rules
in order to achieve both (1) a similar performance guarantee and (2) valid dynamic balanced search
trees for partial orders. It is also unclear how one could adapt other search structures proposed
in the literature which claim weaker than optimal bounds on efficiency (see for example [11]) to
maintain their guarantees under dynamic operations.

1.1 Goal

Our goal is succinctly stated as follows:

Build a data structure that supports efficient insert, delete, test membership, and neigh-
bor operations for a dynamic set of elements drawn from a tree-like partial order.

Motivating our work are practical problems in filesystem synchronization and software testing
described by Ben-Asher et al. [1]. Further motivating this goal are applications related to rankings in
sports, college admissions, and conference submissions. Other areas quoted in [4] where advances in
solving this problem would have marked impact are comparing the evolutionary fitness of different
strains of bacteria, understanding input-output relations among a set of metabolic reactions, or
understanding causal influences among a set of interacting genes and proteins.

In the first scenario, two copies of a filesystem are maintained on separate machines. One copy
is the source and the other copy is a mirror. Changes to the source are propagated to the mirror.
Following some communication failure, the two filesystems may lose synchronization. To find the
differences, one might test directory checksums at the root of each filesystem, then follow differing
checksums in subdirectories to isolate the problems. However, since some subdirectories extend much
deeper than others, it might be better to start searching at the root of a subdirectory rather than the
root of the entire filesystem. Furthermore, if network communication is costly, then minimizing the
number of checksum tests becomes the primary goal when performing the search. This minimization
problem naturally maps to the problem of finding optimal search strategies in tree-like partial orders.
If the filesystem is quite large, then the time required to find the optimal static search strategy may
be somewhat prohibitive – maintaining a dynamic search strategy with respect to changes in the
filesystem may be more beneficial.

1.2 Contributions

Our primary contribution is the Leaf-Line tree, a data structure that supports efficient insert, delete,
test membership, and neighbor operations on a set S of n elements drawn from a partial order whose
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underlying Hasse diagram is a tree. We assume pointer-based Hasse diagrams and constant-time
comparisons between elements in the partial order [4]. The Leaf-Line tree is space efficient – it
requires O(n) space where n is the size of the dynamic set – and can be built in O(n) time given a
Hasse diagram of the poset. Each operation takes time OPT ·O(log w) where w is the width of the
partial order. The width represents a natural obstacle when searching in a partial order.

Leaf-Line Tree is essentially a decision tree which can be updated in OPT ·O(log w) steps, guar-
anteeing better than linear performance whenever possible. The reader should note that the optimal
search strategy itself might be linear in the number of elements of the partial order considered. In
that case, a linear time penalty cannot be avoided when performing any operation on the search
strategy (such as search, insert, or delete) as O(n) is the information theoretic lower bound on the
time needed to fully disambiguate all elements of the partial order [4].

1.3 Thesis Overview

We present our work as follows:

Chapter 2 is an overview of related work on searching in general and tree-like partial orders.

Chapter 3 describes how any subset P drawn from a partially ordered universe U always forms a
directed tree provided that P contains a special central element.

Chapter 4 describes the Leaf-Line Tree data structure and proves it maintains an efficient search
strategy for dynamic tree-like partially ordered sets.

Chapter 5 provides an overview of our accomplishments and directions for future work.



Chapter 2

Background

2.1 Partial Orders and Posets

A partial order is a binary relation ‘≤’ over a set U (called the universe) which is reflexive, antisym-
metric, and transitive, i.e., for all a, b, and c in U , we have that:

• a ≤ a (reflexivity)

• if a ≤ b and b ≤ a, then a = b (antisymmetry)

• if a ≤ b and b ≤ c, then a ≤ c (transitivity)

A partially ordered set (poset) is a subset of n items drawn from a universe U of m� n elements,
together with a partial order defined on U that describes, for certain pairs of elements in the set,
the requirement that one of the elements must precede the other. A partially ordered set formalizes
the intuitive concept of an ordering, sequencing, or arrangement of the elements of a set. However,
a poset differs from a total order in that some pairs of elements in the poset are incomparable.

Definition 2.1. Two elements x, y in a poset P are comparable if x ≤ y or y ≤ x. If x and y are
not comparable, we say they are incomparable.

Thus, while the Hasse diagram of a total ordering is a line (all elements to the left of a position
are smaller and all elements to the right are greater), the Hasse diagram for a poset is a directed
acyclic graph where the nodes signify the elements of the underlying set S and the edges denote
the binary relation between two adjacent elements (for a more formal discussion of partial orders
see [19]).

Equivalently, if the directed acyclic graph G is the Hasse diagram of P , then two nodes A,B in
G are comparable if a directed path exists between A and B or vice versa. This statement follows
from the the transitivity of partial orders. We give examples of this type of structure in Fig. 2.1.

The width of a partial order is a very useful measure of its complexity. We provide the following
definition adapted from [4].

14
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(a) (b) (c)

Figure 2.1: Examples of Hasse diagrams for a total order (a) and two posets (b)-(c).

Definition 2.2. The width of a partially ordered set P is the maximum size of a subset of mutually
incomparable elements from P .

A totally ordered set has width 1 since all elements are comparable (Fig. 2.1 (a)). The poset in
Fig. 2.1 (b) has 19 elements and width 3. When the Hasse diagram of a poset with n elements forms
a star, the width reaches its maximum value of n−1. In this case, the poset graph consists of a root
node with directed edges from it to every other node (or from every other node to it), as shown in
Fig. 2.1 (c). The root is comparable to every other node, but the leaves are all incomparable to one
another, hence the stated width.

When analyzing the efficiency and complexity of algorithms that solve some problem about a
poset P , we will use the following notions of complexity adapted from [4].

Definition 2.3. For a poset algorithm we define query complexity as the number of disambiguation
questions (or comparisons of the form u ≤ x) asked during the run of the algorithm and total
complexity as the total number of operations performed by the most efficient implementation of the
algorithm.

2.2 Searching in Partially Ordered Sets

Classical problems involving search limit their underlying space to linear orderings of elements. For
a totally ordered set with n elements the optimal search strategy is binary search (see [10]). Thus,
one can find an element in O(log n) time and one can build the binary search tree in O(n) time.
For partial orders, the best known search strategies correspond to binary decision trees capable of
unequivocally separating all elements of a poset P . Each leaf in a decision tree is an element of P
and each internal node is a question of the form u ≤ x, where x ∈ S and u is the element under
consideration. If the answer to the question is yes then u truly is less than or equal to x and the
search continues down the right branch of the decision tree. If the answer is no then either u > x

or u and x are incomparable and the search continues down the left branch of the decision tree. In
this way, each element u follows a single path in the decision tree from the root down to a leaf.

The height of a decision tree is the length of the longest root-to-leaf path. Said differently, it is
the maximum number of questions, in the worst-case, that one needs to ask about an element in
order to determine its place in P . A search tree is optimal for P if there is no other decision tree
with smaller height.

Given a partial order ≤ over a set U and a poset P ⊆ U of size n and width w, we identify three
natural problems: the sorting problem, the static problem, and the dynamic problem.
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(1) Sorting Problem: Given P and ≤, build the Hasse diagram for P

This problem was first described by Faigle and Turán in [5] as “sorting a poset” and the authors
give two solutions in the form of algorithms for sorting posets. Each of these algorithms has query
complexity O(wn log n

w ), but their total complexity in not analyzed and it is unclear whether they
can be implemented in polynomial time.

More recently, Daskalakis et al. give an algorithm that requires only O(wn+n log n) queries in
the worst case for sorting a poset (which is within a constant factor of the information theoretical
lower bound) [4]. Daskalakis et al. also propose a method of building the Hasse diagram of a
poset P based on a variant of MergeSort which matches the query complexity of those put forward
by Faigle and Turán, but who additionally gives a provable upper bound of O(w2n log n

w ) on the
total complexity of the problem (showing it is indeed solvable in polynomial time). The exact total
complexity of the problem remains unknown.

In this thesis, we will not address the sorting problem, but rather attempt to (a) extend the
applicability of existing results for the static problem to a larger class of partial orders and (b)
provide a new data structure that solves the dynamic problem for a large class of partial orders.

(2) Static Problem: Given the Hasse diagram for P , build an optimal search tree for P

A recent result by Carmo et al. shows that for general partial orders, constructing such a decision
tree is NP-hard [2], and thus there is no known polynomial-time algorithm for building an optimal
search strategy.

Due to this limitation, one direction of research has focused on algorithms yielding search strate-
gies which are not optimal, but provably close to optimal. The most recent and tightly bounded
approximations to the problem are provided again by Carmo et al., who proposed polynomial-time
algorithms for constructing a (1 + o(1))-approximation for typical partial orders under the random
graph model and a 6.34-approximation for partial orders under the uniform model. In the random
graph model, a partial order is built on a set of n nodes by independently selecting partial order
relations between pairs of elements from the set according to a fixed probability 0 ≤ p ≤ 1. Under
such considerations, the authors prove that almost surely the height of the binary search tree they
produce is at most lg n+O(

√
log n log log n). In the uniform model, a partial order is chosen with

uniform probability from the set of all possible partial orders on a set of n elements. This assumption
yields the construction of a ternary search tree of height almost surely at most 6.34 log3 n.

The bounds found by Carmo et al. in both the random graph and the uniform models above
are probabilistic and, furthermore, they provide only results pertaining to query complexity and
no visible estimation of the running time of their algorithm, other than stating polynomial-time
efficiency. In real-world examples, the cost of producing such a tree may outweigh the benefits of
obtaining a solution within a constant factor of the optimal, and furthermore, since we have no
knowledge of the underlying distribution of the partial order, this probabilistic approach leaves open
the question of providing an efficient search strategy for good worst-case performance on all possible
posets, instead of almost all posets.

(3) Dynamic Problem: Given an optimal search tree for P , maintain its optimality under dy-
namical operations
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Figure 2.2: Example poset graph G (i) with optimal node (ii) and edge rankings (iii). Edges are
implicitly directed left-to-right, but this detail is not required for constructing either a node, or an
edge strategy function following the algorithm described in [16].

Intuitively, there should exist data structures for posets analogous to those which allow near-
optimal total order dynamic decision tree restructuring (red-black trees, AVL trees, skip lists,
etc. [3], [6]).

However, the dynamic setting of the problem of searching in partial orders has not been inves-
tigated in the literature thus far. Most publications on posets do not make any reference to this
question, while others simply mention it as “an interesting open problem” [4]. Therefore, no results
analogous to the data structures mentioned above yet exist for this problem, other than the näıve
reconstruction of the static case poset decision tree after every update operation.

2.3 The Static Problem for Tree-Like Posets

Since searching in partially ordered sets is an NP-complete problem, a large amount of research has
been directed towards the problem of constructing efficient optimal solutions in posets with special
structural characteristics.

The most common simplification investigated in the literature is the restriction of the problem
from posets with general directed acyclic graph representations to posets whose Hasse diagram is a
tree (Fig. 2.2 (i)). In this case, an optimal search strategy remains a minimum height decision tree
separating every pair of elements in the poset (a tree in which the worst-case number of questions
is the lowest) (see [16] and Fig. 2.3).

As with general partially ordered sets, research efforts have focused exclusively on the static
problem. The key intermediary step to finding an optimal solution in this case is defining a strategy
function on the poset graph.

2.3.1 Strategy Functions (Rankings)

The prevalent approach to constructing an efficient search strategy for a tree-like partial order
involves defining a strategy function (or ranking) on either the nodes or the edges of the partial
order tree. The ranking can subsequently be used to generate a valid optimal or near-optimal
decision tree for the specified poset.

We will use the following definition adapted from [16].

Definition 2.4. Let G = (C1, C2) be the graph representation of a poset P , where C1 is the set
of vertices and C2 is the set of edges. Choose i ∈ {1, 2}. Then, a function f : Ci → Z+ is a
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Figure 2.3: Optimal node (i) and edge decision trees (ii) for example graph G shown in Fig. 2.2 (i).

strategy function if for any distinct elements x, y ∈ Ci, if f(x) = f(y), then there exists z ∈ Ci

on the simple path from x to y such that f(z) > f(x).

This definition implies that if two distinct vertices (edges) are assigned the same value by a
strategy function, then there must be another vertex (edge) on the simple path between the first
two which is assigned a greater value by the same strategy function. Thus, for a node strategy
function (Fig. 2.2 (ii)), if vertices B and G are assigned the same value (f(B) = f(G) = 2), then
there exists a higher value vertex D with f(D) = 3 on the path from B to G. Similarly, for
an edge strategy function (Fig. 2.2 (iii)), if edges (F,G) and (D,E) are assigned the same value
(f(F,G) = f(D,E) = 1), then there exists a higher value edge (D,F ) with f(D,F ) = 2 on the path
from (F,G) to (D,E).

This notion of a strategy function (ranking) is very important due to a result stated by Mozes
et al. in [15] (proven in a modified form in [16] by Onak and Parys), which is summarized in the
following Lemma.

Lemma 2.5. For every tree T, the worst-case number of queries in an optimal searching strategy
in T equals the lowest possible maximum of a strategy function on T.

In the next two subsections we give a short overview of the edge and node query models. De-
pending on which model one chooses, the questions asked in the decision tree for the partial order
will be either nodes or edges from the graph representation of the poset (see Fig. 2.3).

2.3.2 The Node Model

In the node model, the goal is to find an element in the poset and we are allowed to ask questions
only about vertices (see Fig. 2.2 (ii) and Fig. 2.3 (i)). For each vertex v in the poset graph, the
possible answers are:

• v is the target

• the outgoing edge from v which starts the simple path from v to the target
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A polynomial-time algorithm for finding an optimal node ranking (strategy function) in a tree
was first given in [7] by Iyer et al., whose solution ran in O(n log n)-time. This result was then
improved by Schaffer in [18] who gave a linear time solution to the problem.

Finally, Onak and Parys [16] gave an alternative linear time solution to the one given by Schaffer
and further showed how this ranking can be used to construct a node model decision tree for the
partial order in linear time (Fig. 2.3 (i)).

2.3.3 The Edge Model

In the edge model, the goal is to find an element in the poset and we are allowed to ask questions
only about edges (see Fig. 2.2 (iii) and Fig. 2.3 (ii)). For each edge e = (x, y) in the poset graph,
the possible answers are:

• vertex x is closer to the target (or may be the target)

• vertex y is closer to the target (or may be the target)

The first O(n2)-time algorithm for computing a strategy function for the edge model was given
by Zhou and Nishizeki, who subsequently improved their own bound to O(n log n)-time in [20]. The
first linear time construction of a ranking was given by Lam and Yue in [12], and it was proven
in [1] that constructing an optimal search decision tree for the edge model (Fig. 2.3 (ii)) supports
a polynomial-time solution, which was first identified as O(n4 log3 n) and subsequently refined to
O(n3) in [16] , and finally to its lower theoretical bound of O(n) in [15] .

For the remainder of this thesis, when we refer to the problem of searching in partial orders, we
are implicitly assuming the edge query model.

2.4 The Dynamic Problem for Tree-Like Posets

All previous work on searching in tree-like partial orders focuses on the static version of the problem
where the partial order does not support insertions or deletions. Therefore, no data structures yet
exist that avoid the overhead of rebuilding the decision tree after every update for the dynamic
setting.

Just as binary search trees for a fixed total order are the starting point for balanced binary search
trees, one might hope to maintain a dynamic partial order by directly updating the optimal search
trees for a fixed partial order.

However, applying natural rotations to the decision tree for a poset P does not always yield
another valid decision tree in the context of P . Consider the poset P with decision tree T shown
in Fig. 2.4. Notice that node (A,B) contains an imbalance in the height of its children: (A,C) has
height 3, while B has height 1. Applying an ordinary AVL or Red-Black tree rotation operation to
T yields tree T ′ of strictly smaller height. Suppose we want to search for node B using our new
decision tree T ′. From Section 2.3.3 we expect that by asking the first question (A,C) we descend
down the branch corresponding to the endpoint closest to B in P , which is A. Unfortunately, B
cannot be found in the subtree rooted at (A,D) and the search fails.
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Figure 2.4: Poset P (left), a decision tree T for P (center), and the incorrect decision tree T ′ obtained
by applying a standard balanced binary search tree rotation to T (right).

Thus, applying standard rotation operations to partial order decision trees in order to decrease
their height in the event of an imbalance no longer makes sense given the relationships between
elements in the poset. Furthermore, it is unclear how to extend or redefine the notion of optimality
maintaining rotations to partially ordered set decision trees, so directly applying these ideas to our
problem seems difficult. Because of this, the Leaf-Line Tree data structure we propose in Chapter 4
offers a substantially different approach to the problem than those given by previous work in the
static case.



Chapter 3

Central Elements in Posets

In this chapter, we show that any subset P of n elements drawn from a partially ordered universe
U of m� n elements always forms a directed tree provided that subset contains a central element.

We first introduce the notion of a central element of a partial order and then show how always
keeping at least one such node in the collection (either as a real node if it already exists, or as a
virtual node if it doesn’t) ensures that P is a tree-like poset.

3.1 The Central Element

We begin with a definition.

Definition 3.1. A node x ∈ P is a central element if every other element in P is either reachable
from x, or can reach x, but not both.

The existence of a central element in every poset was originally shown in [13]. Onak and Parys [16]
also describe how all tree-like partial orders P contain at least one central element E and can be
classified into three distinct categories based on the properties of this element (Fig. 3.1):

Source – E is the smallest element in P and acts as a source (all nodes are reachable from E).

Sink – E is the largest element in P and acts as a sink (E is reachable from every node).

Center – E is a central element, but is neither a source, nor a sink for nodes in P .

Note that for partial orders of type Center, the central element need not be unique. In Fig. 3.1
(c), both E and F are considered central elements given the definition above.

Lemma 3.2. Let P be a poset of type Center with g > 2 central elements where E is the smallest
central element and F is the largest central element. If C ∈ P such that E < C < F , then C is a
central element. Furthermore, C has degree exactly 2.

Proof. If A,B ∈ P are central elements, then A and B are comparable by Definition 3.1. Thus, all
central elements lie on the same path in P .

21
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Figure 3.1: Tree-like partial order categories: Source (a), Sink (b), and Center (c).

Suppose C > E for some C ∈ P . It follows that C and F are comparable since F is a central
element. If C < F , then C must lie on the path between E and F (since P is a tree). Now suppose
C < F for some C ∈ P . Similarly, it follows that C and E are comparable and if C > E, then C

must lie on the path between E and F .
Let {E,C1, . . . , Ck, F} be the path between E and F containing all elements E ≤ Ci ≤ F .

Choose Ci. Then there exists a path from all elements H < E to Ci through E. There is also a
path from Ci to all elements H > F through F . Since all Ci are comparable, it follows that all Ci

are central elements.
Finally, suppose that some Ci had degree greater than 2. Then there exists H ∈ P such that

either H > Ci and H is not comparable to F or H < Ci and H is not comparable to E. Since E
and F are central elements, this is a contradiction.

3.2 Central Elements and the Structure of Posets

Tree-like partially ordered sets always contain a central element, while some arbitrary subset S of a
tree-like universe U may not. We provide the following Lemma summarizing our claim.

Lemma 3.3. Let P be a subset of a tree-like universe U . P is a tree-like partially ordered set if
and only if P contains at least one central element.

Proof. Suppose P is of type Source (Fig. 3.1, (a)). By eliminating the sole central element E, we
obtain a forest of disconnected trees, each rooted at the children of node E.

Similarly, if P is of type Sink (Fig. 3.1, (b)), then by eliminating the sole central element E, we
obtain a forest of disconnected trees, each rooted at the neighbors of node E.

Suppose P ⊆ U is of type Center (Fig. 3.1, (c)) and contains no central elements. Let E be
the smallest central element and F be the largest central element in U . Then by Lemma 3.2 for all
elements C ∈ P , either C < E or C > F . If all C < E or all C > F , then we have an analogous
problem to when P is of type Sink or Source, respectively. If P contains at most one element C
such that either C < E or C > F , then C would be a sink or a source for P which is a contradiction.
Finally, if at least 2 element C < E, and at least 2 elements C > F , then P must contain a complete
bipartite subgraph as shown in Fig. 3.2.
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V

Figure 3.2: Poset P which contains a complete bipartite subgraph: before (left) and after (right)
inserting virtual central element V .

Thus, if P contains no central elements of U , then P is not a tree-like partially ordered set and
this concludes our proof.

Corollary 3.4. Let P be a subset of a tree-like universe U . If P is not tree-like, then we can obtain
a tree-like partially ordered set from P by adding exactly one virtual central element to P .

Proof. If P is not tree-like, then by the previous lemma the Hasse diagram for P is either a forest
of disconnected trees or contains a complete bipartite subgraph.

Suppose that the Hasse diagram for P is a forest of disconnected trees. If U is of type Source

(Fig. 3.1, (a)) then P doesn’t contain the central element. We subsequently add the central element
E to P as a virtual node. Now, all formerly disjoint trees in P have a common ancestor and are
now connected to the root node E.

If U is of type Sink (Fig. 3.1, (b)), then the proof is analogous to the Source case detailed above
(except all elements now have a common sink node, rather than a common ancestor).

If U is of type Center (Fig. 3.1, (c)). We subsequently add a virtual central element to P . Now,
all formerly disjoint trees in P have either a common ancestor or a common sink node and are thus
connected.

Finally, suppose that the Hasse diagram for P contains a complete bipartite subgraph. Then U
must be of type Center by previous lemma. Furthermore, P does not contain any of the central
elements of U . We subsequently add a virtual central element to P . This new element is concurrently
larger than all nodes on the left side of the bipartite subgraph and smaller than all nodes on the
right. The new poset we obtain is tree like and no longer contains a bipartite subgraph (Fig. 3.2,
right).

The best known algorithms for searching in forests of tree-like partial orders [16] must incur the
cost of disambiguating between each connected component of the forest. This operation takes linear
time in the number of components. However, by including exactly one virtual central element, we
obtain a single tree-like poset from the forest. We can take advantage of the newly created structure
to generate an asymptotically optimal decision tree for the original poset.

Moreover, no efficient algorithms exist to search a poset which contains a complete bipartite
subgraph. By including a virtual central element, we construct a new tree-like poset which is a
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superset of the initial poset, but contains exactly one additional element. Again, we can use efficient
search algorithms for tree-like posets to perform an asymptotically optimal search of a previously
intractable structure.

For implementation purposes, we can identify the central elements of a poset of size n (or the
lack thereof) in O(n) time. For Source and Sink posets, the central element is the smallest
(respectively the largest) element. For Center posets, the central elements are a collection of
consecutive elements such that the smallest has non-zero in-degree and the largest has non-zero
out-degree, with all elements in-between having in- and out-degree exactly 1. When managing a
dynamical tree-like poset, if we try to delete the last central element from our working set, we then
immediately replace it with a virtual node. This node is simply a placeholder and a true central
element would take its place as soon as one in reinserted into the poset. The sole purpose of the
virtual node is to allow us to approximate the current set of elements with a tree-like partially
ordered set.

Most importantly, in order to extend a subset of a tree-like universe to a tree-like poset we never
require knowledge about the actual shape and structure of underlying universe. The only information
we need is whether the universe is tree-like. This immediately implies that the universe contains
at least one central element and so our extension method is applicable to any of its non-tree-like
subsets [13].



Chapter 4

The Leaf-Line Tree

In this chapter we present the Leaf-Line tree, a data structure that supports efficient insert, delete,
test membership, and neighbor operations on a set S of n elements drawn from a partial order
whose underlying Hasse diagram is a tree. We build the Leaf-Line tree by defining a recursive
contraction process on the Hasse diagram and incrementally creating specialized search structures
for the portions of the graph we contract. These structures are subsequently joined together to form
the final search tree for the set S.

4.1 Preliminaries and Definitions

For the remainder of this chapter we will assume that P ⊆ U is a tree-like partially ordered set of
size n, maximum node degree d, and width w. We assume that P is tree-like since we only need at
most one virtual central element to be added to P in order to ensure this fact by Corollary 3.4.

A poset P is given by its pointer-based Hasse diagram. Although the poset tree contains directed
edges, we will ignore this fact throughout this chapter. For our purposes we only need to remark that
in a tree there exists a unique path from a node to any other node, disregarding edge orientation.
We can further assume for simplicity that P is represented as a rooted tree of type Source and
that the width w is equal to the number of leaves. In this case, a leaf is a node of degree 1 . We will
use the notation P interchangeably for both the poset and its undirected Hasse diagram.

Before we describe how to build the data structure from the Hasse diagram, we need to prove a
few preliminary results. Consider the following definition.

Definition 4.1. An element x ∈ P is a star node if it has degree at least 3.

We will subsequently prove a very important relationship between the width of a tree-like poset
and the number of star nodes in its Hasse diagram.

Theorem 4.2. Let S be the total number of star nodes in P . Then S ≤ w − 1.

Proof. All non-empty trees have at least one leaf. Since P is a rooted tree, each node except for
the root has in-degree exactly 1. Thus each star node has out-degree at least 2. For each node x,

25
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each outgoing edge from x contains at least one leaf. Thus, for every star node in P , the number of
leaves grows by at least 1. Since the number of leaves is equal to w we have that S ≤ w − 1.

4.1.1 Optimal Search Strategy

In order to prove the efficiency of our search algorithms, we must first establish lower bounds on the
query complexity of the optimal search strategy. We begin by providing the following definition.

Definition 4.3. A chain C ⊆ P is a subset of mutually comparable elements. The longest chain

(denoted henceforth by C) is the chain in P with the largest number of elements.

We are now ready to establish a lower bound on the number of queries required by the optimal
search strategy in the worst case.

Lemma 4.4. Let OPT be the query complexity of the optimal search strategy. Then OPT ≥
max{d; log n}.

Proof. Let x be a node of highest degree d in P . Then, to find x in the poset we require at least d
queries, one for each edge adjacent to x by [11]. This implies OPT ≥ d. Also, since querying any
edge reduces the problem space left to search by at most a half, we infer that OPT ≥ log n. We
conclude that OPT ≥ max{d; log n}.

Corollary 4.5. OPT ≥ max{logC; logw}.

Proof. This follows immediately from the fact that n is an upper bound on both w and C.

4.2 Query Model

Recall that a search tree for P is a binary decision tree that, for all u ∈ U , determines if u is in P ,
and if not, determines where u would appear in P . Thus, each leaf in the decision tree is an element
of P and each internal node of the decision tree is a question of the form u ≤ x where x ∈ P and
u ∈ U is the element under consideration. If the answer to the question is yes then u truly is less
than or equal to x and the search continues down the right branch of the decision tree. If the answer
is no then either u > x or u and x are incomparable and the search continues down the left branch
of the decision tree. In this way, each element u follows a single path in the decision tree from the
root down to a leaf.

Because our trees are not oriented, we have no notion of ≤ so we consider questions on edges:
given an edge (x, y) and an element u we ask: is u is closer to x or to y? With rooted, directed trees,
asking a question of the form u ≤ y is identical to asking the incoming edge (x, y) of y whether u is
closer to x or to y in the tree. However, because we are dealing with dynamic sets, u may actually
fall between x and y, which presents a problem for current models.

For example, say we are told to insert some element u into the partial order given in Fig. 4.1
(i). After querying node a we learn that u ≤ a. After querying node b we learn that u > b or
incomparable to b. Similarly, after querying node c we learn that u > c or incomparable to c. Thus,



4.3. CONSTRUCTION 27

c

a

b c

a

b

u

b

a

c

u

(i) (ii) (iii)

c

a

b

u

(iv)

Figure 4.1: In addition to closer to x or closer to y, we allow an edge (x, y) to answer here when a
node u falls between x and y in the partial order. Thus, given the partial order in (i) and an element
u to be inserted, we can properly distinguish the partial orders given in (ii)-(iv).

the partial orders given in Fig. 4.1 (ii)-(iv) are all consistent with the answers. Because of this, our
model must be able to distinguish between greater than and incomparable. We allow an edge (x, y)
to additionally answer here when an element u falls strictly between a and b in the partial order.
This information is sufficient to implement insertion and deletion. For example, if u is actually the
neighbor of both c and b (as shown in Fig. 4.1 (iv)) then questions (a, b) and (b, c) both answer
here. Note that the ability to answer here is equivalent to asking u ≤ a and then b > u, so any
edge query can be simulated by two comparisons. In fact, since we ultimately are performing two
comparison operations anyway, we allow edges queries between any two nodes in the tree. We now
give a formal denition of edge queries for dynamic sets.

Definition 4.6. Let u be an element in U and x and y be two nodes in P . Then an edge query

on (x, y) with respect to u has one of the following three answers:

• here – on or off the path between x and y

• x – in the subtree rooted at x not including this path (may be equal to x)

• y – in the subtree rooted at y not including this path (may be equal to y)

We assume edge queries are constant-time comparisons, as data structures exist that allow us this
abstraction [4]. Also, we emphasize that any ternary search tree with edge queries has an equivalent
binary search tree with element comparisons such that the height of the binary search tree is at
most twice that of the ternary search tree.

4.3 Construction

We build the Leaf-Line tree inductively on P , from the bottom-up, by repeating the following two
steps which constitute one iteration:

1. contract every chain of contiguous degree-2 nodes into a balanced binary search tree (Fig. 4.2
(i)); and then
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Figure 4.2: Examples of a line contraction where we build a balanced binary search tree from a path
(i) and of a leaf contraction where we build a linear search tree from a star node (ii).

2. contract the leaves of every star node into a linear search tree (Fig. 4.2 (ii)).

Let L0 = P be the original partial order tree. If the algorithm takes k iterations total, then
the final result is a single node which we label Lk . In general, let Li be the tree after executing i
iterations of the construction. We also refer to Li as level i of the construction.

Each contraction step in the algorithm builds a component search structure of the Leaf-Line tree.
In particular, each path contraction yields an edge question which determines whether we should
search the BST it represents and each star contraction yields a node representing a linear search tree
on the edges contracted into it (including itself). In this way, given any level Li of the construction,
we can view an edge (x, y) as a search tree over all the nodes falling strictly between x and y. If
(x, y) is an actual edge in L0 then the BST for it is empty. Similarly, we can view a node x as
linear search tree of edge questions that correspond to the edges contracted into it on a previous
step. The final question in this sequence yields the node x. If no edges were ever contracted, then
the search tree for x is just the node itself. We now give details on how each contraction step forms
its corresponding search tree.

Base Cases

Let every edge in L0 be an empty balanced binary search tree. Let every node in L0 be a search
tree composed of just the node itself.
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Line Contraction

Consider the path contraction step of iteration i: If x2, . . . , xt−1 is a chain of contiguous degree-2
nodes in Li bounded on each side by non-degree-2 nodes x1 and xt respectively, we contract this
chain into a balanced binary search tree (BST) over the nodes x2, . . . , xt−1. We assume the BST
performs edge queries to identify the nodes instead of the classical node queries. Recall that each
node represents a search tree. The result of the path contraction is an edge labeled (x1, xt). This
edge represents a question. If u is an element of U then an edge query on (x1, xt) with respect to u
will continue the search either on the search trees given by x1 or xt or, in the case of a here answer,
on the balanced binary search tree over x2, . . . , xt−1.

Leaf Contraction

Consider the star contraction step of iteration i: If y1, . . . , yt are all degree-1 nodes in Li adjacent
to a node z in Li, we contract them into the linear search tree (LST) associated with z. The LST
consists of edge questions of the form (z, yj). If u is an element of U then an edge query on (z, yj)
with respect to u will continue the search either (1) on the current LST with question (z, yj+1) if u
is closer to z, (2) on the LST associated with yj if u is closer to yj , or (3) on the BST given by the
edge (z, yj).

If nodes were already contracted into the LST from a previous iteration, we now add the new
ones, as well. Each question (z, yj) in the LST is asked sequentially and so the height of the LST is
equal to the number of nodes contracted into z.

Definitions

With respect to the construction algorithm above, we define three properties which classify all nodes
in a poset once a Leaf-Line tree has been built.

Definition 4.7. The round of a node x is the iteration i where x was contracted. We say round(x)
= i.

Definition 4.8. The type of a node represents the step where the node was contracted. If node x
is line contracted, we say type(x) = line, otherwise we say type(x) = leaf.

Definition 4.9. We define the parent of a node x as follows:

• if type(x) = line and x was contracted into the BST associated with some edge (y, z) then
parent(x) = (y, z).

• if type(x) = leaf and x was contracted into the LST associated with some node t then
parent(x) = t.

4.3.1 Example

In this section we give an example of the Leaf-Line tree construction. We show how a poset Q
undergoes repeated iterations of the construction algorithm (Fig. 4.3), as well as the final resulting
decision tree for Q (Fig. 4.4).
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Suppose Q has the tree structure illustrated in Fig. 4.3 (i). We associate an empty BST with
every edge in L0 = Q and an LST comprised of only the node itself with every node in L0. The
first path contraction creates BSTs for the chains {G,H, I, J,K}, {P}, {S, T}, {W}, and associates
them with the edges (F,L), (F,R), (R, V ), (R,X), respectively. We obtain the tree in Fig. 4.3 (ii).

The first iteration ends with a star contraction step that adds collections of leaves {A,B}, {D,E},
{M,N}, {V,X} to the LSTs of elements C, F , L, R, respectively. We thus obtain the tree in Fig. 4.3
(iii).

At this point, the tree contains no chains of degree-2 nodes, and the next path contraction has
no effect. Finally, the second star contraction reduces the tree to a single node (thus ending the
construction process) by contracting the final leaves C, L, R into the LST of node F as shown in
Fig. 4.3 (v). The resulting Leaf-Line decision tree is shown in Fig. 4.4.

Notice that in the Leaf-Line tree some answers to certain edge queries are marked as impossible
(in Fig. 4.4 these are denoted by empty nodes with red borders). This happens because the answer
here to an edge query (x, y) implies that the node u we seek is not equal to either x or y (recall
Definition 4.6). However, if there is at least one node on the path between x and y, we need to ask
the edge questions adjacent to nodes x and y on that path in order to determine whether u should
be placed between two elements. Such a question cannot answer x or y since the here answer
eliminated this possibility. Thus these choices are impossible in the decision tree.

4.3.2 Analysis

To prove the efficiency of our algorithm we need the following technical result.

Lemma 4.10. The construction algorithm runs for at most logw iterations.

Proof. Suppose that the algorithm runs for k iterations creating trees L0, . . . , Lk and let Si be the
number of star nodes in tree Li. After path contraction, the new tree L′i will contain only the stars
and leaves of Li. We say L′i is a full tree. After a subsequent star contraction, all leaves are pruned
away into LSTs and the tree Li+1 contains exactly the star nodes of tree Li. Since L′i is a full tree,
the number of leaves is at least half of the size of L′i. Thus, after path contracting q nodes and star
contracting at least half of the remaining ones, the size of tree Li+1 is:

|Li+1| =
|Li| − q

2
≤ |Li|

2

By Lemma 4.2, S0 ≤ w and so |L1| = S0 ≤ w. Since after each iteration we have less than half the
number of elements as before, the construction process must end after at most logw iterations.

Given the construction algorithm and the previous lemma, we claim the following efficiency
guarantee:

Theorem 4.11. The Leaf-Line tree can be built in O(n) time from the Hasse diagram of a poset
of size n.

Proof. For each path contraction we need to identify all degree-2 nodes in the current tree and
construct BSTs from them, which we then associate with specific edges. This is a linear time
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operation in the size of the tree at iteration i. For each star contraction we add each leaf in the tree
to some LST corresponding to its non-degree-1 neighbor. This operation is also linear in the size of
the tree.

By the proof of Lemma 4.10 we know the size of the tree is halved after each iteration. Starting
with n nodes in L0 = P , the total number of operations performed is:

O(n) +O(
n

2
) +O(

n

4
) + · · ·+O(1) = O(2n) = O(n).

Lemma 4.12. On any root-to-leaf path in the Leaf-Line tree there is at most one BST and one
LST for each iteration i of the construction algorithm.

Proof. On a root-to-leaf path, the Leaf-Line tree contains LST and BST data structures in decreasing
order of the iteration i since the data structure is built incrementally from the bottom up. Suppose
we are currently in LST (A). The immediately accessible search structures from this point (aside
from ourselves) are:

• LST (B) for all queries (A,B) ∈ LST (A)

• BST (A,C) for all queries (A,C) ∈ LST (A)

If query (A,B) ∈ LST (A), then type(B) = leaf and so round(B) < round(A) by construc-
tion. If D is a node in BST (A,C), then round(D) ≤ round(C) < round(A) since D was line
contracted before C was leaf contracted into LST (A).

Now suppose we are currently in BST (A,B). All nodes C contracted into this BST have equal
round j by construction. The next accessible search structures are:

• BST (D,E) for all queries (D,E) ∈ BST (A,B)

• LST (C) for each leaf C of BST (A,B) (this LST may consist of only the node C)

If F is a node in BST (D,E), then round(F ) < j since F was line contracted before all nodes
in BST (A,B) (otherwise, F would be in BST (A,B)). If C is a node in BST (A,B) then round(C)
= j.

Finally, consider a root-to-leaf path. Suppose at some point we are in LST (A) and the next
search structure we enter is LST (B). It follows from above arguments that round(A) is strictly
smaller than round(B). Suppose at some point we are in BST (C,D) and the next structure on
the path is BST (E,F ). Then for all nodes G line contracted into BST (C,D) and all nodes H line
contracted into BST (E,F ), we have round(G) strictly smaller than round(H) and this concludes
our proof.

Theorem 4.13. Let OPT be the query complexity of the optimal search strategy. The height of
the Leaf-Line tree is at most O(logw) ·OPT .
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Proof. From the previous Lemma we know that on any root-to-leaf path in the Leaf-Line tree we
search at most one BST and one LST for each iteration i of the construction algorithm. In each
LST we perform at most d queries where d is the maximum node degree in P . In each BST we ask
at most log C questions, where C is the size of the longest chain in P .

Since there at most logw iterations by Lemma 4.10, it follows by Lemma 4.4 and Corollary 4.5
that the height h of the Leaf-Line tree is bounded above by:

h ≤ (d+ log C) logw ≤ (OPT +OPT ) logw ≤ OPT · 2 logw = O(logw) ·OPT.

4.4 Search

Given a Leaf-Line tree for a poset we identify two types of search based on the granularity of the
expected response:

Test membership: we seek a true or false answer indicating whether an element u ∈ U is in P .

Find location: we want to identify the precise location where an element from the universe must
be inserted in the Hasse diagram of our poset P .

The Test membership search is a fast test that establishes whether an element u ∈ U is in P .
However, this type of search does not provide us with the location of u in the Hasse diagram for
P . We require this information when inserting u in P . Find Location is a slower, yet more specific
search, that provides enough information for the insertion algorithm to run.

4.4.1 Test Membership

We present the following algorithm which gives a true or false answer to whether an element u ∈ U
is in P . Note that the only terminal nodes in the Leaf-Line tree are either leaves of the poset P or
empty BSTs (corresponding to a final here answer).

Algorithm 4.1 The Test Membership Algorithm.

Follow root-to-leaf path in Leaf-Line tree given by successively querying for element u
if search terminates at a poset leaf then

u is in P
else if search terminates at an empty BST then

u is not in P
end if

The following result is self-evident.

Theorem 4.14. Algorithm 4.1 has query complexity equal to the height of the Leaf-Line tree.
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4.4.2 Find Location

If a node u ∈ U is not in P , we need an algorithm to find the position where u should be inserted
in P . Because we are dealing with dynamic posets, recall from Section 4.2 that a node u ∈ U may
actually fall between nodes a and b in P . Furthermore, if node a has several neighbors then u

may be juxtaposed between a and only some of those nodes, as shown in Fig. 4.1. If we receive a
here answer, we must query all edges (a, bi), where bi is a neighbor of a, in order to disambiguate
between all possibilities. Every here answer indicates that node u falls between a and bi. If we
receive multiple here answers, the search stops and the insertion location of u is between a and
all bis that answered here. If we receive only one here answer, we continue the search into the
BST associated with edge (a, bi). Note that in our query model, it is enough to query each direction
incident to a (i.e. each edge in LST (a)) in order to identify to which neighbors of a is node u

adjacent. The algorithm for finding the insertion location for node u in P is given below.

Algorithm 4.2 The Find Location Algorithm.

Follow Algorithm 4.1
if query (x, y) answers here then

query all edges in LST(x) and LST(y)
query any other edge adjacent to x or y (i.e. in BST (Parent(x)) and BST (Parent(y)) if

type(x) = line or type(y) = line)
if we obtain at least one more here answer then

search terminates: u is inserted within all edges that answered here
else

search BST(x, y)
end if

end if

Theorem 4.15. Algorithm 4.2 has query complexity within a constant factor of the height of the
Leaf-Line tree.

Proof. When we get a here answer, we stop searching in the current structure. After determining
the number of here responses, the search either terminates or continues in a subsequent BST on
the same root-to-leaf path. Searching for a neighbor edge to a given edge in a BST is O(log s) in
its size by [9]. By the proof of Lemma 4.12, this implies Algorithm 4.2 searches at most two more
LSTs and two more BSTs per iteration. By Lemma 4.4, Algorithm 4.2 performs at most:

(3d+ 3 log C) logw ≤ (3OPT + 3OPT ) logw ≤ OPT · 6 logw = O(logw) ·OPT.

queries, which is within a constant factor of the height of the tree by Theorem 4.13.

4.5 Neighbors

Given an element p ∈ P , a natural question is finding the neighbors of p in the poset. Since our
data structure does not take into account directed edges, we will focus on the analogous problem
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of identifying the neighbors of node p in P . Note that once a neighbor x has been found, we can
classify it as a predecessor or successor of p in constant time by querying the edge (x, p).

We present the following algorithm for finding all the neighbors of element p.

Algorithm 4.3 An Algorithm for Finding All Neighbors of an Element p ∈ P .

Follow root-to-leaf path in Leaf-Line tree given by successively querying for element p
When p has been found:
for all edges (p, x) in LST (p) do

Find closest element z to p in direction (p, x)
Report z as a neighbor of p

end for
if type(p) = leaf then

Let parent(p) = anode (if it exists)
Find closest element t to p in direction (p, a)
Report t as a neighbor of p

else if type(p) = line then
Let parent(p) = (a, b)edge

Find adjacent elements i < p and j > p in BST (a, b) (if they exist)
Find closest elements t, u to p in directions (p, i) and (p, j)
Report t and u as neighbors of p

end if

We can find the closest element to p in a certain direction (p, z) by first choosing here on this
edge question and subsequently always choosing the endpoint closest to p of all asked queries. When
this choice would lead to an impossible node, we chose here, and continue as before. Finally, when
the endpoint closest to p is not a valid choice on query (p, x) and the here BST is empty, we know
that x is the nearest neighbor of p in that direction. For example, in Fig. 4.4, to find the nearest
neighbor of node F on the direction (F,L), we first chose here on this edge, then we select endpoints
I and G for the following two queries as these nodes are closest to F and yield a valid choice. Finally,
for question (F,G), neither the answer F , nor the answer here are valid, and we conclude that G
is the neighbor we seek.

Since balanced binary search trees support efficient neighbor operations [9], we can find each of
the adjacent elements i < p and j > p in BST (a, b) using at most log C queries.

Theorem 4.16. Let H be the height of the Leaf-Line tree. Algorithm 4.3 can find each neighbor
in O(H) time and has query complexity H ·O(d).

Proof. To find a neighbor in one of the directions (p, x) ∈ LST (p) we need at most H queries. If
type(p) = leaf, finding the parent of p is a constant time operation (no queries needed since we
store this information for each node) and identifying the neighbor takes H queries in the worst case.
If type(p) = line, finding the adjacent elements to p requires fewer than 2 log C queries and we
can discover the neighbors using at most 2H queries. Since log C ≤ OPT by Corollary 4.5 and
H = OPT ·O(logw) by Theorem 4.13, we conclude that we can find each neighbor in O(H) time.

Finally, each node p ∈ P has at most d neighbors, and so Algorithm 4.3 has query complexity
O(H) ·O(d) = H ·O(d).
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4.6 Insertion

In this section we describe an efficient method of updating the Leaf-Line tree when inserting a new
element u ∈ U into poset P . Depending on the location of u in P , we distinguish between two types
of insertion:

Node insertion: u is inserted as a leaf in the poset tree

Edge insertion: u is inserted between two or more elements in the poset tree

To identify the position of u in P we use the Find Location search algorithm (Algorithm 4.2).
For node insertion the new element u has only one neighbor in P . For edge insertion the algorithm
returns a collection of nodes comprised of a node B ∈ P together with a subset of nodes from
LST (B). These are all the here answers obtained when querying edges in LST (B). The insertion
procedure also depends on the new neighbor(s) of u in P .

Definition 4.17. The insertion point of a node u is:

• the only neighbor of u in the case of a node insertion

• the node whose LST we query to find the other neighbors of u in the case of an edge insertion

Nodes in the Leaf-Line tree are completely characterized by the following three properties defined
in Section 4.3: round, type, and Parent. In designing the insertion algorithms our goal is for the
updated tree to be essentially the same tree (modulo differences in the balanced binary search trees)
as we would have built using the induction algorithm in Section 4.3 had we started with the poset
P ∪{u}. In the algorithms provided in this section we describe the updates that need to occur both
to the Leaf-Line tree and to the properties of nodes such that we maintain this invariant.

Note We use the following conventions for all our figures in this chapter:

• the insertion point B is denoted by a doubly-stroked node border

• unreachable nodes in the Leaf-Line tree have a dark red border

• nodes already contracted in the LST (K) are denoted by smaller unmarked nodes radially
neighboring the larger marked node K

• node superscripts denote round numbers

• continuous lines denote an edge that exists at the current iteration step

• dotted lines signal the existence of a path between their endpoints in the Leaf-Line tree, not
necessarily comprised of nodes, edges, or data structures visible at this iteration step

• other colors (i.e. blue, green, gray) are used to clarify the pre-insertion and post-insertion
positions of various subsets of the Leaf-Line tree
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4.6.1 Node Insertion

Let A be the node to be inserted in P at insertion point B. We distinguish three cases which are
detailed below. We prove in Section 4.6.3 that our algorithms are exhaustive, as they provide valid
updates for all node insertion possibilities which may occur in practice.

Case 1: B is the Final Node in the Contraction Process

The insertion point B is the highest node in the Leaf-Line tree and has no parent. We have the
following possibilities:

Case 1.1: There exists node M such that only B,A, and M survive after round(B)−1 iterations

After round(B)−1 iterations we perform a subsequent line contraction and B becomes the
only node in BST (M,A). We arbitrarily chose M to become the final node and path contract
A into LST (M). We describe the formal changes to the poset and data structure in Fig. 4.5
and Algorithm 4.5.

Case 1.2: There exists no such node M

If round(A) < round(B) A is contracted into LST (B) at some point during the contraction
process. If round(A) = round(B), then after enough iterations the poset consists of only
nodes A and B and now undergoes an additional contraction. In this case, we can arbitrarily
choose to increase round(B) by one unit and contract A into LST (B). We describe the formal
changes to the poset and data structure in Fig. 4.6 and Algorithm 4.6.

Case 2: B is not the Final Node and round(A) < round(B)

Since round(A) < round(B), node A would be leaf contracted into B before the iteration which
contracts B into its parent. We thus insert A into LST (B), regardless of the type of B (Fig. 4.7
and Algorithm 4.7).

Case 3: B is not the Final Node and round(A) = round(B)

When round(A) = round(B), we have the following possibilities:

Case 3.1: type(B) = leaf

We know that parent(B) = E for some node E of round higher than round(B). Since
round(A) = round(B), nodes A and B are now contracted at the same iteration. At that
step, A is the farthest such node from E in this direction, so B is line contracted and A

is leaf contracted and replaces B as a leaf node in LST (E). If BST (E,B) consists of
nodes line contracted at iteration round(B), as well, then B will become their peer. Other-
wise, if BST (E,B) consists of nodes line contracted at a previous iteration, we create a new
BST (A,E) which contains a single node: B (Fig. 4.8 and Algorithm 4.8).
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Case 3.2: type(B) = line

Let parent(B) = (E,F ). After round(B) iterations, node B will have degree 3 instead of 2
since A survives. Similarly to Case 2 (Fig. 4.7 and Algorithm 4.7), A is leaf contracted into
LST (B). However, B is no longer line contracted at this step, but survives one extra iteration
itself. This implies that round(B) increases by one which triggers other changes depending
on the relationship between B and its parent edge. In all scenarios, since B was formerly
line contracted into BST (E,F ), we must split this structure into BST (E,B) and BST (B,F )
comprised of all nodes in the initial BST that fall between E and B, respectively between B

and F . We associate these new BST s with edges (E,B) and (B,F ), respectively.

Let round(B) refer to the non-incremented value and let parent(B) = (E,F ). WLOG,
let max(round(E), round(F )) = round(F ). We then identify the following subcases:

• 3.2.1: B becomes the sole node in a new BST (E,F )

When round(B)+1 < round(E) ≤ round(F ), the node B will still be line contracted
between E and F , but one iteration after it was contracted in the initial poset. Furthermore,
B becomes the only node between E and F to be line contracted at iteration round(B)+1.

We encounter a similar situation if round(B)+1 = round(E) < round(F ) and type(E)
= leaf. Prior to the node insertion, all nodes between E and F were contracted in the first
round(E)−1 iterations. Now, B is the only node to be line contracted in the same round as
E, which is subsequently leaf contracted.

In both scenarios, a new balanced binary search tree is created whose only queries are the
edges (E,B) and (B,F ). We describe the formal changes to the poset and data structure in
Fig. 4.9 and Algorithm 4.9.

• 3.2.2: B is line contracted together with E

Suppose round(B)+1 = round(E) < round(F ) and type(E) = line. Adding node
A that is contracted at round k − 1 will cause B to still be in the poset when iteration k

begins. Since the only neighbors of B that have survived to this point are E and F we know
B will be line contracted together with E into some BST (F,H) = parent(E) (Fig. 4.10 and
Algorithm 4.10).

• 3.2.3: B is leaf contracted into LST (F )

Suppose round(E) < round(B)+1 < round(F ). Since parent(B) = (E,F ) it fol-
lows that round(B) ≤ round(E). Then round(E) < round(B)+1 implies round(B) =
round()E before inserting. Furthermore, type(E) = leaf, otherwise (E,F ) could not be
parent(B).

After round(E)−1 post-insertion iterations, B will have degree 3 instead of 2 since A
survives. In the subsequent iteration, E and A are leaf contracted into LST (B) and finally
one iteration later, B is contracted into LST (F ), since round(B)+1 < round(F ).
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• 3.2.4: B is contracted during the same iteration as E and F

Suppose round(E) = round(B)+1 = round(F ). Because of node A, B survives one extra
iteration and its only neighbors are E and F , both previously contracted at this step.

(a) If type(E) = type(F) = line, then E and F were contracted into the same BST (G,H)
(poset P is a tree). Since B survives, but its only neighbors are E and F , it follows that all 3
nodes are now line contracted together into BST (G,H) (Fig. 4.12 and Algorithm 4.12).

(b) If type(E) = line and type(F ) = leaf, then E was line contracted into some
BST (G,F ), where round(G) > round(F ). After insertion, B survives one extra iteration
and its only neighbors are E and F . Thus, B is subsequently line contracted into BST (G,F )
together with E (Fig. 4.13 and Algorithm 4.13).

• 3.2.5: Recursive step: B becomes the new node to be inserted at insertion point F

If round(E) < round(B)+1 = round(F ), then similarly to Case 3.2.3, E and A are
leaf contracted into LST (B) on iteration round(B) (non-incremented value) (Fig. 4.14, Algo-
rithm 4.14). But on the subsequent iteration, node F has one extra neighbor: node B. We note
that reasoning about the contraction of F is analogous to applying the Node Insertion proce-
dure: we are seeking to insert node B at insertion point F knowing round(B) (incremented
value) = round(F ).

We summarize the cases of the Node Insertion procedure as follows:

Case 1 B is the final node in the contraction process.

1.1 Exactly 3 nodes survive after round(B)−1 iterations Fig. 4.5, Algorithm 4.5

1.2 Otherwise Fig. 4.6, Algorithm 4.6

Case 2 B is not the final node and round(A) < round(B) Fig. 4.7, Algorithm 4.7

Case 3 B is not the final node and round(A) = round(B)

3.1 type(B) = leaf Fig. 4.8, Algorithm 4.8

3.2 type(B) = line and parent(B) = (E,F )edge

3.2.1 round(B)+1 < round(E), round(F ) or round(B)+1 = round(E) < round(F )

and type(E) = leaf Fig. 4.9, Algorithm 4.9

3.2.2 round(B)+1 = round(E) < round(F ) and type(E) = line

Fig. 4.10, Algorithm 4.10

3.2.3 round(E)< round(B)+1< round(F ) Fig. 4.11, Algorithm 4.11

3.2.4 round(B)+1 = round(E) < round(F )

(a) type(E) = type(F ) = line Fig. 4.12, Algorithm 4.12

(b) type(E) = line and type(F ) = leaf Fig. 4.13, Algorithm 4.13

3.2.5 round(E)< round(B)+1 = round(F ) Fig. 4.14, Algorithm 4.14



4.6. INSERTION 41

4.6.2 Edge Insertion

Let A be the node inserted in P at insertion point B and consider the set S = {C1, . . . , Cn, Cleft,

Cright} where (B,Ci) is an edge in LST (B). If type(B) = line then Cleft, Cright are the two
corresponding directions on the line. If type(B) = leaf, then Cleft = Cright = Cline.

The Find Location algorithm will return a collection WLOG Sfound = {C1, . . . , Ck}, where all
edges (or directions) (B,Cj), 1 ≤ j ≤ k answered here when queried about node A. Furthermore,
let Sstolen = Sfound \ {Cleft, Cright} and Snot stolen = S \ (Sfound ∪ {Cleft, Cright}.

We first describe an algorithm to insert a node A (implicitly LST (A) whose final leaf is A) into
an edge (E,F ) when A is adjacent to endpoint E in the poset P (Algorithm 4.4). This algorithm
searches down into the Leaf-Line tree for the BST created at iteration round(A) adjacent to node
E. If found, A will be inserted into this BST . However, if this BST is empty or does not exist,
then DS in Algorithm 4.4 will be the LST corresponding to the node M closest to E within the
edge (E,F ). In this case, a new BST (E,M) will be created and populated with the element A.

Algorithm 4.4 Insert Node A into edge (E,F ) when A is adjacent to E in P .

while Current data structure was built at iteration round(A) or higher do
Run Test Membership search algorithm (Algorithm 4.1) for A starting in BST (E,F )

end while
Let DS = parent(Data Structure Reached) = LST (M) or BST (E,M) for some node M ∈ P
Updated Properties:
type(A) ← line
parent(A) ← (E,M)edge

Data Structure Updates:
insert A into BST (E,M)

We provide the following preliminary definitions before describing our edge insertion algorithm.

Definition 4.18. Let α, β, γ, and δ be defined as follows:

• α = maxCi∈Snotstolen
{round(Ci)} is the maximum round number of all the nodes not stolen

by A from B. If no such node exists, then α = 0.

• Choose F ∈ Ci ∈ Snot stolen such that round(F ) = α. Then β = maxCi∈Snot stolen\{F}

{round(Ci)} is the second maximum round number of all the nodes not stolen by A from B

(counting duplicates). If Snot stolen has fewer than 2 elements then β = 0.

• γ = maxCi∈Sstolen
{round(Ci)} is the maximum round number of all the nodes stolen by A

from B. If no such node exists, then γ = 0.

• Choose F ∈ Ci ∈ Sstolen such that round(F ) = γ. Then δ = maxCi∈Sstolen\{F}{round(Ci)} is
the second maximum round number of all the nodes stolen by A from B (counting duplicates).
If Sstolen has fewer than 2 elements then δ = 0.

For edge insertion, we distinguish the following three cases:
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Case 1: B is the Final Node in the Contraction Process

The insertion point B is the highest node in the Leaf-Line tree and has no parent. We let k denote
the round of B before insertion.

Case 1.1: A has more round k − 1 neighbors than B (notwithstanding each other) We argue
that before insertion B could only have either one or at least three round k− 1 neighbors. If
it had none, then the contraction process would have finished in less than k iterations, which
is a contradiction. If B had two such neighbors, then only B and these two nodes would have
survived after k − 1 iterations. But a tree with three nodes necessarily forms a path and we
cannot leaf contract both the neighbors of B.

Now, if γ > α, then A has at least one such neighbor and B has none. It follows that A will
replace B as the final node in the contraction process. Furthermore, if α = β, i.e. B has two
neighbors of equal maximum round, then B will survive exactly α+1 iterations. We can thus
use the Node Insertion algorithm to reason about how B will be contracted given that A is the
new final node (Fig. 4.15 (i)). However, if α > β, then B has only one neighbor of maximum
round. B will survive exactly β + 1 iterations since it already has two other neighboring
directions that survive to higher rounds: node A and the neighbor corresponding to α. In
this case, we must use Algorithm 4.4 to discover where B is contracted into the edge (A,M),
where M ∈ Snot stolen and round(M) = α (Fig. 4.15 (iii)).

If γ = α, but δ > β, we must have that δ = α by the argument above (B cannot have exactly
two neighbors of round k− 1). Thus, A has more such neighbors than B and A becomes the
new final node in the contraction process. Since α cannot equal β, we must insert B into the
edge corresponding to the neighbor of round k − 1 using Algorithm 4.4 (Fig. 4.15 (ii)).

We present a formal description of this case in Algorithm 4.15.

Case 1.2: B has more round k − 1 neighbors than A (notwithstanding each other) This case is
symmetrical to Case 1.1. If either α > γ, or α = γ and β ≥ δ, then B remains the final node
in the contraction process. We then argue analogously to above that either A is inserted into
the edge (B,M), where M ∈ Sstolen and round(M) = γ, or A is Node Inserted at insertion
point B (Fig. 4.16). We present a formal description of this case in Algorithm 4.16.

Case 2: B is not the Final Node and type(B) = leaf

Let parent(B) = E. Recall that we denote direction (B,E) by Cline. We distinguish the following
two cases:

Case 2.1: A does not steal Cline Since the Cline direction survives for at least k iterations, A
is not contracted until the iteration immediately after its second-to-last neighbor disappears.
We infer that round(A) = δ+ 1. To compute the new round(B), we must take into account
not only nodes in Snot stolen, but also A itself, also a neighbor of B. After recomputing α

and β in accordance with this criterion, we use a similar argument to infer that round(B) =
β + 1. If round(A) ≤ round(B), we can use the Node Insertion procedure to determine the
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remaining changes (Fig. 4.17 (i)). Otherwise, we know round(A) cannot exceed δ+1 ≤ γ+1 ≤
round(B). A must now replace B in LST (E). Also, if the new round of B is less currently
than prior to inserting A, then B will be contracted within the new edge (A,E): we use
Algorithm 4.4 (Fig. 4.17 (ii)). We present a formal description of this case in Algorithm 4.17.

Case 2.2: A steals Cline We note that this case is analogous to the previous one. If we replace
A with B and vice versa, we reduce this case to the problem of inserting node B at insertion
point A when B does not steal Cline.

Case 3: B is not the Final Node and type(B) = line

Let parent(B) = (E,F ). Recall that we denote direction (B,F ) by Cleft and direction (B,E) by
Cright. We distinguish the following three cases:

Case 3.1: A does not steal either Cleft or Cright For node B, the Cleft and Cright directions
survive for at least k iterations. Also, because α = k − 1 or γ = k − 1 (or both) we know
round(B) ≥ k. Then A is not contracted until the iteration immediately after its second-to-
last neighbor disappears. We infer that round(A) = δ + 1. If γ = δ, then the subtree of B
in the direction of A will consists of only the node A after δ + 1 iterations. The situation is
thus analogous to Node Inserting A at insertion point B (Fig. 4.18 (i)). However, if γ > δ,
then we must use Algorithm 4.4 to discover where A is contracted into the edge (B,M), where
M ∈ Sstolen and round(M) = γ (Fig. 4.18 (ii)). We present a formal description of this case
in Algorithm 4.18.

Case 3.2: A steals Cright, but not Cleft (WLOG) Since both A and B have two directions which
survive for at least k iterations (Cleft and Cright), the time they are contracted is determined
by the largest round nodes in Sstolen, respectively Snot stolen. Thus, round(A) = γ + 1 and
round(B) = α + 1. Furthermore, at least one of A and B must be contracted at iteration k

since there exists a node of round k − 1 in Sstolen ∪ Snot stolen (otherwise round(B) could
not be k). If round(A) < round(B), then round(B) = k, and we use Algorithm 4.4 to
discover where A is contracted into the edge (B,F ) (Fig. 4.19 (i)). Similarly, if round(A) >
round(B), then round(A) = k, and we use Algorithm 4.4 to discover where B is contracted
into the edge (A,E) (Fig. 4.19 (ii)). Finally, if round(A) = round(B) = k, then A and
B are line contracted simultaneously into BST (E,F ) (Fig. 4.19 (iii)). We present a formal
description of this case in Algorithm 4.19.

Case 3.3: A steals both Cleft and Cright We note that this case is analogous to Case 3.1. If we
replace A with B and vice versa, we reduce this case to the problem of inserting node B at
insertion point A when B does not steal either Cleft or Cright.

We summarize the cases of the Edge Insertion procedure as follows:

Case 1 B is the Final Node in the Contraction Process

1.1 γ > α or γ = α and δ > β Fig. 4.15, Algorithm 4.15

1.2 α > γ or α = γ and β ≥ δ Fig. 4.16, Algorithm 4.16



44 CHAPTER 4. THE LEAF-LINE TREE

Case 2 B is not the Final Node and type(B) = leaf

2.1 A does not steal Cline Fig. 4.17, Algorithm 4.17

2.2 A steals Cline Analogous to Case 2.1

Case 3 B is not the Final Node and type(B) = line

3.1 A does not steal either Cleft or Cright Fig. 4.18, Algorithm 4.18

3.2 A steals Cleft, but not Cright (WLOG) Fig. 4.19, Algorithm 4.19

3.3 A steals both Cleft and Cright Analogous to Case 3.1

4.6.3 Analysis

We begin by providing the following correctness and efficiency guarantees.

Lemma 4.19. round(A) ≤ round(B) when invoking the Node Insertion procedure.

Proof. The Node Insertion procedure is invoked when we add a new leaf u to poset P , recursively
from within Case 3.2.5, or externally by the Edge Insertion procedure. When u is a new leaf,
round(u) = 1 and the condition is satisfied. A precondition for Case 3.2.5 is round(B)+1 =
round(F ) and we increment round(B) by exactly one unit before the recursive call. Finally, in
the Edge Insertion procedure we invoke Node Insertion for all cases except Case 3.2:

• Case 1.1 We insert node B at insertion point A. By definition, α is smaller than the initial
round of B (which is k). We increment this value by one before invoking Node Insertion and
thus round(A) = k ≥ α+ 1 ≥ round(B).

• Case 1.2 We insert node A at insertion point B. By definition, γ < k = round(B), and thus
round(A) = δ + 1 = γ + 1 ≤ round(B).

• Case 2.1 The condition is ensured by the if test.

• Case 2.2 The proof is analogous to Case 2.1.

• Case 3.1 The proof is analogous to Case 1.2.

• Case 3.3 The proof is analogous to Case 3.1.

Lemma 4.20. If parent(B) = (E,F )edge and round(E) = round(F ), then at least one of
E,F has type line. Furthermore, round(B) is strictly smaller than at least one of round(E),
round(F ).

Proof. Suppose that round(E) = round(F ) and type(E) = type(F ) = leaf. Then both E

and F were contracted in the same leaf contraction step into some LST (M), where round(M) >
round(E). This implies that BST (E,F ) cannot exist in the Leaf-Line tree, which is a contradiction.
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Since parent(B) = (E,F )edge we know that round(B) ≤ round(E), round(F ) by construc-
tion. Suppose that round(B) = round(E) = round(F ). We know from the previous argument
that either type(E) = type(F ) = line, or type(E) = leaf and type(F ) = line. In the former
case, B,E, and F would have been line-contracted at the same time, which yields a contradiction.
In the latter case, F and B would have been line-contracted at the same time, which also yields a
contradiction.

Lemma 4.21. Node Insertion has query complexity proportional to the height of the Leaf-Line
tree.

Proof. To find the position of A in the poset we run the Find Location algorithm. By Theorem 4.15,
the query complexity of this operation is O(H), where H is the height of the Leaf-Line tree.

Updating the properties of a node is O(1). Inserting into, removing from, and splitting a BST
takes O(log s) queries, where s is the size of the tree. Since s ≤ n, these operations are O(log n) in
the number of queries in the worst case. Inserting into an LST is O(1) and removing from an LST is
linear in its size which is bounded above by d, the maximum node degree in P . Thus, unless we are
invoking the algorithm recursively (Case 3.2.5), we are performing a constant number of operations,
each of which has query complexity either O(d) or O(log n). By Corollary 4.4 and Theorem 4.13,
this operation is O(d+ log n) < O(H).

Finally, suppose we are invoking the algorithm recursively. At each recursive call site, the round

of the element to be inserted is higher than the previous invocation by exactly one unit. Thus, by
Lemma 4.10, we can have at most logw nested recursive calls and so the maximum complexity of
our algorithm is:

logw ·O(d+ log n) ≤ logw ·O(OPT ) ≤ OPT ·O(logw) = O(H).

Lemma 4.22. Algorithm 4.4 has query complexity proportional to the height of the Leaf-Line tree.

Proof. By Theorem 4.14, the Test Membership algorithm has query complexity OPT · O(logw).
Furthermore, updating node properties is O(1) and inserting a node into a BST is O(log n) by [9].
By Lemma 4.4, OPT ≥ log n and the result follows.

Lemma 4.23. Edge Insertion has query complexity proportional to the height of the Leaf-Line tree.

Proof. To find the position of A in the poset we run the Find Location algorithm. By Theorem 4.15,
the query complexity of this operation is O(H), where H is the height of the Leaf-Line tree.

Analogously to the proof of Lemma 4.21, updating node properties is O(1), inserting into or
removing from a BST is O(log n), inserting into an LST is O(1) and removing from an LST is
O(d). During any run of the Edge Insertion procedure, we perform a constant number of BST
operations and property updates and at most O(d) LST removals and insertions before invoking a
separate procedure. However, we can force the LST removals to occur concurrently with querying the
corresponding LST edges in the Find Location algorithm. Thus each query that answers here will
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remove the appropriate LST from the current data structure, which is a constant time operation
at that point. If only one here answer is obtained and the search should continue, we reinsert
the only LST removed, which is also O(1). Thus, by Lemma 4.4, we require only O(H) queries
notwithstanding external procedure calls.

Computing α, β, γ, and δ is O(d) since they depend only on the nodes initially adjacent to the
insertion point. Also, in Cases 2.2 and 3.3, replacing A with B and vice versa is O(OPT ) since we
need only replace B with A in LST (parent(B)) and insert at most O(d) stolen nodes into LST (A)
(these nodes were already removed from LST (B) by the Find Location algorithm as argued above).
This is an O(d) +O(log n) ≤ O(OPT ) ≤ O(H) operation by Lemma 4.4.

The only external procedures invoked by Edge Insertion are inserting into an edge (Algorithm 4.4)
and Node Insertion. These are never called more than once and our proof is concluded by Lem-
mas 4.21 and 4.22.

We are now ready to state our main result concerning the insertion procedure.

Theorem 4.24. When inserting an element u into P , the insertion procedure ensures the same
Leaf-Line tree that would be generated if we started with poset P ∪ {u} and ran the construction
algorithm. Furthermore, the insertion procedure has query complexity proportional to the height of
the Leaf-Line tree.

Proof. By Lemmas 4.19 and 4.20, the Node Insertion procedure handles all valid inputs. The Edge
Insertion procedure is also exhaustive by the definition of its cases. By construction, our insertion
procedures affect all the necessary modifications (both to the properties of nodes and to the Leaf-
Line tree) to ensure that we obtain the same data structure after a dynamical operation as we would
if we re-ran the contraction algorithm with the updated poset as input. Finally, by Lemmas 4.21
and 4.23, we require at most OPT · O(logw) queries to efficiently update the Leaf-Line tree using
our insertion algorithms.
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Figure 4.5: Node Insertion, Case 1.1 – B is the final node in the contraction and exactly 3 nodes
survive after round(B)−1 iterations: B,A, andM : (i) poset structure after round(B)−1 iterations
before insertion, (ii) poset structure after round(B)−1 iterations after insertion, (iii) poset structure
after round(M) iterations after insertion, (iv) data structure before insertion, (v) data structure
after insertion.

Algorithm 4.5 Node Insertion Case 1.1: B is the final node in the contraction and exactly 3
nodes survive after round(B)−1 iterations: B,A, and M .

Updated Properties:
type(A) ← leaf
parent(A) ← M
type(B) ← line
round(B) ← round(B)−1
parent(B) ← (A,M)
round(B) ← round(A)+1
parent(M) ← none (M is now the final node)
Data Structure Updates:
remove M from LST (B)
create new BST (A,M)
insert B into BST (A,M)
insert A into LST (M)
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Figure 4.6: Node Insertion, Case 1.2 – B is the final node in the contraction and either 2 or more
than 3 nodes survive after round(B)−1 iterations : (i) poset structure changes for round(A) <
round(B), (ii) poset structure changes for round(A) = round(B), (iii) data structure changes.

Algorithm 4.6 Node Insertion Case 1.2: B is the final node and either fewer or more than 3
nodes survive after round(B)−1 iterations.

Updated Properties:
type(A) ← leaf
parent(A) ← B

if round(A) = round(B) then
round(B) ← round(B) +1

end if
Data Structure Updates:
insert A into LST (B)
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Figure 4.7: Node Insertion, Case 2 – B is not the final node and round(A) < round(B) : (i)
poset structure changes for type(B) = leaf and parent(B) = E, (ii) poset structure changes for
type(B) = line and parent(B) = (E,F ), (iii) data structure changes.

Algorithm 4.7 Node Insertion Case 2: B is not the final node and round(A) < round(B).

Updated Properties:
type(A) ← leaf
parent(A) ← B

Data Structure Updates:
insert A into LST (B)
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Figure 4.8: Node Insertion, Case 3.1 – B is not the final node, round(A) = round(B) and type(B)
= leaf : (i) poset changes, (ii) data structure changes.

Algorithm 4.8 Node Insertion Case 3.1: round(A) = round(B) and type(B) = leaf.

Let parent(B) = E

Updated Properties:
type(A) ← leaf
parent(A) ← E
type(B) ← line
parent(B) ← (A,E)
Data Structure Updates:
replace B with A in LST (E)
insert B into BST (A,E)
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Figure 4.9: Node Insertion, Case 3.2.1 – B is not the final node, round(A) = round(B) and
type(B) = line : (i) poset changes for node B, (ii) data structure changes for node B.

Algorithm 4.9 Node Insertion Case 3.2.1: round(B)+1 < round(E), round(F ), or
round(B)+1 = round(E) < round(F ) and type(E) = leaf, where parent(B) = (E,F).

For node A, proceed as in Fig. 4.7 (ii) and (iii), Algorithm 4.7
Updated Properties:
round(B) ← round(B)+1
Data Structure Updates:
split BST (E,F ) into BST (E,B) and BST (B,F )
create new BST (E,F )
insert B into BST (E,F )



52 CHAPTER 4. THE LEAF-LINE TREE

E,F E,B

B,F

BST(E,F)

B

LST(B)

BST(E,B)

BST(B,F)

BST(H,F)

(ii)

F

k-1

H B

h d > k

E

k

(i)
k kk

F

k

H B

h d > k

E

k k kk

BST(H,F)

Figure 4.10: Node Insertion, Case 3.2.2 – B is not the final node, round(A) = round(B) and
type(B) = line : (i) poset changes for node B, (ii) data structure changes for node B.

Algorithm 4.10 Node Insertion Case 3.2.2: round(B)+1 = round(E) < round(F ) and
type(E) = line, where parent(B) = (E,F ).

For node A, proceed as in Fig. 4.7 (ii) and (iii), Algorithm 4.7
Let parent(E) = (F,H)
Updated Properties:
round(B) ← round(B)+1
parent(B) ← (F,H)
Data Structure Updates:
split BST (E,F ) into BST (E,B) and BST (B,F )
insert B into BST (F,H)
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Figure 4.11: Node Insertion, Case 3.2.3 – B is not the final node, round(A) = round(B) and
type(B) = line : (i) poset changes for node B, (ii) data structure changes for node B.

Algorithm 4.11 Node Insertion Case 3.2.3: round(E) < round(B)+1 < round(F ), where
parent(B) = (E,F )

For node A, proceed as in Fig. 4.7 (ii) and (iii), Algorithm 4.7
Updated Properties:
round(B) ← round(B)+1
type(B) ← leaf
parent(B) ← F

Data Structure Updates:
split BST (E,F ) into BST (E,B) and BST (B,F )
insert E into LST (B)
insert B into LST (F )

.
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Figure 4.12: Node Insertion, Case 3.2.4 (a) – B is not the final node, round(A) = round(B) and
type(B) = line : (i) poset changes for node B, (ii) data structure changes for node B.

Algorithm 4.12 Node Insertion Case 3.2.4 (a): round(E) = round(B)+1 = round(F ) and
type(E) = type(F ) = line, where parent(B) = (E,F ).

For node A, proceed as in Fig. 4.7 (ii) and (iii), Algorithm 4.7
Let parent(E) = parent(F ) = (G,H)
Updated Properties:
round(B) ← round(B)+1
type(B) ← line
parent(B) ← (G,H)
Data Structure Updates:
split BST (E,F ) into BST (E,B) and BST (B,F )
insert B into BST (G,H)
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Figure 4.13: Node Insertion, Case 3.2.4 (b) – B is not the final node, round(A) = round(B) and
type(B) = line : (i) poset changes for node B, (ii) data structure changes for node B.

Algorithm 4.13 Node Insertion Case 3.2.4 (b): round(E) = round(B)+1 = round(F ),
type(E) = line, and type(F ) = leaf, where parent(B) = (E,F ).

For node A, proceed as in Fig. 4.7 (ii) and (iii), Algorithm 4.7
Let parent(E) = (F,G)
Updated Properties:
round(B) ← round(B)+1
parent(B) ← (F,G)
Data Structure Updates:
split BST (E,F ) into BST (E,B) and BST (B,F )
insert B into BST (F,G)
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Figure 4.14: Node Insertion, Case 3.2.5 – B is not the final node, round(A) = round(B) and
type(B) = line : (i) poset changes for node B, (ii) data structure changes for node B.

Algorithm 4.14 Node Insertion Case 3.2.5: round(E) < round(B)+1 = round(F ), where
parent(B) = (E,F ).

For node A, proceed as in Fig. 4.7 (ii) and (iii), Algorithm 4.7
Updated Properties:
round(B) ← round(B)+1
type(B) ← leaf

Data Structure Updates:
split BST (E,F ) into BST (E,B) and BST (B,F )
insert E into LST (B)
RECURSIVE STEP: Insert B at insertion point F
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Algorithm 4.15 Edge Insertion Case 1.1: B is the final node, γ > α or γ = α and δ > β with
round(B) = k.

Updated Properties:
type(A) ← leaf
round(A) ← k
parent(A) ← none (A is now the final node)
round(B) ← β + 1
Data Structure Updates:
remove Ci ∈ Sstolen from LST (B)
insert Ci ∈ Sstolen into LST (A)

if α = β then
Node Insertion: node B at insertion point A (final node)

else
Let M be the unique node of round α in Snot stolen

remove M from LST (B)
insert M into LST (A)
insert B into edge (A,M) (Algorithm 4.4)

end if

Algorithm 4.16 Edge Insertion Case 1.2: B is the final node, α > γ or α = γ and β ≥ δ with
round(B) = k.

Updated Properties:
round(A) ← δ + 1
Data Structure Updates:
remove Ci ∈ Sstolen from LST (B)
insert Ci ∈ Sstolen into LST (A)

if γ = δ then
Node Insertion: node A at insertion point B (final node)

else
Let M be the unique node of round γ in Sstolen

remove M from LST (A)
insert M into LST (B)
insert A into edge (B,M) (Algorithm 4.4)

end if
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Figure 4.16: Edge Insertion, Case 1.2 Example – B is the final node, α > γ or α = γ and β ≥ δ
with round(B) = k : (i) α > γ and γ = δ, (ii) α > γ and γ > δ, (iii) α = γ, β > δ, and γ > δ, (iv)
α = γ = β = δ.
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Figure 4.17: Edge Insertion, Case 2.1 Example – B is not the final node, type(B) = leaf, par-
ent(B) = E, and A does not steal Cline : (i) if round(A) ≤ round(B) we perform a Node Insertion,
and (ii) if round(A) > round(B) we insert B into edge (A,E).

Algorithm 4.17 Edge Insertion Case 2.1: B is not the final node, type(B) = leaf, parent(B)
= E, and A does not steal Cline.

Updated Properties:
round(A) ← δ + 1
Recompute α and β by artificially considering A in Snot stolen

round(B) ← β + 1
Data Structure Updates:
remove Ci ∈ Sstolen from LST (B)
insert Ci ∈ Sstolen into LST (A)

if round(A) ≤ round(B) then
Node Insertion: node A at insertion point B

else
remove B from LST (E)
insert A into LST (E)
insert B into edge (A,E) (Algorithm 4.4)

end if
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Figure 4.18: Edge Insertion, Case 3.1 Example – B is not the final node, type(B) = line, par-
ent(B) = (E,F ), and A does not steal Cleft or Cright : (i) if γ = δ we perform a Node Insertion,
otherwise (ii) we insert A into edge (B,M).

Algorithm 4.18 Edge Insertion Case 3.1: B is not the final node, type(B) = line, parent(B)
= (E,F ), and A does not steal Cleft or Cright.

Updated Properties:
round(A) ← δ + 1
Data Structure Updates:
remove Ci ∈ Sstolen from LST (B)
insert Ci ∈ Sstolen into LST (A)

if γ = δ then
Node Insertion: node A at insertion point B

else
Let M be the unique node of round γ in Sstolen

remove M from LST (A)
insert M into LST (B)
insert A into edge (B,M) (Algorithm 4.4)

end if
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Figure 4.19: Edge Insertion, Case 3.2 Example – B is not the final node, type(B) = line, par-
ent(B) = (E,F ), and A steals Cright, but not Cleft (WLOG) : (i) if round(A) < round(B) we
insert A into edge (B,F ), (ii) if round(A) > round(B) we insert B into edge (A,E), and (iii) if
round(A) = round(B) we insert A into BST (E,F ).

Algorithm 4.19 Edge Insertion Case 3.2: B is not the final node, type(B) = line, parent(B)
= (E,F ), and A steals Cright, but not Cleft.

Updated Properties:
round(A) ← δ + 1
round(B) ← α+ 1
Data Structure Updates:
remove Ci ∈ Sstolen from LST (B)
insert Ci ∈ Sstolen into LST (A)

if round(A) < round(B) then
insert A into edge (B,F ) (Algorithm 4.4)

else if round(A) > round(B) then
remove B from BST (E,F )
insert A into BST (E,F )
insert B into edge (A,E) (Algorithm 4.4)

else
insert A into BST (E,F )

end if



4.7. DELETION 63

4.7 Deletion

In this section we describe an efficient method of updating the Leaf-Line tree when deleting an
element u from poset P . Although we usually ignore edge directions, we will require the following
notion.

Definition 4.25. The highest direction H away from a node u corresponds to the incoming edge
into u in the directed poset tree. If u is the Source, then no such direction exists.

Since we have restricted ourselves to posets of type source, every node will have exactly one
incoming edge, except for the Source which has none. We can state analogous definitions for the
lowest direction in sink posets (where each node has exactly one outgoing edge, except for the Sink)
or for the central direction in central posets (which can be thought of as a sink poset and a
source poset connected by the central element [16]).

To identify the position of u in P we use a modified version of the Test Membership search
algorithm (Algorithm 4.2). Thus, if node u is found, we augment the algorithm to return a pointer
to u instead of the boolean value true. The deletion procedure depends on the nodes in LST (u),
as well as the incident line directions Cline, Cleft, and Cright defined in the previous section (some
may not exist for a particular node u).

Similarly to the insertion, our goal is to update the Leaf-Line tree and the properties of the nodes
such that the resulting tree is essentially the same (modulo differences in the balanced binary search
trees) as we would have built using the induction algorithm in Section 4.3 had we started with the
poset P \{u}. In the algorithms provided in this section we describe the updates that need to occur
both to the Leaf-Line tree and to the properties of nodes such that we maintain this invariant.

We describe a procedure for deleting element u from P that subsequently uses a recursive re-
structuring technique that updates the Leaf-Line tree after u has been deleted. Finally, we prove
that our method is efficient (Section 4.7.3).

We assume the same figure conventions for deletion as we did in the previous section for insertion,
with the modification that the node to be deleted D is now doubly-bordered, instead of the insertion
point B.

4.7.1 Deletion Procedure

Suppose we want to delete node D from P . If D is the Source element, then we don’t delete D, but
instead record that we keep it as a virtual element in our poset (if it is later reinserted we will update
this information accordingly). Consider the set Sneighbors = {C1, . . . , Cn} where (D,Ci) is an edge
in LST (D). Let S = Sneighbors ∪ {Cleft, Cright}. If type(D) = line then Cleft, Cright are the two
corresponding directions on the line. If type(D) = leaf, then Cleft = Cright = Cline. Finally, let
N be the nearest neighbor of D in the highest direction H and let Sremaining = Sneighbors \ {Ck},
where (D,Ck) is the direction away from D corresponding to N . Due to the properties of Hasse
diagrams, when we delete D, all former neighbors of D are now neighbors of N . We distinguish the
following two cases for deletion:
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Case 1: N replaces D

Suppose round(N) ≤ round(D). Then N is neither the parent of D if type(D) = leaf, nor
one of the endpoints of the parent edge of D if type(D) = line. We have the following cases:

Case 1.1: type(N) = line Since round(N) ≤ round(D) and type(N) = line, N must be
contained in the closest BST to D in the highest direction H. After deleting D, N survives as
many iterations as D formerly did since all of D’s former neighbors are now neighbors of N (N
has the same number of directions leading away from it as D and each direction survives the
same amount as it previously did). Thus, N replaces D and the contraction process would have
built a structurally identical Leaf-Line tree, only without having N in the BST it occupied
before deletion (Fig. 4.20). We present a formal description of this case in Algorithm 4.20.

Case 1.2: type(N) = leaf Since round(N) ≤ round(D), it follows that N = Ci ∈ Sneighbors.
After deleting D, all of D’s former neighboring directions are now neighboring N , except the
one containing N itself. Thus, N ’s survival time may change since it now occupies the same
position as D, only with one less adjacent direction. We apply the Restructuring algorithm
for node N (Fig. 4.21 and Algorithm 4.21).

Case 2: N absorbs D

The closest neighbor to D in the highest direction H is either the parent of D if type(D) = leaf,
or one of the endpoints of the parent edge of D if type(D) = line. After deletion, all of the nodes
previously leaf contracted into LST (D) will now contract into LST (N). Although N gains incident
directions, their survival time is strictly lower than that of D (by construction). Since N essentially
loses a direction who formerly contracted at round(N)−1, we must use the Restructuring procedure
to reason about the new contraction round of N (Fig. 4.22 and Algorithm 4.22).

We summarize the cases of the Deletion procedure as follows:

Case 1 round(N) ≤ round(D)

1.1 type(N) = line Fig. 4.20, Algorithm 4.20

1.2 type(N) = leaf Fig. 4.21, Algorithm 4.21

Case 2 round(N)> round(D) Fig. 4.22, Algorithm 4.22

4.7.2 Restructuring Procedure

To complete the deletion procedure, we need to reason about the changes to the Leaf-Line tree that
must occur so that we maintain our construction invariant. We want the final tree to be the same,
regardless of whether we build it after the deletion or we modify the existing one.

Suppose that a node N which initially was contracted at round k has lost a neighbor due to
the deletion of some node D. Then, N may now be contracted in an earlier iteration. If LST (N)
contains edges {(N,C1), . . . , (N,Ck), consider the set Tneighbors = {C1, . . . , Ck}. We provide the
following preliminary definition before describing our restructuring algorithm.
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Definition 4.26. Let α and β be defined as follows:

• α = maxCi∈Tneighbors
{round(Ci)} is the maximum round number of all the nodes in Tneighbors.

If no such node exists, then α = 0.

• Choose F ∈ Ci ∈ Tneighbors such that round(F ) = α. Then β = maxCi∈Tneighbors\{F}

{round(Ci)} is the second largest round number of all the nodes in Tneighbors (counting
duplicates). If Tneighbors has fewer than 2 elements then β = 0.

Suppose that round(N) = k before deletion. For our restructuring procedure, we identify the
following three cases:

Case 1: N is the Final Node in the Contraction Process

By Case 1.1 of the Edge Insertion procedure, in the former contraction process N had either exactly
one, or at least three round k − 1 neighbors. Of these, at most one was lost. To reason about
the new round of N , we only need to take into account when the directions adjacent to N get
contracted. This is analogous to Case 1 of the Node Insertion procedure where N as the final node
in the contraction process and the ’inserted node’ is F such that (N,F ) ∈ LST (N) and round(F )
= α.

Case 2: N is not the Final Node and round(N) remains k

If type(N) = leaf then α = β = k − 1 before a neighbor was lost. If α = β after the loss, as well,
then they must both equal k − 1. This implies that N is leaf contracted after exactly k iterations
since N also has a parent that survives for more than k iterations (Fig. 4.23 (i)).

If type(N) = line, then α = k− 1 before a neighbor was lost. If α remains k− 1 after the loss,
then N is line contracted after exactly k iterations since N also has a parent edge whose endpoints
survive at least until the k-th iteration (Fig. 4.23 (ii)).

We provide a formal description of this case in (Algorithm 4.23).

Case 3: N is not the Final Node, type(N) = leaf, and round(N) becomes k − 1

Suppose that parent(N) = E. If type(N) = leaf then α = β = k− 1 before a neighbor was lost.
Furthermore, the leaf nodes corresponding to α and β must have two more additional directions
that survive exactly k − 2 iterations. This implies that if α > β after the neighbor was lost, then
α = k − 1 and β = k − 2.

After k − 2 iterations, N only has two neighboring directions: the ones corresponding to α and
E. Hence, N is line contracted at iteration k− 1 and round(N) = k− 1. Let Q denote the node in
LST (N) with round(Q) = k−1. Q will replace N as a leaf of E and we create a new BST (Q,E)
which will contain N . Moreover, if BST (Q,N) was created at iteration k − 1, we include all of its
nodes in the new BST (Q,N). We have the following three possibilities:

Case 3.1: BST (N,E) was created at iteration k This implies there exists a node M closest to N
such that round(M) = k and type(M) = line. First, N is line contracted into BST (Q,M)



66 CHAPTER 4. THE LEAF-LINE TREE

at iteration k − 1, together with any nodes on the path from Q to M that were previously
contracted at this iteration (i.e. all the components of BST (Q,N) and/or BST (N,M) if they
were previously created at iteration k−1). Subsequently, Q is leaf contracted into LST (M) at
iteration k−1 and finally, M is leaf contracted into LST (E) at iteration k (replacing N). Thus,
direction (N,E) survived k iterations before N lost a neighbor, but is now fully contracted
after only k − 1 iterations. This could affect the contraction time of E, and so we must run
the Restructuring procedure for E next, considering that E has ’lost’ a neighbor of round k

(Fig. 4.24 and Algorithm 4.24).

Case 3.2: BST (N,E) was created at iteration k − 1 This implies that E is the closest node
to N of round k or higher in direction (N,E). Similarly to above, N is line contracted into
BST (Q,E) at iteration k−1, together with all nodes in BST (N,E) and possibly all the nodes
in BST (Q,N), but only if they were previously line contracted at iteration k−1. Subsequently,
Q is leaf contracted into LST (E) at iteration k − 1 (replacing N). Thus, direction (N,E)
survived k iterations before N lost a neighbor, but is now fully contracted after only k − 1
iterations. This could affect the contraction time of E, and so we must run the Restructuring
procedure for E next, considering that E has ’lost’ a neighbor of round k (Fig. 4.25 and
Algorithm 4.25).

Case 3.3: BST (N,E) was created at iteration i < k − 1 Again, this implies that E is the closest
node to N of round k or higher in direction (N,E). Similarly to above, N is line contracted
into BST (Q,E) at iteration k − 1, together with the nodes in BST (Q,N), but only if they
were previously line contracted at iteration k − 1. Subsequently, Q is leaf contracted into
LST (E) at iteration k − 1 (replacing N). Thus, direction (N,E) survived k iterations before
N lost a neighbor, but is now fully contracted after only k− 1 iterations. This could affect the
contraction time of E, and so we must run the Restructuring procedure for E next, considering
that E has ’lost’ a neighbor of round k (Fig. 4.26 and Algorithm 4.26).

Case 4: N is not the Final Node, type(N) = line, and round(N) becomes k − 1

Suppose that parent(N) = (E,F ). If type(N) = line then α = k − 1 before a neighbor was
lost. Furthermore, the leaf node corresponding to α must have two more additional directions that
survive exactly k − 2 iterations. This implies that if α < k − 1 after the neighbor was lost, then
α = β = k − 2. N is line contracted after k − 1 iterations between the two closest nodes L and R

to N of round k or higher in directions (F,N) and (N,E), respectively. Since nodes on the path
between E and F have round at most k, it follows that the only valid choices for L and R are nodes
in BST (E,F ) (peers of N) and the two endpoints E and F . In all cases, all nodes between L and
R previously contracted at iteration k − 1 will now be line contracted into a new BST (L,R) in the
same step as N (Fig. 4.27 and Algorithm 4.27).

We summarize the cases of the Restructuring procedure as follows:

Case 1 N is the Final Node in the Contraction Process

Analogous to Case 1 of Node Insertion
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Case 2 type(N) = leaf and α = β or type(N) = line and α = k − 1

Fig. 4.23, Algorithm 4.23

Case 3 type(N) = leaf and α > β

3.1 BST (N,E) was created at iteration k Fig. 4.24, Algorithm 4.24

3.2 BST (N,E) was created at iteration k − 1 Fig. 4.25, Algorithm 4.25

3.3 BST (N,E) was created at iteration i < k − 1 Fig. 4.26, Algorithm 4.26

Case 4 type(N) = line and α < k − 1 Fig. 4.27, Algorithm 4.27

4.7.3 Analysis

We first provide the following correctness and efficiency guarantees.

Lemma 4.27. The Restructuring procedure has query complexity proportional to the height of the
Leaf-Line tree.

Proof. The claim is true for Case 1 by Lemma 4.21 and is trivially true for Case 2.

Updating the properties of a node is O(1). Inserting into, removing from, and merging two BSTs
takes O(log s) queries, where s is the size of the tree. Since s ≤ n, these operations are O(log n) in
the number of queries in the worst case. Inserting into an LST is O(1) and removing from an LST
is linear in its size which is bounded above by d, the maximum node degree in P . Note that finding
the closest node in a given direction is O(H) by the proof of Theorem 4.16. Also, the third to last
operation in Algorithms 4.24, 4.25, and 4.26 is equivalent to either a void operation, copying a BST,
or merging two separate BSTs (we include either all or none of the nodes of each of the two trees).
Finally, computing α and β is O(d) since they depend only on the nodes initially adjacent to N .

Thus, unless we are invoking the algorithm recursively (Case 3), we are performing a constant
number of operations, each of which has query complexity either O(d) or O(log n). By Corollary 4.4
and Theorem 4.13, this operation is O(d+ log n) < O(H).

Suppose we are invoking the algorithm recursively. At each recursive call site, the round of the
element to be inserted is higher than the previous invocation by at least one unit since type(N)
= leaf and we are invoking the procedure for parent(N). Thus, by Lemma 4.10, we can have at
most logw nested recursive calls and so the maximum complexity of our algorithm is:

logw ·O(d+ log n) ≤ logw ·O(OPT ) ≤ OPT ·O(logw) = O(H).

Lemma 4.28. Deletion has query complexity proportional to the height of the Leaf-Line tree.

Proof. To find the position of D in the poset we run a slightly modified version of the Test Mem-
bership algorithm. By Theorem 4.14, the query complexity of this operation is O(H), where H is
the height of the Leaf-Line tree.



68 CHAPTER 4. THE LEAF-LINE TREE

Analogously to the proof of the previous Lemma, updating node properties is O(1), inserting
into or removing from a BST is O(log n), inserting into an LST is O(1) and removing from an LST is
O(d). During any run of the Deletion procedure, we perform a constant number of BST operations
and property updates, O(1) LST removals, and O(d) LST insertions before invoking a separate
procedure. Thus, by Lemma 4.4, we require only O(d) +O(log n) < O(H) queries notwithstanding
external procedure calls.

The only external procedure invoked by Deletion is the restructuring protocol. This is never
called more than once and our proof is concluded by Lemma 4.27.

We are now ready to state our main result concerning the deletion procedure.

Theorem 4.29. When deleting an element u from P , the deletion procedure ensures the same
Leaf-Line tree that would be generated if we started with poset P \ {u} and ran the construction
algorithm. Furthermore, the deletion procedure has query complexity proportional to the height of
the Leaf-Line tree.

Proof. The deletion procedure handles all cases by the exhaustive definition of its cases. By con-
struction, our deletion procedure affects all the necessary modifications (both to the properties of
nodes and to the Leaf-Line tree) to ensure that we obtain the same data structure after a dynamical
operation as we would if we re-ran the contraction algorithm with the updated poset as input. Fi-
nally, by Lemma 4.28 we require at most OPT ·O(logw) queries to efficiently update the Leaf-Line
tree using our deletion algorithms.
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Figure 4.20: Deletion, Case 1.1 – round(N) ≤ round(D) and type(N) = line with parent(N) =
(G,H) : (i) type(D) = leaf, D is not the final node, and N is not in Cline direction, (ii) type(D)
= leaf, D is not the final node, and N is in the Cline direction, (iii) type(D) = line and N is not
in the Cleft or Cright directions, (iv) type(D) = line and N is in the Cleft direction (WLOG), (v)
D is the final node in the contraction process.

Algorithm 4.20 Deletion Case 1.1: round(N) ≤ round(D) and type(N) = line with par-
ent(N) = (G,H)

Updated Properties:
type(N) ← type(D)
round(N) ← round(D)
parent(N) ← parent(D)
Data Structure Updates:
remove N from BST (G,H)
insert Ci ∈ Sremaining into LST (N)
remove D from parent structure PS (if D is not final node)
insert N in parent structure PS (if D is not final node)
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Figure 4.21: Deletion, Case 1.2 – round(N) ≤ round(D) and type(N) = leaf with parent(N)
= D : (i) type(D) = leaf and D is not the final node, (ii) type(D) = line, (iii) D is the final
node in the contraction process.

Algorithm 4.21 Deletion Case 1.2: round(N) ≤ round(D) and type(N) = leaf with par-
ent(N) = D

Updated Properties:
type(N) ← type(D)
Data Structure Updates:
remove N from LST (D)
insert Ci ∈ Sremaining into LST (N)
remove D from parent structure PS (if D is not final node)
insert N in parent structure PS (if D is not final node)
Apply Restructuring Procedure to node N



4.7. DELETION 71

D(i) RESTRUCTUREN

D RESTRUCTUREN(ii) F N EF

N

Figure 4.22: Deletion, Case 2 – round(N) > round(D) : (i) type(D) = leaf and parent(D) =
N , (ii) type(D) = line and parent(D) = (F,N).

Algorithm 4.22 Deletion Case 2: round(N) > round(D)

Data Structure Updates:
insert Ci ∈ Sneighbor into LST (N)
remove D from parent structure PS (if D is not final node)
Apply Restructuring Procedure to node N
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Figure 4.23: Restructuring, Case 2 – type(N) = leaf, parent(N) = E, and α = β or type(N)
= line, parent(N) = (E,F ), and α = k − 1 : (i) assigning round(N) = k for type(N) = leaf,
(ii) assigning round(N) = k for type(N) = line.

Algorithm 4.23 Restructuring Case 2: type(N) = leaf and α = β or type(N) = line and
α = k − 1

Updated Properties:
round(N) ← k
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Figure 4.24: Restructuring, Case 3.1 – type(N) = leaf, parent(N) = E, α > β, and BST (N,E)
was created at iteration k .

Algorithm 4.24 Restructuring Case 3.1: type(N) = leaf, parent(N) = E, α > β, and
BST (N,E) was created at iteration k.

Let M be the closest node to N in BST (N,E)
Let Q be the node corresponding to α (edge (Q,N) in LST (N))
Updated Properties:
type(M) ← leaf
parent(Q) ← M
type(N) ← line
round(N) ← k − 1
parent(N) ← (Q,M)
Data Structure Updates:
remove M from BST (N,E)
insert M into LST (E)
remove Q from LST (N)
insert Q into LST (M)
remove N from LST (E)
create new BST (Q,M)
insert all nodes of round k − 1 from BST (Q,N) and BST (N,M) into BST (Q,M)
insert N into BST (Q,M)
Apply Restructuring Procedure to node E
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Figure 4.25: Restructuring, Case 3.2 – type(N) = leaf, parent(N) = E, α > β, and BST (N,E)
was created at iteration k − 1 .

Algorithm 4.25 Restructuring Case 3.2: type(N) = leaf, parent(N) = E, α > β, and
BST (N,E) was created at iteration k − 1.

Let Q be the node corresponding to α (edge (Q,N) in LST (N))
Updated Properties:
parent(Q) ← E
type(N) ← line
round(N) ← k − 1
parent(N) ← (Q,E)
Data Structure Updates:
remove Q from LST (N)
insert Q into LST (E)
remove N from LST (E)
create new BST (Q,E)
insert all nodes of round k − 1 from BST (Q,N) and BST (N,E) into BST (Q,E)
insert N into BST (Q,E)
Apply Restructuring Procedure to node E
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α = k-1

i < k-1
NQ

β  <  α

E

α = k-1 k-1

LEAF

i < k-1

Figure 4.26: Restructuring, Case 3.3 – type(N) = leaf, parent(N) = E, α > β, and BST (N,E)
was created at iteration i < k − 1 .

Algorithm 4.26 Restructuring Case 3.3: type(N) = leaf, parent(N) = E, α > β, and
BST (N,E) was created at iteration i < k − 1.

Let Q be the node corresponding to α (edge (Q,N) in LST (N))
Updated Properties:
parent(Q) ← E
type(N) ← line
round(N) ← k − 1
parent(N) ← (Q,E)
Data Structure Updates:
remove Q from LST (N)
insert Q into LST (E)
remove N from LST (E)
create new BST (Q,E)
insert N into BST (Q,E)
Apply Restructuring Procedure to node E
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Figure 4.27: Restructuring, Case 4 – type(N) = line, parent(N) = (E,F ), α < k − 1, L and R
as defined below.: (i) L 6= F and R 6= E, (ii) L 6= F and R = E (WLOG), (iii) L = F and R = E .

Algorithm 4.27 Restructuring Case 4: type(N) = line, parent(N) = (E,F ), α < k − 1.

Let L be the closest node of round at least k in direction (F,N) (L may be F )
Let R be the closest node of round at least k in direction (N,E) (R may be E)
Updated Properties:
round(N) ← k − 1
parent(N) ← (L,R)
Data Structure Updates:
remove N from BST (E,F )
create new BST (L,R)
insert all nodes of round k − 1 from BST (L,N) and BST (N,R) into BST (L,R)
insert N into BST (L,R)



Chapter 5

Conclusions

5.1 Contributions

We have developed the Leaf-Line tree, a data structure that supports efficient insert, delete, test
membership, and neighbor operations on a set S of n elements drawn from a partial order whose
underlying Hasse diagram is a tree. This is a fundamental problem in data structures with a wide
variety of practical applications such as filesystem synchronization and rankings in sports, college
admissions, and conference submissions. Our data structure provides an efficient solution to this
problem.

The Leaf-Line tree is space efficient – it requires O(n) space where n is the size of the dynamic set
– and can be built in O(n) time given a Hasse diagram of the poset. The height of the Leaf-Line tree
is within a factor of O(logw) of the height of the optimal search strategy for static tree-like posets,
where w is the width of the partial order. All above operations – insert, delete, test membership, and
neighbor – have query complexity within a constant factor of the height of the tree. Although the
width may be as large as n in some cases (the width represents a natural obstacle when searching in a
partial order), we guarantee close to optimal behavior and better than linear performance whenever
possible.

5.2 Future Work

5.2.1 Asymptotical Optimality

Although the Leaf-Line tree provides an efficient way of searching in tree-like partial orders, our
performance is still a factor of O(logw) away from optimal. We believe this is a acceptable price
to pay for being able to maintain our bounds on the height of the tree under dynamic operations.
However, one of our goals for future research is closing this gap between our performance and the
optimal.

Furthermore, we are presently unaware of what the true total complexity of this problem is. Any
significant progress in this direction could show that an asymptotically optimal data structure for
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searching in dynamic partially ordered sets has yet to be found. Nevertheless, it could also provide
validation for our method if research shows that our performance bounds are within a constant
factor of the best polynomial-time solution possible.

5.2.2 The Node Query Model

For the static problem of searching in partial orders, linear time and space solutions exist for both
the Node and Edge Query models. When solving the dynamic setting of this problem, we built the
Leaf-Line tree assuming the Edge Query model. We subsequently seek an analogous data structure
for searching dynamic partial orders under the Node Query model. Any new solution in this case
would first require an extension to the current Node Query model. The extension should allow for
a fast way to find the insertion point of a new element in the poset (similar to the extension to the
Edge Query model which allowed us to implement the Find Location search procedure).

5.2.3 Other Types of Partial Orders

The current version of the Leaf-Line tree only provides efficient insert, delete, test membership,
and neighbor operations for tree-like partially ordered sets. We wish to define a generalization of
our construction algorithm that will allow us to maintain similar data structures for much larger
classes of partial orders. The new algorithm must identify meaningful information about nodes and
structure in more general directed acyclic graphs, as opposed to trees.

Finally, if we successfully extend the contraction algorithm to provide efficient decompositions
for a larger class of partial orders, then a new natural problem arises:

Build a data structure that supports efficient insert, delete, test membership, and neigh-
bor operations for a dynamic set of elements drawn from a partial order which supports
both node and edge insertions and deletions.

Motivating finding a solution for this new problem are applications to programming languages
research such as compiler design optimization and maintaining efficient structural decompositions
of dynamic control-flow graphs.
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