Typicality Sharpens Category Representations

in Object-Selective Cortex
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Typical Categories

are recognized and categorized faster than
less typical categories

Rosch 1973
Rosch & Mervis 1975

| DOG |

more typical less typical
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How does the neural representation of real-world

objects vary across the typicality continuum ?

# | Relationship to #2: Differentiating
category central tendency between basic level categories

Posner & Keele (1968), Rosch & Mervis Resemblance Rosch & Mervis (1975), Sigala &
(1975), Davis and Poldrack (2014), o L thetis (2002), Freed t al. (2003),
H)’POtheS|S ogothetis ( ), Freedman et al. ( )

and many others and many others
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ANIMALS TRANSPORTATION

NS /N

Dogs Cars Planes| |Trains

64 categories x 16 images per category |IMAGENET
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Behavioral Experiment to Assess Category Typicality
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more typical less typical
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Typicality Ranking

Birds
Cats

Dogs
Fish
Cars

Boats

Planes

Trains

more typical less typical

Typicality Sharpens Category Representations lordan, Greene, Beck, Fei-Fei



fMRI Experiment

8 images
I |

12 s 160 ms 590 ms 160 ms 160 ms 590 ms 12 s

Block
1-back

image-level task

Fixation Fixation
Malamute
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o ... Plane _. .. o Dog .. .. Car _. .. L Dog .. ..
leatlon.leatlon Block Fixation .leatlon Block Fixation Block Fixation Fixation Block Fixation
12s 6s 12s 6s 12s 6s 12s 6s 12s 6s 12s 12s 6s 12s
16 blocks
2 blocks = 16 images Run|Run|Run /Run Run Run|Run Run
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per subordinate category n=11

300 s
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Cortical Regions of Interest: RO|

early visual cortex: object-selective:
V1, V2, V3v, hV4
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Outline

How does the neural representation of objects
vary across the typicality continuum?
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Activity Pattern Similarity

5 R b ~
o -
1\ \\"

. 4 3 « .
L4 « 5 : ¥ G =\
- 7 .
" ./ . N
‘4; / 4 NS
A v '/
4
£

v - . 1|
; RS
S a9y
) %y ~
\ .
- Wi -
ZZ = o 3 % 72D
TR { ' -\ P ANy i\ i\
§ i i i R e t
! o\
¥ Y/, \\ \

v
I\

AR
:‘ ;

4
o"

more typical less typical

Typicality Sharpens Category Representations lordan, Greene, Beck, Fei-Fei



Activity Pattern Similarity

Typicality Effect

*

1

Correlation (R)

Correlation with
least typical

No Typicality Effect

Correlation (R)

>
n
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Typical subordinates are more similar to
category central tendency in LOC

0.40 Most typical subordinates
B Least typical subordinates KKK
sk p <0.05 |
z O3 %k p <00l S
~
c skksk p <0.001
O
S 020
S
()
-
S 0.10
@,
Chance
n="11 VI V2 V3V hV4 LOC
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Outline

How does the neural representation of objects
vary across the typicality continuum?

1. Relationship to central category tendency
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Category Boundary Effect

Within-Category Similarity

Pearson r

Category Boundary Effect =

mean() — mean(E)
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more typical less typical
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More Typical
Subordinates
Category Boundary

Less Typical .
Subordinates

Category Boundary

more typical less typical
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More Typical
Subordinates
Category Boundary
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Nn.s.
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Categ. Boundary

Less Typical
Subordinates
Category Boundary

more typical less typical
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Typical exemplars are more similar to each other

and more distinguishable from other categories in LOC
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Outline

How does the neural representation of objects
vary across the typicality continuum?

1. Relationship to central category tendency

2. Strength of category boundaries
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LH Voxel ube RH
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More Typical Objects
More Distinguishable
8 *
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Less Typical Objects
More Distinguishable
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How does the neural representation of real-world
objects vary across the typicality continuum ?

lypical exemplars are more similar to
central category tendency in LOC

Typical exemplars distinguish more strongly
between categories in LOC
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How does the neural representation of real-world
objects vary across the typicality continuum ?

Evidence for a prototype representation for
real-world object categories in LOC
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How does the neural representation of real-world
objects vary across the typicality continuum ?

Evidence for a prototype representation for
real-world object categories in LOC

Less typical exemplars exhibit stronger
category boundaries in clPL
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How does the neural representation of real-world
objects vary across the typicality continuum ?

Evidence for a prototype representation for
real-world object categories in LOC

Suggests contextual facilitation of
categorization for atypical exemplars in cIPL
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How does the neural representation of real-world
objects vary across the typicality continuum ?

lypical exemplars are more similar to
central category tendency in LOC

Typical exemplars distinguish more strongly
between categories in LOC

Less typical exemplars exhibit stronger
category boundaries in clPL
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