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Abstract. Inter-subject registration of cortical areas is necessary in
functional imaging (fMRI) studies for making inferences about equiva-
lent brain function across a population. However, many high-level visual
brain areas are defined as peaks of functional contrasts whose cortical
position is highly variable. As such, most alignment methods fail to accu-
rately map functional regions of interest (ROIs) across participants. To
address this problem, we propose a locally optimized registration method
that directly predicts the location of a seed ROI on a separate target cor-
tical sheet by maximizing the functional correlation between their time
courses, while simultaneously allowing for non-smooth local deforma-
tions in region topology. Our method outperforms the two most com-
monly used alternatives (anatomical landmark-based AFNI alignment
and cortical convexity-based FreeSurfer alignment) in overlap between
predicted region and functionally-defined LOC. Furthermore, the maps
obtained using our method are more consistent across subjects than both
baseline measures. Critically, our method represents an important step
forward towards predicting brain regions without explicit localizer scans
and deciphering the poorly understood relationship between the loca-
tion of functional regions, their anatomical extent, and the consistency
of computations those regions perform across people.

1 Introduction

A common and reasonable assumption of modern neuroscience is that virtually
all human brain areas, whether functionally or anatomically defined, are shared
across the vast majority of the population and a correspondence of processing
role exists between such equivalent areas. However, no two brains have the same
anatomical shape or folding pattern, and thus finding a precise correspondence
between locations in two separate cortical surfaces is a highly non-trivial prob-
lem.

Currently, most state-of-the-art cortical prediction and alignment methods
define transformations between entire cortical volumes that attempt to preserve
anatomical landmarks, cortical curvature, or functional connectivity, and subse-
quently check whether specific regions of interest (ROIs) are accurately matched
between subjects [1–3]. However, many high-level visual brain areas are defined



Fig. 1. (Left) LOC variability. Location and extent of lateral occipital complex
(LOC) is highly variable across subjects, even when using the same localizer exper-
iment, same scanner, and same analysis pipeline. (Right) Schematic representa-
tion of our proposed method. Our algorithm tiles the seed region with smaller
sub-regions and finds the best functional match for each of them in the target map.
The sub-regions are allowed to move independently from one another, provided only
that the distance between any two initially adjacent sub-regions does not increase by
more than a set threshold.

as peaks of functional contrasts (e.g. higher activation for objects versus scram-
bled objects for lateral occipital complex LOC [4]) and it is usually difficult to
identify clear anatomical landmarks and boundaries for these areas, due to large
variability in their cortical position [5, 6] and functional response [7] (Fig. 1, left).
As a consequence, although they provide a reasonable global matching, previous
methods usually fail to accurately map such functional ROIs across participants.

Thus, our goal is to increase the reliability of inter-subject mapping for these
cortical functional peaks, as well as for the visual areas they define, using fMRI
data. To address this problem, we describe a general-purpose method for predict-
ing the location of functional areas across people that we apply to the problem
of localizing object-selective cortex, LOC. Section 2 describes previous work,
Section 3 details the algorithm, and the results are shown in Section 4. Finally,
Section 5 discusses potential applications.

2 Related Work

Our problem can be thought of as a special instance of cortical alignment, where
the main goal becomes accurate prediction of a particular region’s location,
rather than finding a complete correspondence between entire brain volumes.
By comparison, virtually all extant alignment methods ([1–3, 8–12]) define trans-
formations across full cortical volumes and subsequently check whether specific
regions of interest (ROIs) are accurately matched between subjects.

Anatomical alignment relies on large scale correspondences between all hu-
man brains, including the reliable presence and the relatively consistent position
of primary features such as major sulci and gyri on the cortical surface (e.g.
Talairach [8], AFNI [9]). Additionally, given that the main obstacle in aligning
the cortical surface between subjects is its folding variability, methods have been



proposed that warp gray matter meshes using local curvature properties of the
cortex (e.g. FreeSurfer [10]). These methods, as well as recent extensions [1] also
suffer from significant shortcomings in matching functional areas.

A recent method incorporates functional connectivity constraints in the map-
ping [3] and shows improved ability to align intertwined networks in the brain
(i.e. default mode network). However, many functional areas are not usually a
strong part of these networks and thus receive little benefit from this approach.

Finally, another class of alignment methods uses functional correlation con-
straints. For example, hyperalignment [11, 12] and other methods that rely on
low-dimensional embeddings of functional responses (e.g. [13]) usually offer im-
provements over commonly used anatomical alignment methods (e.g. Talairach [8],
AFNI [9]). Nevertheless, such methods represent a point in the target map as
a linear combination of (possibly) all voxels in the other map, and thus are
not directly amenable to transferring the location of one contained area across
maps without explicit additional knowledge, such as post-hoc labeling. Another
promising recent method [2] starts with FreeSurfer alignment and maximizes lo-
cal functional correlation across the cortical surface to nudge the vertices of the
surface map. This method performs well for early visual areas, but shows limited
ability to match functional regions as distance from the occipital pole increases.
In contrast to [2], we enforce maximal alignment and prediction specificity to a
single region of interest and, furthermore, we allow for locally non-smooth defor-
mations in our mapping, which bypasses the (otherwise ubiquitous in previous
work) expectation of using continuous maps between cortical sheets or volumes.

3 Locally-Optimized Cortical Region Prediction

Our goal is to predict the location of functionally-defined high-level visual areas
between participants. To compute a correspondence between equivalent func-
tional regions, we reasoned that although two cortical surfaces (corresponding
to two separate subjects) must express the same necessary computational units
that give rise to observed function, these units might not be perfectly equivalent
or identically distributed spatially across the two ROIs [14]. Thus, a key design
principle behind our method is to allow a small degree of non-smoothness in the
local deformations afforded by the mapping between the two cortical surfaces.

Our method was inspired by a computer vision object co-localization tech-
nique first discussed in [15, 16] and takes as input pairs of flattened cortical
surfaces from participants who previously took part in an arbitrary fMRI ex-
periment that exposed them to complex, varying stimuli (e.g. visual categoriza-
tion [17]). We standardized the cortical surfaces by resampling the multidimen-
sional functional data of each subject to a regular square grid at a resolution
of 2mm x 2mm. Each point in the resulting grids has a functional time course
associated with it which corresponds to the estimated response of that point to
the stimuli shown across the entire duration of the fMRI experiment (e.g. using
a 512 TR fMRI experiment as input implies a 512-dimensional representation for
each point in the resulting standardized cortical maps). Then, for each possible



pair of participants, one of them is selected as the seed and the other as the
target (for our final results, each participant in each pair is, in turn, selected
as the seed and target, and performance is averaged across both these configu-
rations). The location of the functionally defined region of interest in the seed
subject is then tiled with a grid of n x n patches, where each patch is associated
with a small area on the brain surface (e.g. 5 x 5 voxels). Finally, the algorithm
seeks to find maximal functional correspondences between each seed patch and
an equivalent region in the target map by maximizing the sum of time course
correlations across all the patches, while enforcing that the distances between
adjacent patches change by less than a specified amount in each direction (i.e.
ρ = 4 voxels) between the seed and target maps. An example seed ROI parcella-
tion and target matching are shown in Fig. 1 (right). The optimization problem
can be written as:

minimize
M

∑
i dF (Fi, Fmi

)

subject to ds(pmi
, pmj

) ≤ ρ,

where M = {(i,mi)} is the collection of correspondences between seed (i) and
target patches (mi); dF is the feature distance between the patches in each
correspondence, computed as 1 - Pearson r; ds is the cortical distance difference
between the original and mapped configuration of each pair of patches (patch i
mapped to patch j) in the two maps; and ρ is the maximum allowable distance
change between neighboring patches across maps. We solve the optimization
problem above using a deterministic grid search through the space of all possible
patch jitter permutations.

3.1 Advantages Over Previous Methods

Our method presents several key advantages over other alignment methods,
which render it more general and more precise. First, virtually all previous meth-
ods compute a complete correspondence code between entire cortical surfaces.
Afterwards, the location of functional areas is obtained second-hand, e.g. by
aligning a contrast map and re-thresholding. Here, we instead focus on maxi-
mizing the quality of the mapping for a single, specific seed ROI. Furthermore,
other alignment methods usually generate a smooth manifold transformation
between cortices. However, this entails a very strong assumption that activation
profiles vary smoothly and with the same spatial distribution across subjects.
We forgo this assumption by allowing locally-non-smooth deformations in the
topology of the predicted ROI. Finally, cortical registration methods are usually
described by highly complex optimization problems that can only be solved up
to a local minimum, and are thus highly sensitive to parameter initialization.
By contrast, our method has a global optimum solution to which we converge
deterministically and is therefore much more robust.
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Fig. 2. Stimulus set for fMRI experiment used to perform and evaluate the cortical
prediction algorithm. During the experiment, participants were shown images from 32
object categories: 8 breeds of dogs, 8 types of flowers, 8 types of planes, 8 types of
shoes (32 images per category; 1,024 images total).

4 Experiments

4.1 fMRI Dataset and Baselines

We tested our method by predicting the location of a difficult to match, func-
tionally defined, object-selective ROI (lateral occipital complex LOC) between
subjects using data from a block design passive-viewing fMRI experiment where
participants (n = 7) were shown 1,024 images of objects from 32 categories
(Fig. 2, see [17] for details about the procedure and preprocessing). We computed
the position of each participant’s LOC using standard localizer runs conducted
in a separate fMRI session [18, 19]. We then used the AFNI-SUMA software
package [9] to project and interpolate the data from the 3D volume onto a 2D
flattened regular grid cortical map.

We compared our algorithm against the two most commonly used cortical
registration methods: anatomical landmark-based AFNI 3dvolreg [9] and corti-
cal convexity-based FreeSurfer [10]. AFNI uses information about overall brain
shape and automatically defined anatomical points of interest to warp cortical
volumes across subjects. FreeSurfer also uses brain shape, as well as information
about cortical curvature (sulci and gyri locations, distribution of normals to the
gray matter surface) to iteratively distort one cortical surface into another.

4.2 Results

To test how well our method predicts the location of LOC across subjects, we
used two metrics: accuracy and consistency. Accuracy represents the percentage
of overlap between functionally-defined LOC and predicted LOC after mapping
from a different subject’s brain. Consistency is defined as the amount of overlap
between predicted regions from multiple subjects aligned to the same target
map. For both metrics, overlap is computed as intersection over union.

We show results for the two baselines, as well as our method in Fig. 3. Our
registration method vastly outperformed the two canonical baselines in overlap
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Fig. 3. Alignment Results: Accuracy and Consistency (n = 7 subjects). For
every target subject, we align LOC from all other 6 subjects to the target cortical
surface using functional data from the above experiment. (Top Left) Overlap between
predicted LOC and LOC defined using separate standard localizer procedure, measured
as intersection over union of surfaces. (Top Right) We select the voxels predicted
consistently in the target map for n+ subjects and compute the overlap between this
restricted region and ground truth LOC for n ∈ {1, 2, 3, 4}. (Bottom) Consistency
of predicted LOC obtained from aligning using AFNI 3dvolreg, FreeSurfer, and Our
Method for a representative subject. Heatmap indicates how many subjects’ LOC were
mapped to that voxel on the target surface. White outline indicates LOC boundaries
defined using separate standard localizer procedure.

between predicted region and ground truth LOC: baselines 10-11%, ours 24-25%.
Furthermore, the maps obtained using our method are more consistent across
subjects than both baseline measures (overlap of region commonly mapped from
3+ subjects: baselines 9-11%, ours 26%).

Qualitatively, the cortical maps further showcase the strength of our results
compared to the AFNI and FreeSurfer baselines. In the first two panels of Fig. 3
(bottom left) we see that functional regions in other subjects are mapped with
a high degree of variance onto the target subject cortical sheet. Often, there is
little overlap with our localizer-defined ROI and, most importantly, the mapping
may place the region several centimeters away from its desired location, often on
a different gyrus. By contrast, our method (Fig. 3, bottom right) shows much less
variance in the predicted area, with the peak of the prediction fully contained
within our localizer-defined region.



These results suggest that our registration technique significantly increases
the reliability of transferring the location of functional ROIs between subjects.

5 Conclusion

In this paper, we proposed a locally optimized registration method that predicts
the location of a seed region of interest (ROI) on a separate target cortical sheet
by maximizing the functional correlation between regions and simultaneously
constraining the global structure of the mapping, while allowing for non-local
deformations in its topology.

Our method vastly outperforms two canonical alignment baselines (anatom-
ical landmark based AFNI [9] and cortical curvature based FreeSurfer [10])
in both precision and consistency. By improving the quality and reliability of
matching and transferring the location of functional ROIs across subjects, our
technique represents an important step towards obviating the need for running
separate time- and resource-consuming localizer scans for every functional brain
region. Instead, we envision an eventual solution where a single ’localizer’ experi-
ment is performed using a high variance stimulus (i.e. natural movie [14]), which
is then used to define all functional ROIs, including potential regions which have
yet to be identified. Such a mapping is also useful in settings where one needs
to compare analyses and hypotheses between datasets where functional localiz-
ers are missing and gathering extra sessions of data is either expensive (large
number of participants) or impossible (unavailability of former subjects).

Finally, the relationship between peaks of functional contrasts and the com-
putation performed by the cortex surrounding them is not well understood. Since
our method improves the quality of functional ROI mapping between subjects, it
becomes especially useful for investigating the key complex relationship between
anatomy, functional contrast peaks, and cortical computation.
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