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Abstract

We rely on vision more than on any other sensory modality to interact with and

make sense of the world. Our behavior and culture, as well as the data we generate

all rely strongly on visual information to index and capture salient relationships in

the world. Within this realm, categorization is a fundamental building block of our

visual experience. It is due to this marvelous generalization process that we take the

problem of perceiving and understanding trillions of entities in our world (objects

and scenes) and reduce it to a more manageable magnitude by binning virtually

everything we see into a few tens of thousands of categories. Thus, it becomes a

fundamental problem in understanding human vision to elucidate the mechanisms by

which our visual cortices extract such complex information from a noisy sea of colored

dots encoded by our retinas when we look out into the world.

But what represents a ’good’ category and why do these distinctions emerge the

way they do? Cognitively, useful distinctions between groups of items simultaneously

maximize within-category similarity and between-category dissimilarity. The under-

lying hypothesis behind the work we put forward in this dissertation is that this key

idea of similarity maximization also extends to the instantiation of neural patterns

of representation in visual cortex. To this end, we use computational approaches in

the context of several functional neuroimaging (fMRI) experiments to explore how

behaviorally pervasive dimensions of object categorization, such as hierarchical orga-

nization and typicality, are represented in the brain and how they help us build a

coherent picture of the world. Finally, we propose and test a model of neural object

category processing based on the hypothesis that the cognitive utility of category

structure partly drives information processing in visual cortex.
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sic level categories formed separate clusters. (C–E) Match-to-category
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superordinate categorization conditions. Positive values indicate basic

level advantage. Participants identified all stimulus categories faster
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are only three exceptions: ”sunflowers”, ”clogs”, and ”cowboy boots”,

perhaps reflecting the atypicality of these stimuli [71]. ∗ ∗ ∗ p < .001.
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2.2 Neural category boundaries favor basic level representations

in Experiment 1. (A) Category boundary effect for neural activity

patterns at each taxonomic level and in each ROI. Inset shows same

analysis for image feature descriptors: C = color histograms; G = GIST

features; H = HOG features; S = SIFT features. The subordinate

and basic levels were together strongly represented, with the former

being especially emphasized in early visual cortex, whereas the latter

becoming more prominent in LOC. (B) Cohesion and distinctiveness for

neural activity patterns at each taxonomic level and in each ROI. Inset

shows same analyses for image feature descriptors. (C–D) Category

boundary effect difference between basic level and subordinate and

superordinate levels. We uncovered a gradual trade-off between the

subordinate and basic levels, which appeared to develop as we moved

up the visual hierarchy, with a trending basic level advantage arising

in object-selective cortex. (E-F) Cohesion difference between basic

level and subordinate and superordinate levels. (G–H) Distinctiveness

difference between basic level and subordinate and superordinate levels.

The category boundary difference appears to be driven by separate

components of the category boundary effect, depending on taxonomic

level. ∗ p < .05, ∗∗ p < .01, ∗ ∗ ∗ p < .001, † p < .10, n.s. =

not significant. Error bars: 95% confidence interval. Shaded graphs

indicate a significant increase from V1 to LOC. . . . . . . . . . . . . 23
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2.3 MVPA classification reveals that object categories are most

distinct at the basic level in LOC in Experiment 1. (A) Pro-

portion above chance of correct decoding responses for all levels of the

taxonomy (chance is zero): subordinate, basic, and superordinate. Top

insets denote whether differences between adjacent bars are significant.

Category information was discernible significantly above chance at all

taxonomic levels and in all ROIs, with higher visual areas generally

showing larger values. Decoding at the basic level was easier than

at the subordinate and superordinate levels in LOC, RSC, and FFA

(shaded), but not in any of the other brain areas considered. (B) Con-

fusion matrix example: LOC basic level classification. Basic categories

were ordered on the axes according to the pictograms: dogs, flowers,

planes, and shoes. At the subordinate level, within each basic category,

the eight corresponding subordinates were listed alphabetically. At the

superordinate level, the ”natural object” category was listed first, and

the ”man-made object” category was listed second. (C) Confusion ma-

trices for decoding analysis in A: top = subordinate level; middle =

basic level; bottom = superordinate level. In all regions, when classifi-

cation errors did occur, the confusions were more likely to be within the

same basic level than between basic levels with the effect most salient

in LOC. The basic level matrices show that confusions become more

common within the basic level as we move up the visual hierarchy. ∗
p < .05, ∗∗ p < .01, ∗ ∗ ∗ p < .001, n.s. = not significant. Error bars:

95% confidence interval. SUBORD. = subordinate; SUPERORD. =

superordinate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
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2.4 Stimulus set and behavioral results for Experiment 2. (A) The

stimulus set was organized according to a three-level taxonomic hierar-

chy comprising 27 subordinate level (most specific, outside layer), nine

basic level (middle layer), and three superordinate level (most general,

center) categories. Each subordinate category consisted of 40 color

photographs, with a representative image shown. (B) Same-different

subordinate level categorization behavioral experiment. We applied

classical MDS to the perceptual distance between subordinate cate-

gories measured as z scored RTs. In a two-dimensional solution, all

nine basic level categories form separate clusters. (C–E) We used a

match-to-category behavioral experiment to finalize our category tax-

onomy by assessing category status in general and basic level advantage

in particular. We tested a larger category taxonomy (36 subordinate

categories) and then eliminated members with ambiguous category sta-

tus. (C) Participants verified category membership significantly faster

at the basic level than at the superordinate or subordinate levels. (D–

E) RT difference between basic and subordinate / superordinate cat-

egorization conditions. Positive values indicate basic level advantage.

Participants identified almost all stimulus categories faster at the ba-

sic level than at the subordinate / superordinate level. We used this

metric to reject the subordinate with the weakest such effect of the

putative four subordinate level categories in each basic level (shaded

categories were eliminated). ∗∗∗ p < .001. Error bars: 95% confidence

interval. Subord. = subordinate; Superord. = superordinate. . . . . . 32
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2.5 After controlling for animacy, real-world size, and naturalistic

backgrounds, neural category boundaries still show that ba-

sic level representations gain an increasing advantage as we

move up the ventral visual stream. (A) Category boundary effect

for neural activity patterns at each taxonomic level and in each ROI.

Inset shows same analysis for image feature descriptors: C = color his-

tograms; G = GIST features; H = HOG features; S = SIFT features.

Early visual areas favored subordinate distinctions, whereas, in later

areas, this difference disappeared between subordinate and basic levels.

(B) Cohesion and distinctiveness for neural activity patterns at each

taxonomic level and in each ROI. Inset shows same analyses for image

feature descriptors. Cohesion generally decreased with taxonomic level

and was significantly weaker at the superordinate level compared to the

other two levels in all ROIs. Distinctiveness generally increased with

taxonomic level and was significantly weaker at the subordinate level

compared to the basic and superordinate levels in all ROIs, except for

FFA, V1, and V2. (C–D) Category boundary effect difference between

basic level and subordinate and superordinate levels. We observed an

enhanced version of our findings in Experiment 1: the basic level gains

an advantage over both the subordinate and superordinate levels as we

move up the visual hierarchy from V1 to LOC. (E–F) Cohesion dif-

ference between basic level and subordinate and superordinate levels.

(G–H) Distinctiveness difference between basic level and subordinate

and superordinate levels. In contrast to Experiment 1, the category

boundary difference appears to be driven by both components of the

category boundary effect. ∗ p < .05, ∗∗ p < .01, ∗ ∗ ∗ p < .001, n.s.

= not significant. Error bars: 95% confidence interval. Shaded graphs

indicate a significant increase from V1 to LOC. . . . . . . . . . . . . 34
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2.6 After controlling for animacy, real-world size, and naturalis-

tic backgrounds, MVPA classification reveals that object cat-

egories are most distinct at the basic level in LOC. (A) Pro-

portion above chance of correct decoding responses for all levels of the

taxonomy (chance is zero): subordinate, basic, and superordinate. Top

insets denote whether differences between adjacent bars are significant.

Category information was discernible significantly above chance at all

taxonomic levels and in all ROIs. Decoding accuracy at the basic level

was higher than both at the subordinate and superordinate levels in

LOC, but not in any of the other brain areas considered. (B) Confusion

matrix example: LOC basic level classification. Basic categories were

ordered on the axes according to the pictograms: cars, ships, planes,

beds, chairs, tables, drums, guitars, and pianos. At the subordinate

level, within each basic category, the three corresponding subordinates

were listed alphabetically. At the superordinate level, the ”vehicle”

category was listed first, the ”furniture” category was listed second,

and the ”musical instrument” category was listed last. (C) Confusion

matrices for decoding analysis in A: top = subordinate level; middle =

basic level; bottom = superordinate level. In all regions, when classifi-

cation errors did occur, the confusions were more likely to be within the

same basic level than between basic levels with the effect most salient

in LOC. The basic level matrices show that confusions become more

common within the basic level as we move up the visual hierarchy. ∗
p < .05, ∗∗ p < .01, ∗ ∗ ∗ p < .001, n.s. = not significant. Error bars:

95% confidence interval. SUBORD. = subordinate; SUPERORD. =

superordinate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
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3.1 Typicality ranked stimulus set. Our stimulus set comprised 8 sub-

ordinate level exemplars from each of 8 basic level categories. Partici-

pants were shown 16 images from each exemplar, varying in pose and

color (only one representative image is shown above). Within each ba-

sic category, exemplars are organized according to behavioral typicality

from the most typical (left) to the least typical (right): e.g. airliners

(rank 1) and fighter planes (rank 2) were judged to be much more typ-

ical examples of planes than stealth planes (rank 7) and gyrocopters

(rank 8). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2 Typical exemplars are more correlated with category central

tendency than less typical exemplars in object-selective cor-

tex. Correlation between category central tendency and most typical

exemplar in each category (orange) or least typical exemplar in each

category (blue), averaged across all 8 basic level categories. In object-

selective cortex (LOC), typical categories are more similar to the aver-

age category representation than less typical categories and this effect

is not present in early visual areas. (Inset) We performed a similar anal-

ysis using the image-level features from our stimulus set: LAB color

histograms (C), GIST features (G), and multi-scale Gabor wavelet fea-

tures (W). All features show similar values for both highly typical and

less typical exemplar correlations, with the GIST and wavelet features

exhibiting an opposite trend to our LOC results (higher correlation for

less typical exemplars). Therefore, low-level stimulus features cannot

solely explain our results in object-selective cortex. ∗ ∗ ∗ p < .001, ∗∗
p < .01, n.s. - not significant. Error bars: 95% confidence interval. . . 60
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3.3 Category boundaries are stronger for highly typical exem-

plars in object-selective cortex. Category boundary effect for the

two halves of our dataset comprising the most typical 4 exemplars

from each category (orange) and the least typical 4 exemplars from

each category (blue). In object-selective cortex (LOC), typical exem-

plars from one category are more distinguishable from exemplars of

other categories, an effect not reflected in early visual areas’ patterns

of activation. (Inset) We performed a similar analysis using the image-

level features from our stimulus set: LAB color histograms (C), GIST

features (G), and multi-scale Gabor wavelet features (W). All of the

feature representations show an opposite trend to that observed in LOC

(stronger category boundaries for less typical items) and therefore can-

not fully explain our results in object-selective cortex. ∗∗ p < .01, ∗ p

< .05, n.s. - not significant. Error bars: 95% confidence interval. . . . 62

3.4 Whole-brain searchlight analysis uncovers brain regions where

category boundaries are stronger between most typical and

least typical exemplars. We performed a whole-brain searchlight

analysis where we computed the difference between the category bound-

ary effects obtained for the most typical half of our dataset and the

least typical half of our dataset. Figure shows group map results, cor-

rected for multiple comparisons using an FDR measure (see Materials

and Methods for details). Regions shown in orange (right LOC, right

hV4) showed a significant effect of typicality: highly typical exemplars

were more distinguishable from exemplars of other categories. Con-

versely, regions shown in blue (left cIPL) showed the opposite trend:

less typical exemplars were more easily distinguishable form members

of other categories. This cortical region has been previously implicated

in category learning [138] and contextual processing [75], which sug-

gests the possibility that it may aid in the categorization of atypical

items, perhaps through mediating contextual facilitation of recognition. 66
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4.1 Stimulus Sets and Corresponding Typicality Rankings. (A)

The Experiment 1 stimulus set comprised 15 subordinate categories

from each of 2 basic level categories (dogs and cars). Participants

were shown 28 images per subordinate, varying in pose and color (only

one representative image shown for each subordinate). (B) Typicality

rankings for Experiment 1 were obtained using a behavioral experiment

conducted on the Amazon Mechanical Turk crowd-sourcing platform.

Within each basic category, subordinates are ordered according to typ-

icality from the most typical (golden retriever and BMW Z4 on left) to

the least typical (Komondor and Hummer on right). (C-D) The Exper-

iment 2 stimulus set comprised 8 subordinate categories from each of

8 basic level categories (birds, cats, dogs, fish, boats, cars, planes, and

trains). Participants were shown 16 images per subordinate, varying

in pose and color (only one representative image shown for each sub-

ordinate). Typicality rankings for Experiment 2 were obtained using

a behavioral experiment conducted on the Amazon Mechanical Turk

crowd-sourcing platform. Within each basic category in part C, subor-

dinates are ordered according to typicality from the most typical (e.g.

malamute on left) to the least typical (Komondor on right). Categories

marked with purple squares in panels (B) and (D) were used as high

typicality subordinates in the subsequent ”typicality warping” analy-

ses. Similarly, subordinates marked with orange squares in panels (B)

and (D) were used as low typicality subordinates in the same analyses. 87

4.2 Correlation Ranges for Within- and Between-Category Dis-

tances in V1 and LOC. Pearson correlation ranges for within-

category distances (blue) and between-category distances (red) for V1

and LOC. Consistent with prior work [63], as we move up the ventral

stream, the absolute range of the similarity space remains at least as

large or slightly increases in intermediate-level object selective regions

(LOC), compared to early visual regions (V1). (A) Experiment 1: 30

subordinate categories. (B) Experiment 2: 64 subordinate categories. 89
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4.3 Experiment 1 Category Distance Histograms. Graphs show z-

scored Pearson correlation distance histograms for within-category dis-

tances (blue) and between-category distances (red) for early visual (V1,

V2, hV4), object-selective (LOC), scene-selective (PPA, TOS), and

face-selective (FFA) regions. The basic categories ”dog” and ”car” are

reasonably separable in virtually all brain regions considered with the

highest distinction arising in LOC (top right, grey). This suggests that

a sharp qualitative change in the structure of the feature space may

arise between hV4 and LOC, which is not mirrored in other stimulus

selective regions of occipito-temporal cortex. . . . . . . . . . . . . . . 91

4.4 Evolution of Relative Category Distances across Brain Re-

gions. Each pair of subordinate categories is plotted as a point in a

two dimensional representation, where the X and Y axes are defined as

the Pearson correlation distance between the two subordinates in each

of two separate brain regions (in the example above: V1 and LOC).

Projecting the resulting distribution onto either of the axes recovers the
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4.5 Initial Model for Evolution of Category Representations across

Ventral Visual Stream. We propose that categories would start out

partially overlapping, mainly due to overlap in low-level features (A).

As we move up the ventral visual stream, computations in successive

intermediate visual brain regions would contribute to incrementally

shrinking the distances within categories and expanding the distances

between categories (B). Finally, at the apex of ventral stream compu-

tation (inferotemporal cortex), this process reaches its peak in gener-

ating fully dissociable category representations with the least amount
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4.6 Category Boundaries Warp Neural Representations in Occipito-

Temporal Cortex. (Top, Middle) Graphs show how representations

of distances corresponding to subordinate category pairs change as we

move up the ventral visual stream. Axes represent z-scored distances

between pairs of categories in the corresponding brain region. Repre-

sentations are relatively stable between early visual regions (V1, V2,

hV4), as well as between early visual cortex and scene-selective regions

(PPA, TOS). However, we see a striking shift in the quality of the rep-

resentation as we move between hV4 and LOC. Here, within-category

distance pairs lie below the diagonal, while between-category distance

pairs sit above the diagonal, which indicates that the feature space

of LOC shrinks relative distances within categories and expands rela-

tive distances between categories, compared to the feature space of V1.

This effect is also present to a lesser extent between early visual regions

and face-selective cortex (FFA), likely due to the presence of faces in

the ”dog” basic level category. (Bottom) We measured this ”category

warping” effect quantitatively by computing the proportion of within-

and between-category distance pairs that sit above the diagonal. Con-

cordantly, we see that across the ventral stream, a significant category

warping effect exists not just between hV4 and LOC, but also between

V1 and V2, indicating that visual processing proceeds in a manner that

sequentially facilitates the emergence of categorical distinctions. . . . 96
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4.7 Experiment 1 Typicality Distance Histograms. Graphs show

Z-scored Pearson correlation distance histograms for within-highly-

typical-subordinates distances (purple) and within-less-typical-subordinates

distances (orange) for early visual (V1, V2, hV4), object-selective

(LOC), scene-selective (PPA, TOS), and face-selective (FFA) regions.

In early visual regions and scene-selective regions, typicality does not

significantly modulate the representation of real-world objects. By

contrast, typical and less typical subordinates are strongly separable

in LOC (top right, grey), which suggests a sharp qualitative change in

the structure of the feature space may arise between hV4 and LOC,

which is not mirrored in other stimulus selective regions of occipito-
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4.8 Typicality Warps Neural Distances Across Occipito-Temporal

Cortex. (Top, Middle) Graphs show how representations of z-scored

distances corresponding to subordinate category pairs of high (pur-

ple), low (orange), and intermediate (gray) typicality change as we

move up the ventral visual stream. Representations are relatively sta-

ble between early visual regions (V1, V2, hV4), as well as between

early visual cortex and face-selective regions (FFA). However, we see

a striking shift in the quality of the representation as we move be-

tween hV4 and LOC. Here, high typicality subordinate category pairs

exhibit a tendency to lie below the diagonal, while low typicality sub-

ordinate category pairs sit above the diagonal, which indicates that

the feature space of LOC shrinks relative distances between typical

exemplars within a category and expands relative distances between

low typicality exemplars, compared to the feature space of V1. The

opposite effect is present to a lesser extent between early visual regions

and scene-selective cortex (PPA). (Bottom) We measured the ”typical-

ity warping” effect quantitatively by computing the proportion of high

and low typicality subordinate category pairs that sit above the diag-

onal. Concordantly, we see that across the ventral stream, the main

significant category warping effect occurs not between hV4 and LOC,

suggesting a sharp shift in the modulation of object representations by

typicality at this stage in visual processing. . . . . . . . . . . . . . . . 102
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4.9 Updated Model for Evolution of Category Representations

across Ventral Visual Stream. We propose that categories would

start out partially overlapping, mainly due to overlap in low-level fea-

tures (A). As we move up the ventral visual stream, computations in

successive intermediate visual brain regions would contribute to incre-

mentally shrinking the distances within categories and expanding the

distances between categories (B). At both these initial stages, typical-

ity plays little role in the intra-category organization of visual objects.

However, at the apex of ventral stream computation (inferotemporal

cortex), this process would reach its peak in generating fully dissociable

category representations with the least amount of distribution overlap

and furthermore organize exemplars within each category such that

highly typical members gravitate closer to one another and less typi-

cal members are pushed away (C). Critically, these two processes also

fundamentally warp the feature spaces themselves contrasted to earlier

visual processing regions: the representational space of object-selective

cortex becomes doubly warped to, on a global scale, relatively decrease

within-category distances and inflate between-category distances (i.e.

category warping) and, on a local scale, bring highly typical items

closer to one another within the same category and push less typical

items away from the category center (i.e. typicality warping). . . . . 104
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4.10 Experiment 2 Category Distance Histograms. Graphs show

z-scored Pearson correlation distance histograms for within-category

distances (blue) and between-category distances (red) for early visual

(V1, V2, hV4), object-selective (LOC), scene-selective (PPA, TOS),

and face-selective (FFA) regions. The eight basic categories: bird, cat,

dog, fish, boat, car, plane, and train are reasonably separable in virtu-

ally all brain regions considered with the highest distinction arising in

LOC (top right, grey). This suggests that a sharp qualitative change

in the structure of the feature space may arise between hV4 and LOC,

which is not mirrored in other stimulus selective regions of occipito-

temporal cortex. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
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4.11 Category Boundaries Warp Neural Representations in Occipito-

Temporal Cortex for a Large Array of Real-World Basic Cat-

egories. (Top, Middle) Graphs show how representations of distances

corresponding to subordinate category pairs change as we move up

the ventral visual stream. Axes represent z-scored distances between

pairs of categories in the corresponding brain region. Representations

were relatively stable between early visual regions (V1, V2, hV4), as

well as between early visual cortex and face-selective regions (FFA).

However, we saw a striking shift in the quality of the representation

as we moved between hV4 and LOC. Here, within-category distance

pairs lied below the diagonal, while between-category distance pairs

sat above the diagonal, which indicated that the feature space of LOC

shrinks relative distances within categories and expands relative dis-

tances between categories, compared to the feature space of V1. This

effect is also present to a lesser extent between early visual regions

and scene-selective areas (PPA, TOS), likely due to contextual effects.

(Bottom) We measured this ”category warping” effect quantitatively

by computing the proportion of within- and between-category distance

pairs that sit above the diagonal. Concordantly, we see that across the

ventral stream, a significant category warping effect exists not just be-

tween hV4 and LOC, but also between V2 and hV4, indicating that

visual processing proceeds in a manner that sequentially facilitates the

emergence of categorical distinctions. . . . . . . . . . . . . . . . . . . 110
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4.12 Experiment 2 Typicality Distance Histograms. Graphs show

z-scored Pearson correlation distance histograms for within-highly-

typical-subordinates distances (purple) and within-less-typical-subordinates

distances (orange) for early visual (V1, V2, hV4), object-selective

(LOC), scene-selective (PPA, TOS), and face-selective (FFA) regions.

In early visual regions, scene- and face-selective regions, typicality does

not significantly modulate the representation of real-world objects. By

contrast, typical and less typical subordinates are strongly separable in

LOC (top right, grey), which suggests a sharp qualitative change in the

structure of the feature space may arise between hV4 and LOC, which

is not mirrored in other stimulus selective regions of occipito-temporal
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4.13 Typicality Warps Neural Distances in Object-Selective Cor-

tex. (Top, Middle) Graphs show how representations of z-scored dis-

tances corresponding to subordinate category pairs of high (purple),

low (orange), and intermediate (gray) typicality change as we move

up the ventral visual stream. Representations are relatively stable be-

tween early visual regions (V1, V2, hV4), as well as between early

visual cortex and scene- (PPA, TOS) and face-selective regions (FFA).

However, we see a striking shift in the quality of the representation

as we move between hV4 and LOC. Here, high typicality subordinate

category pairs exhibit a tendency to lie below the diagonal, while low

typicality subordinate category pairs sit above the diagonal, which indi-

cates that the feature space of LOC shrinks relative distances between

typical exemplars within a category and expands relative distances be-

tween low typicality exemplars, compared to the feature space of V1.

(Bottom) We measured this ”typicality warping” effect quantitatively

by computing the proportion of high and low typicality subordinate

category pairs that sit above the diagonal. Concordantly, we see that

across the ventral stream, the main significant category warping effect

occurs not between hV4 and LOC, suggesting a sharp shift in the mod-

ulation of object representations by typicality at this stage in visual
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Chapter 1

Introduction

We rely on vision more than any other sensory modality to interact with and make

sense of the world. Fortunately, our visual world is highly structured: most objects

have clear boundaries; they appear in places we expect them to, and the relationships

between them obey the rules of intuitive physics we learned to predict. In a conceptual

sense, we make heavy use of that fact in our understanding of what we see, yet

still about a third of our brains (or half for non-human primates) is recruited in

service of vision, either directly or indirectly [52]. Even so, it’s unclear how our brain

extracts information about the visual world or even what the building blocks of this

representation are across visual brain areas.

But there is hope: our ability to probe the inner workings of neural circuits and

of large-scale neural representations has steadily and rapidly grown in the last few

decades, especially because of the key insight of merging the discovery power of state-

of-the-art statistical learning algorithms with the sensitivity of modern functional

neuroimaging techniques (e.g. fMRI). It is this coupling that gave us the ability to

reliably predict what a person is seeing [58] (or dreaming about! [64]) based solely on

their neural activity patterns. This trend has accelerated with advances in both fields

and will continue to do so. It’s easy to imagine, due in part to this trajectory, that in

our lifetimes we will see unprecedented access to the basic functions and computations

that make us able to see, that enable us to interpret the world and link it to our past

knowledge of it, that make us human.

1
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We are, nevertheless, still early on the path towards this goal and there are many

unanswered questions about how we extract and organize information about the

world. Fortunately, our visual system does a great job in leveraging the correla-

tional structure of the world to build a coherent picture of what our environment. It

is due to this marvelous generalization process that we take the problem of perceiving

and understanding trillions of distinct objects in our world and reduce it to a more

manageable magnitude by binning virtually everything we see into a few tens of thou-

sands of categories [11]. This phenomenon renders categorization as a fundamental

building block of our visual experience, one which takes visually distinct entities and

groups them together according to their many shared characteristics and affordances.

Although great strides have been made in understanding and describing the com-

plexity of our object category structure, the neural underpinnings of many of its

aspects remain elusive. For example, when asked about an object in their environ-

ment, people often use a mid-level of generality to describe it (e.g. dog), although

other equally valid labels exist, both more general and more specific (e.g. object,

animal, mammal, collie, Mr. Woof) [116]. More interestingly, even within their cate-

gory, not all dogs are created equal: most people would agree that a Golden Retriever

is more representative of the concept ’dog’ than a Chihuahua [115]. However, it is

unclear how these pervasive aspects of category are represented in visual cortex and

how they arise as a consequence of computations performed in the brain.

Addressing these problems will be the main focus of the work we describe in this

dissertation. Going forward, we show the first neural evidence that preferentially

extracting information at the mid-level of generality (e.g. dog) may be an emergent

property of the human visual system and, moreover, that such categorization may be

part of visual processing from its very early stages (Chapter 2). Similarly, our work

shows that everyday typicality judgments are correlated with neural distance between

categories in object-selective regions of our brains (Chapter 3). These findings provide

the first glimpse into the neural underpinnings of processes we’ve known about and

built cognitive models for over the course of forty years, but have until now remained

elusive neurally. Yet, this is not an endpoint, but a stepping stone into a rich space of

questions that can help us understand how fluid our representation of the world is and
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how our brains adapt their processing to ever-changing task demands. Consequently,

we build upon insights provided by these findings to put forward a model of object

category processing in human visual cortex based on the hypothesis that cognitive

utility aspects of our category structure drive successive computations across the

ventral visual stream (Chapter 4).

Moreover, our brains solve visual recognition through the interplay of compu-

tational, representational, and physical levels of interpretation of input from our

eyes [92]. Concurrently with investigating the mechanisms of object perception, we

also developed tools that help us better understand this key relationship between the

function of neural circuits and their position on the cortical surface, a relationship

that is currently not well understood (Chapter 5).

Finally, we gather together the key findings of our work in Chapter 6 and discuss

their implications for uncovering how information is organized and how it flows in a

structured manner hroughout human visual cortex.



Chapter 2

Basic Level Category Structure

Emerges Gradually Across Human

Occipito-Temporal Cortex

We begin our investigation by searching for the neural underpinnings of one of the

most pervasive phenomenons of perceptual categorization: Although objects can be

simultaneously categorized at multiple levels of specificity ranging from very broad

(”natural object”) to very distinct (”Mr. Woof”), it is a mid-level of generality (basic

level: ”dog”) that often provides the most cognitively useful distinction between

categories. Indeed, most objects are identified and named faster at the basic level [71,

90, 98, 99, 116, 123, 125], basic-level category names are the first learned by children[6,

14, 65, 94, 116], are used nearly exclusively when people freely name an object[116],

tend to be shorter and more frequently used in language [14, 98, 116], and at least some

basic-level categories seem to be culturally universal [10, 114]. Thus, a preponderance

of evidence suggests that this basic-level advantage captures something fundamental

about human perceptual categorization. Yet surprisingly, it is unknown how it (or,

more broadly, the hierarchical representation of object categories) is achieved in the

brain.

To address this question, we used multi-voxel pattern analyses to examine how

4
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well each taxonomic level (superordinate, basic, and subordinate) of real-world ob-

ject categories is represented across human occipito-temporal cortex. We found that

although in early visual cortex objects are best represented at the subordinate level

(an effect mostly driven by low-level feature overlap between objects in the same

category), this advantage diminishes compared to the basic level as we move up the

visual hierarchy, disappearing in object-selective regions of occipito-temporal cortex

(LOC). This pattern stems from a combined increase in within-category similarity

(category cohesion) and between-category dissimilarity (category distinctiveness) of

neural activity patterns at the basic level, relative to both subordinate and superor-

dinate levels, suggesting that successive visual areas may be optimizing basic level

representations. This chapter is joint work with Michelle R. Greene, Diane M. Beck,

and Fei-Fei Li, and was previously published as [67].

2.1 Introduction

Humans can distinguish between thousands of object categories in the real world with

impressive speed and accuracy. Understanding how the brain represents categories

across visual cortex is a key step in elucidating the complex cognitive mechanism by

which categorization is achieved.

The mapping of category information across human visual cortex has been a major

effort of modern neuroimaging studies, uncovering specific cortical regions specialized

for broad stimulus categories such as faces, scenes, objects, and bodies [35, 40, 72,

91], as well as organizational principles corresponding to broad attribute dimensions,

including animacy [19, 23, 76, 81] and real-world object size [76, 77]. Furthermore,

many studies have demonstrated that category information is recoverable from dis-

tributed representations [25, 38, 58, 61, 66]. However, most previous studies have

glossed over a fundamental property of real-world categories: specifically, any par-

ticular object may belong to multiple categories simultaneously, ranging from very

broad (”natural object”, ”animal”) to very distinct (”pug”, ”Mr. Woof”). Indeed, it

is yet unknown how this hierarchical representation is achieved in the brain.
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We thus focus our investigation on assessing how category representations at dif-

ferent taxonomic levels (subordinate, basic, superordinate) change over the span of

the human ventral visual cortex. While under certain conditions, category levels are

flexible and may change with context, typicality, and degree of expertise [71, 89, 125],

most often human observers categorize objects faster and more accurately at a mid-

level of specificity (i.e. basic level [6, 14, 65, 90, 94, 98, 116]. Thus, in our work,

we restricted our analysis to sets of categories where these three levels are clearly

differentiated behaviorally.

Concurrently, in characterizing the neural representation of this category hierar-

chy, we were inspired by Rosch et al.’s [116] seminal work on categorization, which

argued that a good category simultaneously maximizes within-category similarity (co-

hesiveness) and between-category dissimilarity (distinctiveness). In our work, we ap-

plied this principle to multi-voxel fMRI patterns as a concrete measure of the strength

of category representations across visual cortex. In particular, we ran two functional

imaging (fMRI) experiments in which participants were shown objects from hierar-

chies comprising three behaviorally normed taxonomic levels (superordinate, basic,

and subordinate) and we employed several multi-voxel pattern analyses (MVPA) to

characterize the similarity and dissimilarity of activity patterns across these separate

levels. Here, high cohesion (positive correlation between activity patterns) would in-

dicate that information content is similar within that particular category. Similarly,

high distinctiveness (zero or negative correlation between activity patterns) would

indicate that categories are distinguishable from one another; therefore categories are

more separable in that space.

In visual cortex, because two subordinate level exemplars (e.g. two pugs) should

be most visually similar to each other, one might predict that categories adhere most

strongly to a subordinate level representation. On the other hand, one might also

expect superior superordinate level adherence (e.g. natural vs. man-made objects)

since these categories might best reflect organization at the coarse scale of fMRI vox-

els. Finally, a wealth of behavioral evidence points to a mid-level of generality (basic

level: ”dog”) as being privileged in providing the most cognitively useful distinction

between categories: objects are learned, and recognized faster at this intermediate
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level than at all other levels [6, 14, 65, 71, 90, 94, 98, 99, 116, 125]. This suggests

that we may see evidence for superior basic level representations in visual cortex.

Thus, a sub-goal of our work is to ask whether a particular behaviorally relevant

taxonomic level is better represented in visual cortex. Here, we show that for a set of

object categories that exhibit a clear basic level advantage, category representations

change as a function of taxonomic level as we move up the visual cortical hierarchy,

progressively favoring the basic level relative to other levels of specificity. Thus,

although objects are best represented at the subordinate level in early visual cortex,

the basic level matches the quality of this representation in high-level object-selective

regions, as well as dominates superordinate representations throughout visual cortex.

This provides evidence that basic level structure may be an emergent property of the

human visual system.

2.2 Materials and Methods

2.2.1 Experiment 1: Two Superordinate Categories - Natu-

ral and Man-Made

To investigate how categories are represented across multiple levels of specificity, we

ran a functional imaging experiment in which participants were shown objects from a

three-tiered taxonomy (superordinate, basic, and subordinate levels) and we employed

several multi-voxel pattern analyses (MVPA) to characterize the similarity of activity

patterns across these separate levels. To verify that our putative taxonomic levels

are representative of real-world category organization, we first ran two behavioral

experiments that assess the perceptual and semantic differences in recognizing and

categorizing objects across these taxonomic levels.

2.2.1.1 Stimuli

We constructed a three-tiered taxonomic hierarchy comprising 2 superordinate level

(natural, man-made), 4 basic level (dog, flower, plane, shoe), and 32 subordinate level

categories. These included 8 breeds of dogs: Komondor, Chihuahua, Pug, Malamute,
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Mastiff, Schnauzer, Welsh Corgi, Schipperke; 8 types of planes: airliner, biplane,

fighter, delta plane, stealth, glider, gyroplane, seaplane; 8 types of flowers: blue

daisy, ice poppy, sunflower, orchid, chrysanthemum, cosmos, violet, toadflax; 8 types

of shoes: slippers, cowboy boots, running shoes, pumps, loafers, flip-flops, clogs,

cleats. We had 32 instances of each of our 32 subordinate level categories for a total

of 1,024 color photographs collected from the ImageNet online database [32]. Photos

were tightly cropped in a square region around the object of interest, resized to 400

x 400 pixels, and included their natural background (Fig. 2.1 A).

2.2.1.2 Behavioral Experiment: Match-to-Category Verification

Participants

Twelve participants (7 female, ages 18–30, including one of the authors) took part

in the experiment. All subjects had normal or corrected-to-normal vision, were fi-

nancially compensated, and provided informed written consent in compliance with

procedures approved by the Stanford University Institutional Review Board.

Materials

Stimuli were presented on a 21-inch CRT monitor, approximately 30 cm away from

the observer. Images were shown centrally, subtending 16 x 16 degrees of visual angle.

The experiment was implemented in MATLAB (http://www.mathworks.com), using

the Psychophysics toolbox extension [12, 106].

Experimental Procedure

Each observer viewed 1,024 images for 200 ms each, followed by a category query

term. Query terms matched the image’s category on half of the trials, and were

drawn from a random other category on the other half of trials. Query terms were

drawn equally from superordinate level (e.g. ”natural” or ”man-made”), basic level

(”plane”, ”dog”, ”flower”, ”shoe”), or subordinate level category (e.g. ”Chihuahua”

or ”Chrysanthemum”). Participants were instructed to respond as quickly and ac-

curately as possible as to whether the query term matched the image they had just
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seen. Performance feedback (accuracy and RT) was displayed at the end of each trial.

Immediately before the experimental trials, participants were shown example images

of each of the 32 subordinate categories, along with each of the three valid category

labels affixed to that category.

Data Analysis

Reaction times less than 200 ms and greater than 2 s were discarded from analysis

(1% of data, no more than 5% from any one participant). One participant was

discarded due to high numbers of rejected trials (46%) and errors (37%). Reaction

times were transformed into z-scores. To test for a basic level advantage, we examined

the reaction times for verifying an image as a member of a superordinate-, basic- or

subordinate level category, both overall and for each basic level category in particular.

We also computed a measure of basic level advantage for each of the 32 subordinate

level categories, defined as the reaction time difference (in z-scores) of basic level

categorization compared to subordinate and superordinate level categorization.

2.2.1.3 Behavioral Experiment: Same-Different Categorization

Participants

Twelve participants (5 female, ages 18–30) took part in the experiment. All subjects

had normal or corrected-to-normal vision, were financially compensated, and provided

informed written consent in compliance with procedures approved by the Stanford

University Institutional Review Board. One participant also took part in the fMRI

experiment.

Materials

Stimuli were presented on a 21-inch CRT monitor, approximately 30 cm away from the

observer. Images were shown side by side, each subtending 16 x 16 degrees of visual

angle, with 3 degrees between them. The experiment was implemented in MATLAB

(http://www.mathworks.com), using the Psychophysics toolbox extension [12, 106].
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Experimental Procedure

Each observer viewed 1,024 trials, with 512 trials showing pairs of images drawn from

the same subordinate level category, and 512 trials showing image pairs from two

different subordinate level categories (16 pairs per subordinate per taxonomic level,

randomly drawn for each participant). Participants were instructed to respond as

quickly and accurately as possible whether both images were from the same subordi-

nate category. Image pairs remained on the screen until response, and reaction time

and accuracy feedback were given after each response.

Data Analysis

Reaction times less than 200 ms and greater than 2 s were discarded from analysis

(2% of data, no more than 11% from any one participant). Reaction times were

transformed into z-scores relative to each participant’s mean RT. We computed the

average time required to reject a pair of images as being from the same subordinate

level category and used this as a category distance measure in the context of a classical

multi-dimensional scaling analysis (criterion: metric stress).

2.2.1.4 fMRI Experiment

Participants

10 volunteers (2 females, ages 23–28, including author M.C.I.) with no past history of

psychiatric or neurological disorders and normal or corrected-to-normal vision partic-

ipated in this experiment. Participants gave informed written consent in compliance

with procedures approved by the Stanford University Institutional Review Board.

Except for the participating author, all subjects received financial compensation.

Scanning Parameters and Preprocessing

Imaging data were acquired with a 3 Tesla G.E. Healthcare scanner. A gradient echo,

echo-planar sequence was used to obtain functional images (volume repetition time

(TR), 2 s; echo time (TE), 30 ms; flip angle, 80 degrees; matrix 128 x 128 voxels; FOV

20 cm; 29 oblique 3 mm slices with 1 mm gap; in-plane resolution, 1.56 x 1.56 mm).
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We also collected a high-resolution (1 x 1 x 1 mm voxels) structural scan (SPGR; TR

5.9 ms; TE 2.0 ms; flip angle 11 degrees) in each scanning session. The functional data

were spatially aligned to compensate for motion during acquisition and each voxel’s

intensity was converted to percent signal change relative to the temporal mean of that

voxel using the AFNI software package [26]. To perform our analyses, we computed

the average voxel activity for each block. We did not use a GLM analysis and did

not perform any smoothing.

Experimental Procedure

Images were presented centrally subtending 21 x 21 degrees of visual angle and were

superimposed on an equiluminant gray background. We used a back-projection sys-

tem (Optoma Corporation) operating at a resolution of 1024 x 768 pixels at 75 Hz.

Participants performed 8 runs, with 16 blocks per run and 8 images per block. Each

block consisted of a 500 ms fixation cross presented centrally, followed by 8 consecu-

tive stimulus presentations from the same subordinate level category, with a 12 s gap

between the blocks. Each image was presented for 160 ms, followed by a 590 ms blank

gray screen. Subjects were asked to maintain fixation at the center of the screen, and

respond via button-press whenever an image was repeated (one-back task, 0–2 repeti-

tions per block). Over the course of the experiment, each participant viewed 4 blocks

from each of the 32 subordinate level categories, for a total of 128 blocks. The order

of blocks, the number of repetitions in each block, and the images in each block were

counter-balanced across runs and between subjects.

Regions of Interest (ROIs)

The positions and extents of each participant’s functional ROIs (LOC, TOS, PPA,

RSC, and FFA) brain were obtained using standard localizer runs conducted in a

separate fMRI session. For functional ROIs, subjects observed two runs, each with

12 blocks drawn equally from six categories: child faces, adult faces, indoor scenes,

outdoor scenes, objects (abstract sculptures with no semantic meaning), and phase-

scrambled objects. Blocks were separated by 12 s fixation cross periods and comprised

12 image presentations, each of which consisted of images presented for 900 ms,
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followed by a 100 ms fixation cross. Each image was presented exactly once, with

the exception of two images during each block that were repeated twice in a row.

Subjects were asked to maintain fixation at the center of the screen and respond via

button press whenever an image was repeated. To avoid any issues related to intrinsic

variability in signal reliability across our participant pool, we selected fixed-volume

ROIs across all our participants. The volume of each region in mm3 was chosen

conservatively, based on sizes previously reported in the literature, accounting for

resolution differences between studies [51, 133]: LOC: 500 voxels; TOS: 200 voxels;

PPA: 300 voxels; RSC: 200 voxels; FFA: 100 voxels. LOC was defined as the top 500

voxels bilaterally near the inferior occipital gyrus that responded to an Objects >

Scrambled Objects GLM contrast. PPA was defined as the top 300 voxels bilaterally

near the parahippocampal gyrus that responded to a Scenes > Objects GLM contrast.

TOS was defined as the top 200 voxels bilaterally near the trans-occipital sulcus that

responded to a Scenes > Objects GLM contrast. RSC was defined as the top 200

voxels bilaterally near retrosplenial cortex that responded to a Scenes > Objects

GLM contrast. FFA was defined as the top 100 voxels bilaterally near the fusiform

gyrus that responded to a Faces > Objects GLM contrast. All ROIs were identified

bilaterally, except for some participants’ FFA (RH only: 3/10 for Experiment 1; 5/17

for Experiment 2).

To determine the locations of early visual areas V1, V2, V3v, and hV4, we used a

standard retinotopic mapping protocol in a separate experiment, in which a checker-

board pattern undergoing contrast reversals at 5 Hz moved through the visual field

in discrete increments [119]. First, a wedge subtending an angle of 45 degrees from

fixation was presented at 16 different polar angles for 2.4 s each. Next, an annulus

subtending 3 degrees of visual angle was presented at 15 different radii for 2.4 s each.

Each subject passively observed two runs of 6 cycles in each condition, yielding 512

timepoints per subject. The locations and extents of early visual areas were delin-

eated on a flattened cortical surface for each subject, using a horizontal vs. vertical

meridian general linear test, which gave the boundaries between retinotopic maps.

We aligned the positions of the ROIs to the experimental sessions using the AFNI

software package [26], by first aligning the structural scans between sessions with



CHAPTER 2. BASIC LEVEL EMERGES GRADUALLY 13

sub-millimeter precision, and then applying the alignment transformation to the ROI

positions. Percent signal change was then extracted for each voxel in each ROI and

these vectors were submitted to the similarity and classification analyses described

next.

2.2.1.5 fMRI Data Analysis

Within-Category Similarity (Cohesion) and Between-Category Similarity

(Distinctiveness)

These analyses are defined identically to quantities used in [81]: Cohesion is within-

category similarity; Distinctiveness is between-category dissimilarity. For each cate-

gory at each taxonomic level (subordinate, basic, superordinate), we computed cate-

gory cohesion as the average correlation between neural patterns elicited by within-

category pairs of blocks (4 per subordinate category, 32 per basic category, 64 per

superordinate category) at that taxonomic level. For example, at the basic level,

cohesion for ”dogs” is defined as the average correlation between voxel activations

for any two blocks where any type of dog was shown. Similarly, we computed cat-

egory distinctiveness as the average correlation between neural patterns elicited by

between-category pairs of blocks at each taxonomic level. For example, at the basic

level, distinctiveness for ”dogs” is defined as average correlation between voxel acti-

vations for a block where dogs where shown and another block where, for example,

flowers where shown. We performed each of these analyses for each subject and ROI

separately. To show that the effects we obtain are not solely due to low-level im-

age features, we also computed cohesion and distinctiveness in an analogous fashion

for image descriptor features extracted from our stimulus images: color histograms,

GIST [103], HOG [27], SIFT [87].

Category Boundary Effect

To quantify the interplay between cohesion and distinctiveness and how they give

rise to category distinctions, we also defined the category boundary effect identically

to [81] as the difference between cohesiveness and distinctiveness across a taxonomic
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level, averaged across all categories from that level. This quantity provides a measure

of how well categories are separated at each taxonomic level. For each ROI, we also

compute category boundary effect differences between the basic level versus the sub-

ordinate and superordinate level representations. These analyses were also repeated

for the image descriptor feature representations of our stimuli.

Correlation Classifier

To assess the amount of information present in the neural patterns at each taxonomic

level, we implemented a standard MVPA correlation classifier to predict stimulus cat-

egories from neural patterns of activation at all three levels in our taxonomy (subordi-

nate, basic, and superordinate). For each participant, we performed cross-validation

by using 2 out of 8 runs for testing (1 block from each subordinate category) and

the remaining 6 runs for training (3 blocks from each subordinate category). We

averaged the results across cross-validation folds to obtain classification accuracies

for each participant and ROI. To compare classification results between different tax-

onomic levels, we normalized the decoding accuracy using the formula (x ? c)/(1 ?

c), where x is the accuracy obtained at a given level and c is the chance value (c is

12.5% for the subordinate level, 25% for the basic level, and 50 for the superordinate

level). To control for the number of training examples at the basic- and superordinate

levels, we matched the number of training and testing points to those at the subor-

dinate level (3 blocks for training, 1 block for testing) by randomly sampling blocks

1,000 times with replacement. We performed one-tailed t-tests to identify results that

were significantly different from chance levels (defined above) and two-tailed t-tests

within each area to identify when decoding accuracy at the basic level is significantly

greater than accuracy at the other levels in the taxonomy. We also obtained ROI con-

fusion matrices by extracting subordinate level confusion matrices for each subject

and averaging them together. A row of a confusion matrix records the probability

of classifying the corresponding subordinate category as each of the 32 subordinate

categories in the columns.
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2.2.2 Experiment 2: Three Superordinate Categories - Vehi-

cles, Furniture, and Musical Instruments

Experiment 1 used object categories that straddle the boundaries of two main di-

mensions of selectivity known to affect the responses to objects in occipito-temporal

cortex: animacy [23] and real-world size [76]. Furthermore, by including naturalistic

backgrounds together with our objects of interest in Experiment 1, it is possible that

this factor may influence the observed category grouping. To ensure this is not the

case, as well as to demonstrate the generalizability of our results from Experiment 1

to additional categories, we constructed a new three-tiered taxonomic hierarchy com-

prising exclusively big, inanimate objects. We first generated a putative taxonomy

comprising 36 subordinate level categories and used a match-to-category behavioral

experiment to eliminate 9 members with ambiguous category status (defined as weak

basic level advantage over the subordinate). Similarly to Experiment 1, we then used

a same-different subordinate categorization behavioral experiment to further verify

that our new putative taxonomic levels are representative of real-world category or-

ganization. Finally, we conducted a second fMRI experiment using the new stimuli

and replicated our analyses from Experiment 1.

2.2.2.1 Stimuli

We constructed a new three-tiered taxonomic hierarchy comprising exclusively big

inanimate objects: 3 superordinate level categories (vehicles, furniture, musical in-

struments), 9 basic level categories (cars, airplanes, ships, chairs, beds, tables, drums,

guitars, pianos), and 36 subordinate level categories (4 types of each of the 9 basic

level categories listed above: cars ? sports car, sedan, antique car, station wagon;

airplanes–airliner, biplane, fighter, stealth plane; ships–ice breaker, cargo ship, bat-

tleship, cruise ship; chairs–folding chair, armchair, straight chair, Eames chair; beds–

canopy bed, sleigh bed, platform bed, bunk bed; tables–dining table, coffee table,

pedestal table, folding table; drums–bass drum, snare drum, timpani, bongos; guitars–

flamenco, Stratocaster, dreadnaught, Les Paul; pianos–grand piano, Hammond organ,

upright piano, synthesizer). We had 40 instances of each of our 36 subordinate level
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categories for a total of 1,440 color photographs collected from the ImageNet online

database [32]. Images were cropped tightly around each object of interest and we

replaced the original background with pixel-wise full-color 1/f noise. The resulting

images were 400 x 400 pixels, ensuring that all images stimulated the same retinal

area.

2.2.2.2 Behavioral Experiment: Match-to-Category Verification

The first aim of this behavioral experiment was to finalize our category taxonomy

by assessing category status in general, and basic level advantage in particular. This

ensured that categories we included in our taxonomy are representative of the rela-

tionships present in real-world taxonomies. We tested the category taxonomy listed

above and then eliminated members with ambiguous category status. The taxonomy

was pruned of 9 subordinate categories (one for each basic), by eliminating those

subordinates with the lowest behavioral basic level advantage (see Data Analysis):

antique car, stealth plane, battleship, Eames chair, bunk bed, folding table, bon-

gos, Les Paul guitar, synthesizer). We used the resulting taxonomy (27 subordinate

categories, Fig. 2.4 A) for all subsequent analyses.

Participants

Ten participants (6 female, ages 18–35, including authors M.C.I. and M.R.G.) partic-

ipated in the first behavioral experiment. All volunteers had normal or corrected-to-

normal vision, and provided informed consent in compliance with procedures approved

the Stanford University Institutional Review Board. Non-author participants were

compensated for their time.

Materials and Experimental Procedure

Analogous to Experiment 1.

Data Analysis

Reaction times less than 200 ms and greater than 2 s were discarded from analysis

(2% of data, no more than 10% of trials from any participant). Reaction times
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for correct trials (84% of trials) were transformed into z-scores. To test for a basic

level advantage, we examined the differences in reaction times to correctly verify an

image as a member of a superordinate-, basic- or subordinate level category. We also

defined basic level advantage to be the reaction time difference (in z-scores) of basic

level categorization compared with subordinate level categorization, and used this

metric to reject the subordinate level categories in each branch of the hierarchy with

the weakest basic level effects. Only one of the remaining 27 basic level categories

(biplane) had a negative basic level advantage, possibly because this less-typical plane

is better categorized at the subordinate level [71].

2.2.2.3 Behavioral Experiment: Same-Different Categorization

Participants

Twenty individuals (9 females, ages 18–35) with normal or corrected to normal vision

participated in this experiment. None of the participants took part in the fMRI

experiment or in the first behavioral experiment. All provided informed consent in

compliance with procedures approved by the Stanford University Institutional Review

Board and were compensated for their time.

Materials and Experimental Procedure

Analogous to Experiment 1.

Data Analysis

Reaction times less than 200 ms and greater than 2 s were discarded from analysis (¡1%

of data, no more than 8% from any one participant). Reaction times were transformed

into z-scores. We computed the average time required to reject a pair of images as

being from the same subordinate level category and used this as a category distance

measure in the context of a classical multi-dimensional scaling analysis (criterion:

metric stress).
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2.2.2.4 fMRI Experiment

Participants

17 volunteers (4 females, ages 23–31, including authors M.C.I. and M.R.G.) with

no past history of psychiatric or neurological disorders and normal or corrected-to-

normal vision participated in this experiment. Participants gave informed written

consent in compliance with procedures approved by the Stanford University Insti-

tutional Review Board. Except for the participating authors, all subjects received

financial compensation.

Scanning Parameters, Preprocessing, Experimental Procedure, and Re-

gions of Interest (ROIs)

The second fMRI experiment was conducted similarly to Experiment 1. Participants

performed 5 runs, with 27 blocks per run and 8 images per block. Over the course of

the experiment, each participant viewed 5 blocks from each of the 27 subordinate level

categories, for a total of 135 blocks. The order of blocks, the number of repetitions

in each block, and the images in each block were counter-balanced across runs and

between subjects.

2.2.2.5 fMRI Data Analysis

Within-Category Similarity (Cohesion) and Between-Category Dissimilar-

ity (Distinctiveness), Category Boundary Effect, and Correlation Classifier

Performed analogously to Experiment 1.

2.2.3 Statistical Analyses

For all our experiments, we used paired two-tailed t-tests when comparing observed

effects against chance and when establishing whether a significant difference exists

between two observed effects. We used Kolmogorov-Smirnov tests to establish that

no significant deviation from normality exists for the distributions of all effects to

which t-tests were applied. Because statistical tests are made on a single number
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derived from the pattern of voxels within an ROI per condition of interest, and these

conditions are relatively few, we did not correct for multiple comparisons within our

ROI analyses.

We also used Friedman non-parametric tests to investigate whether trends exist

in data where the dependent variable is ordinal, but not continuously organized. All

statistical tests were implemented in MATLAB.

2.3 Results

2.3.1 Experiment 1: Two Superordinate Categories–Natural

and Man-Made

2.3.1.1 Behavioral Experiments

In our first experiment, we used a three-tiered taxonomic hierarchy comprising 2

superordinate level (natural, man-made), 4 basic level (dog, flower, plane, shoe), and

32 subordinate level categories (e.g. Chihuahua, stealth plane) (Fig. 2.1 A).

To verify that our putative basic level categories reflect entry-level concepts, we

first conducted a delayed match-to-category behavioral experiment. As predicted,

participants were significantly faster to verify category membership at the basic level

(662 ms; s.e.m. 36 ms) than at the superordinate (747 ms; s.e.m. 43 ms) or subor-

dinate levels (782 ms; s.e.m. 44 ms) (Fig. 1C; Basic > Superord. t18 = 5.1, p <

0.001; Basic > Subord. t18 = 8.6, p < 0.001). We also computed a measure of basic

level advantage for each of the 32 subordinate level categories, defined as the reaction

time difference (in z-scores) of basic level categorization compared to subordinate and

superordinate level categorization. All 32 categories showed a basic level advantage

over the superordinate level (Fig. 1D), and all except 3 categories (cowboy boots,

clogs, and sunflowers) showed a basic level advantage over the subordinate level of

the taxonomy (Fig. 1E). These few exceptions most likely represent less prototypical

exemplars of their basic level category [71].



CHAPTER 2. BASIC LEVEL EMERGES GRADUALLY 20

Re
sp

on
se

 T
im

e 
(Z

-s
co

re
d)

Subord. Basic Superord.

*** ***

 -0.4
 -0.3
 -0.2
 -0.1

 0
 0.1
0.2

MAN-MADE

NATURAL

MDS Dimension 1

M
DS

 D
im

en
sio

n 
2

0.2

0.4

0.6

0.8

0.0

RE
SP

O
NS

E 
TI

M
E 

Z-
SC

O
RE

 D
IF

FE
RE

NC
E 1.0

0.2

0.4

0.6

0.8

0.0

RE
SP

O
NS

E 
TI

M
E 

Z-
SC

O
RE

 D
IF

FE
RE

NC
E

-0.2

D ESuperordinate — Basic Subordinate — Basic

Natural Man-Made Natural Man-Made

A B

C

Figure 2.1: Stimulus set and behavioral results for Experiment 1. (A) The
stimulus set was organized according to a three-level taxonomic hierarchy comprising
32 subordinate level (most specific, outside layer), four basic level (middle layer),
and two superordinate level (most general, center) categories. Each subordinate
category comprised 32 color photographs, with a representative image shown. (B)
Same-different subordinate level categorization behavioral experiment. We applied
classical MDS to the perceptual distance between subordinate categories measured
as z-scored RTs. In a two-dimensional solution, the four basic level categories formed
separate clusters. (C–E) Match-to-category behavioral experiment. (C) Participants
verified category membership significantly faster at the basic level than at the super-
ordinate or subordinate levels. (D–E) RT difference between basic and subordinate
/ superordinate categorization conditions. Positive values indicate basic level advan-
tage. Participants identified all stimulus categories faster at the basic level than at
the subordinate / superordinate level. There are only three exceptions: ”sunflowers”,
”clogs”, and ”cowboy boots”, perhaps reflecting the atypicality of these stimuli [71].
∗ ∗ ∗ p < .001. Error bars: 95% confidence interval.
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To map categories in terms of their behavioral similarity, we next used a same-

different subordinate level categorization experiment to measure the perceptual dis-

tance between all pairs of subordinate categories. Reasoning that images in similar

categories will take longer to reject than images from dissimilar categories, we used

response times to pairs of images in the ”different” condition to generate a distance

metric between our subordinate categories. Consistent with prior work [116], partic-

ipants found objects within the same basic category to be more similar to each other

than to stimuli in other basic categories (t22 = 4.7, p < 0.001). Furthermore, clas-

sical multidimensional scaling (MDS) applied to this distance metric revealed that

in a two-dimensional solution the four basic level categories form separate clusters

(Fig. 1B), with the first MDS dimension separating the natural and man-made cate-

gories (superordinate level).

These results replicated Rosch et al.’s [116] original findings for our object cate-

gories by demonstrating that our taxonomy exhibits a clear basic level advantage and

as such is representative of hierarchically organized real-world categories.

2.3.1.2 Neural Category Boundaries Favor Basic Level Representations

Having verified the taxonomy behaviorally, we scanned participants viewing these

same 32 categories to find out how neural category representations change across tax-

onomic levels and across human ventral visual cortex. Because task may influence

entry-level categorization [57, 89, 90], we asked participants to perform a one-back

repetition task in the scanner (i.e. no explicit categorization task) used solely to

ensure they maintained attention and alertness during the experiment. Our anal-

yses focused on object- (lateral occipital complex (LOC)), scene- (parahippocampal

place area (PPA), retrosplenial cortex (RSC), trans-occipital sulcus (TOS)), and face-

selective regions (fusiform face area (FFA)), as well as early visual cortex areas (V1,

V2, V3v, hV4).

Our first task was to assess the strength of category representations at each tax-

onomic level in terms of their cohesion and distinctiveness. According to [116], cat-

egories form such that they concurrently maximize within-category similarity (cohe-

sion) and between-category dissimilarity (distinctiveness). To quantify the interplay
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between cohesion and distinctiveness and how they give rise to category distinctions,

we defined the category boundary effect [81] as the difference between cohesiveness

and distinctiveness across a taxonomic level, averaged across all categories from that

level. We computed the category boundary effect for each taxonomic level (subordi-

nate, basic, superordinate) in each brain region of interest.

We found that the category boundary effect is generally higher at the subordinate

and basic levels compared to the superordinate level across visual cortex, especially in

higher visual areas (Fig. 2A; Subordinate > Superordinate: V1: t9 = 2.5, p = 0.032;

V2 t9 = 2.5, p = 0.035; V3v: t9 = 1.9, p = 0.089; hV4: t9 = 1.7, p = 0.133; LOC:

t9 = 5.6, p < 0.001; FFA: t9 = 4.0, p = 0.003; PPA: t9 = 4.7, p = 0.001; TOS: t9 =

2.1, p = 0.067; RSC: t9 = 3.5, p = 0.007; Basic > Superordinate: V1: t9 = 2.2, p =

0.058; V2: t9 = 2.8, p = 0.022; V3v: t9 = 2.8, p = 0.020; hV4: t9 = 2.8, p = 0.021;

LOC: t9 = 7.6, p < 0.001; FFA: t9 = 3.6, p = 0.006; PPA: t9 = 6.5, p < 0.001; TOS:

t9 = 3.3, p = 0.009; RSC: t9 = 4.8, p = 0.001). Moreover, the category boundary

effect increased in LOC compared to early visual areas at all levels of the taxonomy

(Subordinate: LOC > V1: t9 = 5.7, p < 0.001; LOC > V2: t9 = 7.3, p < 0.001; LOC

> V3v: t9 = 9.7, p < 0.001; LOC > hV4: t9 = 5.7, p < 0.001; Basic: LOC > V1: t9

= 6.5, p < 0.001; LOC > V2: t9 = 7.3, p < 0.001; LOC > V3v: t9 = 8.3, p < 0.001;

LOC > hV4: t9 = 5.5, p < 0.001; Superordinate: LOC > V1: t9 = 4.7, p = 0.001;

LOC > V2: t9 = 5.4, p = 0.001; LOC > V3v: t9 = 5.7, p = 0.001; LOC > hV4:

t9 = 2.5, p = 0.032). Taken together, these results suggest that categories become

more sharply distinguishable as we move up the visual hierarchy, and that throughout

ventral visual cortex activity patterns adhere better to subordinate and basic level

categories than to the more general (superordinate) levels of representation.

To characterize the difference between our taxonomic levels more clearly, we looked

at the difference between the category boundary effect at the basic level compared

to the other two levels (Figs. 2C–D). We found that category boundary is always

higher at the basic level than the superordinate across early visual areas and LOC.

Moreover, subordinate category boundary started out with advantage over the basic

level (generally negative values for V1, Fig. 2C), but this advantage disappeared as

we move up the visual cortical hierarchy (generally positive values for LOC, Fig. 2C).
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Figure 2.2: Neural category boundaries favor basic level representations in
Experiment 1. (A) Category boundary effect for neural activity patterns at each
taxonomic level and in each ROI. Inset shows same analysis for image feature de-
scriptors: C = color histograms; G = GIST features; H = HOG features; S = SIFT
features. The subordinate and basic levels were together strongly represented, with
the former being especially emphasized in early visual cortex, whereas the latter be-
coming more prominent in LOC. (B) Cohesion and distinctiveness for neural activity
patterns at each taxonomic level and in each ROI. Inset shows same analyses for
image feature descriptors. (C–D) Category boundary effect difference between basic
level and subordinate and superordinate levels. We uncovered a gradual trade-off
between the subordinate and basic levels, which appeared to develop as we moved up
the visual hierarchy, with a trending basic level advantage arising in object-selective
cortex. (E-F) Cohesion difference between basic level and subordinate and superor-
dinate levels. (G–H) Distinctiveness difference between basic level and subordinate
and superordinate levels. The category boundary difference appears to be driven by
separate components of the category boundary effect, depending on taxonomic level.
∗ p < .05, ∗∗ p < .01, ∗ ∗ ∗ p < .001, † p < .10, n.s. = not significant. Error bars:
95% confidence interval. Shaded graphs indicate a significant increase from V1 to
LOC.
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Interestingly, the basic level gained an advantage over both the subordinate and the

superordinate levels as we move up the visual hierarchy from V1 to LOC (increasing

trends in category boundary effect difference from V1 to LOC for: Basic - Subord. p

< 0.001; Basic - Superord. p < 0.001; Friedman non-parametric tests).

Overall, our results suggest that the neural representation of object categories in

occipito-temporal cortex is highly dynamic across the taxonomic spectrum. First,

we find evidence supporting both our initial predictions: the subordinate and basic

levels are both strongly represented, with the former being especially emphasized

in early visual cortex, while the latter becoming more prominent in object-selective

cortex LOC. Second, we uncover a gradual trade-off between the subordinate and

basic levels, which appears to develop as we move up the visual hierarchy, with a

basic level advantage arising in object-selective cortex.

2.3.1.3 Category Cohesion and Distinctiveness Across Occipito-Temporal

Cortex

The category boundary effect provides an intuitive measure of how categories group

at each taxonomic level. However, this effect comprises contributions from both

cohesion and distinctiveness, which describe the similarity of object representations

within and between categories, respectively. Historically, it has been hypothesized

that basic categories provide the best behavioral differentiation between concepts

because they combine the strengths, but not the weaknesses of both subordinate and

superordinate categories [113]: members of subordinate categories, although very

similar to each other (high cohesion), share too many features that overlap with

members of other categories (low distinctiveness), and exemplars of superordinate

categories, although very different from one another (high distinctiveness), share too

few features in common with each other to successfully generalize across the entire

category (low cohesion). To determine whether activity patterns in ventral visual

cortex conform to this principle, we computed the average cohesion and distinctiveness

of the activity patterns evoked by our stimuli for each taxonomic level.

We found that cohesion generally decreased with level of specificity across all ROIs

(Fig. 2.2 B, top), and was significantly weaker at the superordinate level compared to
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the other two levels in the taxonomy in all high-level areas and hV4 (Superordinate

< Basic & Subordinate LOC: t9 = 7.3, p < 0.001; FFA: t9 = 4.4, p = 0.005; PPA:

t9 = 6.9, p < 0.001; TOS: t9 = 4.1, p = 0.009; RSC: t9 = 4.8, p = 0.003; hV4: t9

= 3.9, p = 0.011). This result is consistent with the expectation that objects share

more low-level features in common at the subordinate level [79, 81]. Concurrently,

between-category dissimilarity (distinctiveness) generally increased with taxonomic

level (Fig. 2.2 B, bottom), and was significantly weaker at the subordinate level

compared to the basic and superordinate levels in all ROIs (Subordinate < Basic &

Superordinate LOC: t9 = 7.7, p < 0.001; FFA: t9 = 4.7, p = 0.004; PPA: t9 = 6.6, p

< 0.001; TOS: t9 = 5.2, p = 0.002; RSC: t9 = 3.9, p = 0.011; V1: t9 = 4.7, p = 0.003;

V2: t9 = 5.9, p < 0.001; V3v: t9 = 4.1, p = 0.008; hV4: t9 = 5.7, p = 0.001). In

other words, these results are in general agreement with the assertion that the basic

level may be privileged because it strikes the best balance between category cohesion

and distinctiveness [113].

Although the general pattern of higher cohesion for subordinate and basic level

categories and higher distinctiveness for basic and superordinate level categories held

across our ROIs, the degree of cohesion and distinctiveness changed across visual

areas. Interestingly, category cohesion increased in LOC compared to V1 at all levels

of the taxonomy (LOC > V1: Subord. t9 = 5.8 p < 0.001; Basic t9 = 6.5, p <

0.001; Superord. t9 = 4.9, p < 0.001), suggesting that object representations become

overall more homogenous within their category in later visual areas. Furthermore,

distinctiveness increased in LOC compared to V1 at all levels of the taxonomy (LOC

> V1: Subord. t9 = 3.5, p = 0.006; Basic t9 = 6.5, p < 0.001; Superord. t9 = 4.5, p =

0.002), which suggests that object representations become better differentiated across

categories in later visual areas. Thus, in keeping with Rosch et al.’s [116] assertion

that good object categories are represented such that they maximize within-category

similarity and between-category dissimilarity, our results suggest that LOC appears

to be producing stronger category representations than earlier visual areas.

Do these changes in cohesion and distinctiveness favor the basic level? To assess

this we compared cohesion and distinctiveness across both taxonomic levels and vi-

sual areas (Fig. 2.2 E–H). The advantage of the basic level over the subordinate in
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later visual areas was mainly due to the sharp increase in distinctiveness between

early visual areas and LOC (Fig. 2.2 G, increasing trend in distinctiveness difference

from V1 to LOC for Basic - Subord. p < 0.001; Friedman non-parametric test). Co-

hesion, on the other hand, was fairly stable across the same visual areas (Fig. 2.2 E,

no increasing trend in cohesion difference from V1 to LOC for Basic - Subord. p =

0.736; Friedman non-parametric test). Conversely, the advantage of the basic level

over the superordinate was mainly due to the sharp increase in cohesion between

early visual areas and LOC (Fig. 2.2 F, increasing trend in cohesion difference from

V1 to LOC for Basic - Superord. p < 0.001; Friedman non-parametric test), whereas

distinctiveness remained relatively unchanged (Fig. 2.2 H, no increasing trend in dis-

tinctiveness difference from V1 to LOC for Basic - Superord. p = 0.231; Friedman

non-parametric test). This pattern of results aligns well with both theoretical con-

siderations of category, as well as intuitions about subordinate and superordinate

categories. As predicted, we show that a trade-off exists between category cohesion

and category distinctiveness at the two extremes of our taxonomy (subordinate and

superordinate levels), with the basic level potentially striking the best balance be-

tween these two quantities by encompassing both strong within-category similarity

and strong between-category dissimilarity. In short, our data suggests that the basic

level simultaneously gains an advantage over both the subordinate and the superor-

dinate levels as we move up the visual hierarchy from V1 to LOC.

2.3.1.4 The Contribution of Low-Level Visual Features

The changes in cohesion and distinctiveness across visual cortex suggest that LOC

may be optimizing both of these two components of what constitutes a good category.

To determine the extent to which the patterns of results obtained in LOC are captured

by low-level image features, we computed category boundary effect, cohesion, and

distinctiveness in an analogous fashion for image descriptor features extracted from

our stimulus images: color histograms, GIST [103], HOG [27], SIFT [87].

We found that all image descriptor category boundaries clearly favored the subor-

dinate level (Fig. 2.2 A, inset). As such, these boundaries were similar to early visual

cortex representations, but they did not capture category representations in LOC.
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By contrast, neural patterns in LOC exhibited a trend for reversing the preference

of subordinate and basic levels, favoring the latter (Basic > Subordinate LOC: t9 =

2.0, p = 0.072).

Furthermore, we found that for all our feature descriptors, cohesion has high pos-

itive values for all levels of the taxonomy. However, concomitantly, between-category

similarity was also very high (Fig. 2.2 B, insets), indicating poor distinctiveness at

the image descriptor level. In other words, a high degree of similarity exists between

all our stimulus images in terms of their low-level features, irrespective of category,

and across all levels of the taxonomy (i.e. distinctions between all categories are very

slight). Thus, while image features may partly explain category cohesion, they do a

poor job at characterizing the distinctiveness between object categories we observe

in the neural data. This lack of distinctiveness makes low-level image features a poor

candidate for explaining the results we obtained in LOC which show the basic level

gaining an advantage compared to the other two levels in our taxonomy.

Our results are consistent with the predictions put forth by Rosch et al. [116] based

on behavioral observations: object categories are represented such that they maximize

within-category similarity and between-category dissimilarity. This property is not

solely due to low-level image features, it holds across multiple levels of category

generality (subordinate, basic, superordinate), and is, in fact, enhanced as we move

up the ventral visual stream: cohesion and distinctiveness increase in object-selective

areas compared to early visual cortex.

2.3.1.5 Correlation Classification Shows Basic Level Advantage in LOC

Our analyses so far suggest that in order to understand category organization in vi-

sual cortex, we must consider cohesion and distinctiveness together. Furthermore,

the category boundary analysis used here and by others [81] assumes cohesion and

distinctiveness combine linearly to give rise to category distinctions. This linearity as-

sumption may not be strictly true, raising the possibility that we are underestimating

(or overestimating) the degree to which the activity patterns adhere to a particular

taxonomic level. Thus, to complement our category boundary analysis, we also used a

data-driven method that weighs cohesion and distinctiveness automatically, without
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any prior knowledge provided by the experimenters.

In particular, we implemented an MVPA correlation classifier to decode category

identity from each ROI at each taxonomic level (subordinate, basic, superordinate).

We found that the information present in voxel-level neural patterns was sufficient

to distinguish between categories at all taxonomic levels and in all brain regions

considered above-chance: object-, scene-, and face-selective areas (LOC, FFA, PPA,

RSC, TOS), as well as early visual areas (V1, V2, V3v, hV4) (Fig. 2.3 A).

Critically, however, we also found that information about object category did not

increase monotonically with category generality (taxonomic level) in all brain areas.

In LOC (and to a lesser extent in FFA and RSC) accuracy was highest at the basic

level and we saw a significant drop in decoding for both the subordinate and the

superordinate levels, compared to the basic level (LOC: Basic > Subord. t9 = 11.1,

p < 0.001, Basic > Superord. t9 = 4.5, p = 0.002; FFA: Basic > Subord. t9 = 4.1,

p = 0.003, Basic > Superord. t9 = 3.0, p = 0.014; RSC: Basic > Subord. t9 = 3.9,

p = 0.004, Basic > Superord. t9 = 2.6, p = 0.028). Moreover, we found that in

all regions, when classification errors did occur, the confusions were more likely to

be within the same basic level than between basic levels (i.e. breeds of dogs were

commonly confused with other breeds of dogs, but not with types of flowers, shoes,

or planes; Fig. 2.3 B), with the effect most salient in LOC (Within Basic Confusions

> Between Basic Confusions: LOC: t9 = 15.9, p < 0.001; TOS: t9 = 5.6, p < 0.001;

PPA: t9 = 5.9, p < 0.001; RSC: t9 = 4.2, p = 0.002; FFA: t9 = 4.1, p = 0.003; V1:

t9 = 3.1, p = 0.013; V2: t9 = 4.5, p = 0.001; V3v: t9 = 4.9, p < 0.001; hV4: t9 =

6.3, p < 0.001).

The trends observed in the correlation classifier decoding results suggest that basic

level categories are more clearly delineated at the voxel population level in object-

selective areas, compared to the other two levels in our taxonomy. This result provides

a quantitative validation to the intuition provided by the category boundary analysis

that the basic level represents an optimal level of specificity in object taxonomy in

object-selective cortex.

Finally, the basic level is most distinguishable in LOC using the MVPA analysis,

but not using the category boundary effect analysis. This finding suggests that MVPA
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Figure 2.3: MVPA classification reveals that object categories are most dis-
tinct at the basic level in LOC in Experiment 1. (A) Proportion above chance
of correct decoding responses for all levels of the taxonomy (chance is zero): subor-
dinate, basic, and superordinate. Top insets denote whether differences between ad-
jacent bars are significant. Category information was discernible significantly above
chance at all taxonomic levels and in all ROIs, with higher visual areas generally
showing larger values. Decoding at the basic level was easier than at the subordi-
nate and superordinate levels in LOC, RSC, and FFA (shaded), but not in any of
the other brain areas considered. (B) Confusion matrix example: LOC basic level
classification. Basic categories were ordered on the axes according to the pictograms:
dogs, flowers, planes, and shoes. At the subordinate level, within each basic category,
the eight corresponding subordinates were listed alphabetically. At the superordinate
level, the ”natural object” category was listed first, and the ”man-made object” cat-
egory was listed second. (C) Confusion matrices for decoding analysis in A: top =
subordinate level; middle = basic level; bottom = superordinate level. In all regions,
when classification errors did occur, the confusions were more likely to be within
the same basic level than between basic levels with the effect most salient in LOC.
The basic level matrices show that confusions become more common within the basic
level as we move up the visual hierarchy. ∗ p < .05, ∗∗ p < .01, ∗ ∗ ∗ p < .001, n.s.
= not significant. Error bars: 95% confidence interval. SUBORD. = subordinate;
SUPERORD. = superordinate.
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did not weight cohesion and distinctiveness equally when assigning category labels to

neural activations, and thus cohesion and distinctiveness might not contribute equally

to generating category boundaries in LOC.

2.3.2 Three Superordinate Categories - Vehicles, Furniture,

and Musical Instruments: Removing the Contribu-

tion of Real-World Size, Animacy, and Natural Back-

grounds

2.3.2.1 Behavioral Experiments

The stimulus set used in Experiment 1 comprised categories which straddle the bound-

aries of two main dimensions of selectivity known to affect the responses to objects

in occipito-temporal cortex: animacy and real-world size. To ensure that these di-

mensions have no effect on our results, as well as to demonstrate the generalizability

of our results from Experiment 1 to additional categories, we constructed a new

three-tiered taxonomic hierarchy comprising exclusively big and inanimate objects: 3

superordinate level categories (vehicles, furniture, musical instruments), 9 basic level

categories (cars, airplanes, ships, chairs, beds, tables, drums, guitars, pianos), and 36

subordinate level categories (4 types of each of the 9 basic level categories). In addi-

tion, to ensure that our effects were driven by objects and not by their naturalistic

backgrounds, we superimposed our new stimuli on meaningless 1/f noise backgrounds.

To finalize our category taxonomy, as well as to verify that our putative basic level

categories reflect entry-level concepts, we conducted a delayed match-to-category be-

havioral experiment, similar to the one used in Experiment 1. Our strategy was to

test our initial category taxonomy, and then eliminate members with ambiguous cat-

egory status. To prune our taxonomy, we defined the basic level advantage to be

the reaction time difference (in z-scores) of basic level categorization compared to

subordinate level categorization (Fig. 2.4 E). We then used this metric to reject the

subordinate with the weakest basic level advantage out of the four putative subordi-

nate level categories in each basic (eliminating 9 subordinate categories total out of
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the initial 36), resulting in 27 total subordinate level categories (Fig. 2.4 A). Only one

of the remaining subordinates (biplane) had a negative basic level advantage, possibly

because this less-typical plane is better categorized at the subordinate level [71].

To test for the strength of the basic level advantage in our pruned taxonomy, we

examined the differences in reaction times to correctly verify an image as a member of

a subordinate, basic or superordinate level category. We observed strong basic level

effects overall (Fig. 2.4 C): participants were significantly faster to verify category

membership at the basic level (566 ms; s.e.m 36 ms) than at the superordinate level

(623 ms; s.e.m 39 ms, Basic > Superord. t18 = 6.8, p < 0.001). Similarly, basic level

categorization was faster than subordinate level categorization (618 ms, s.e.m 36 ms,

Basic > Subord. t18 = 6.2, p < 0.001).

To map categories in terms of their behavioral similarity and dissimilarity, we

next used a same-different subordinate level categorization experiment to measure

the perceptual distance between all pairs of subordinate categories. Reasoning that

images in similar categories will take longer to reject than images from dissimilar

categories, we used response times to pairs of images in the ”different” condition to

generate a distance metric between our subordinate categories. Consistent with prior

work [116], participants found objects within the same basic category to be more

similar to each other than to stimuli in other basic categories (t74 = 39.0, p < 0.001).

Furthermore, classical multidimensional scaling (MDS) applied to this distance metric

revealed that in a two-dimensional projection each of the nine basic level categories

are clearly separated from one another (Fig. 2.4 B).

Similarly to Experiment 1, these results replicated Rosch et al.’s [116] original

findings for our new set of object categories by demonstrating that our second tax-

onomy also exhibits a clear basic level advantage after removing the contribution of

animacy, image backgrounds, and real-world size as described by others [76, 77].

2.3.2.2 Neural Category Boundaries Equally Favor Subordinate and Ba-

sic Level Representations

We scanned participants viewing these same three superordinate level categories to

assess how neural category representations change across taxonomic levels and across
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Figure 2.4: Stimulus set and behavioral results for Experiment 2. (A) The
stimulus set was organized according to a three-level taxonomic hierarchy comprising
27 subordinate level (most specific, outside layer), nine basic level (middle layer),
and three superordinate level (most general, center) categories. Each subordinate
category consisted of 40 color photographs, with a representative image shown. (B)
Same-different subordinate level categorization behavioral experiment. We applied
classical MDS to the perceptual distance between subordinate categories measured
as z scored RTs. In a two-dimensional solution, all nine basic level categories form
separate clusters. (C–E) We used a match-to-category behavioral experiment to fi-
nalize our category taxonomy by assessing category status in general and basic level
advantage in particular. We tested a larger category taxonomy (36 subordinate cat-
egories) and then eliminated members with ambiguous category status. (C) Partici-
pants verified category membership significantly faster at the basic level than at the
superordinate or subordinate levels. (D–E) RT difference between basic and subor-
dinate / superordinate categorization conditions. Positive values indicate basic level
advantage. Participants identified almost all stimulus categories faster at the basic
level than at the subordinate / superordinate level. We used this metric to reject the
subordinate with the weakest such effect of the putative four subordinate level cate-
gories in each basic level (shaded categories were eliminated). ∗ ∗ ∗ p < .001. Error
bars: 95% confidence interval. Subord. = subordinate; Superord. = superordinate.
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human ventral visual cortex. As in Experiment 1, participants performed a one-back

repetition task in the scanner (i.e. no explicit categorization task). Again, our anal-

yses focused on object- (lateral occipital complex (LOC)), scene- (parahippocampal

place area (PPA), retrosplenial cortex (RSC), trans-occipital sulcus (TOS)), and face-

selective regions (fusiform face area FFA), as well as early visual cortex areas (V1,

V2, V3v, hV4).

Our first task for the new taxonomy was to reassess the strength of category

representations at each taxonomic level. As such, we computed the category boundary

effect for each taxonomic level (subordinate, basic, superordinate) and each brain

region of interest. We found that, as in Experiment 1, the category boundary effect

was largest at the subordinate level in early visual areas, but this trend disappeared

in higher visual areas compared to the basic level (Fig. 2.5 A; Subordinate > Basic:

V1: t16 = 5.7, p < 0.001; V2: t16 = 4.2, p < 0.001; V3v: t16 = 3.8, p = 0.002; hV4:

t16 = 1.4, p = 0.186; LOC: t16 = 0.3, p = 0.754; FFA: t16 = 0.7, p = 0.525; PPA: t16

= 2.6, p = 0.018; TOS: t16 = 0.1, p = 0.920; RSC: t16 = 0.6, p = 0.583; Subordinate

> Superordinate: V1: t16 = 3.5, p = 0.003; V2: t16 = 3.0, p = 0.008; V3v: t16 = 2.7,

p = 0.016; hV4: t16 = 1.5, p = 0.161; LOC: t16 = 2.1, p = 0.053; FFA: t16 = 0.6, p

= 0.533; PPA: t16 = 0.7, p = 0.501; TOS: t16 = 2.5, p = 0.022; RSC: t16 = 1.3, p

= 0.203). Moreover, the category boundary effect increased in LOC compared to V1

at all levels of the taxonomy (LOC > V1: Subord. t16 = 2.9, p = 0.011; Basic t16

= 4.1, p < 0.001; Superord. t16 = 2.6, p = 0.021). These results again suggest that

categories become more sharply distinguishable as we move up the visual hierarchy,

and furthermore, early visual areas appear to favor subordinate distinctions, while in

later areas, this difference disappears between subordinate and basic levels.

This trend was, in fact, an enhanced version of our findings in Experiment 1:

when comparing the difference between category boundaries at the basic level versus

the other two levels, it became clear that the relative difference between the basic

and subordinate levels decreased much more sharply and ultimately disappeared as

we move up the visual hierarchy from V1 to LOC. Simultaneously, the difference

between basic and superordinate levels strongly increased along the visual hierarchy

(Fig. 2.5 C–D; increasing trends in category boundary effect difference from V1 to
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Figure 2.5: After controlling for animacy, real-world size, and naturalistic
backgrounds, neural category boundaries still show that basic level repre-
sentations gain an increasing advantage as we move up the ventral visual
stream. (A) Category boundary effect for neural activity patterns at each taxonomic
level and in each ROI. Inset shows same analysis for image feature descriptors: C =
color histograms; G = GIST features; H = HOG features; S = SIFT features. Early
visual areas favored subordinate distinctions, whereas, in later areas, this difference
disappeared between subordinate and basic levels. (B) Cohesion and distinctiveness
for neural activity patterns at each taxonomic level and in each ROI. Inset shows same
analyses for image feature descriptors. Cohesion generally decreased with taxonomic
level and was significantly weaker at the superordinate level compared to the other
two levels in all ROIs. Distinctiveness generally increased with taxonomic level and
was significantly weaker at the subordinate level compared to the basic and super-
ordinate levels in all ROIs, except for FFA, V1, and V2. (C–D) Category boundary
effect difference between basic level and subordinate and superordinate levels. We
observed an enhanced version of our findings in Experiment 1: the basic level gains
an advantage over both the subordinate and superordinate levels as we move up the
visual hierarchy from V1 to LOC. (E–F) Cohesion difference between basic level and
subordinate and superordinate levels. (G–H) Distinctiveness difference between basic
level and subordinate and superordinate levels. In contrast to Experiment 1, the cat-
egory boundary difference appears to be driven by both components of the category
boundary effect. ∗ p < .05, ∗∗ p < .01, ∗ ∗ ∗ p < .001, n.s. = not significant. Error
bars: 95% confidence interval. Shaded graphs indicate a significant increase from V1
to LOC.
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LOC for Basic - Subord. p < 0.001; Basic - Superord. p < 0.001; Friedman non-

parametric tests). Additionally, category boundary was generally higher at the basic

level than the superordinate throughout visual cortex, and, interestingly, subordinate

category boundary started out with advantage over the basic level (generally negative

values for V1, Fig. 2.5 C), but this advantage disappeared as we moved up the visual

cortical hierarchy (zero and slightly positive values for LOC, Fig. 2.5 C).

Overall, the second experiment confirms our initial results: the subordinate and

basic levels are both strongly represented, with the former being especially emphasized

in early visual cortex, while the latter gaining an equally strong representation in

LOC. Moreover, we notice a gradual trade-off between the subordinate and basic

levels, which becomes apparent as we move up the visual hierarchy.

2.3.2.3 Category Cohesion and Distinctiveness Across Occipito-Temporal

Cortex

Next, we replicated the analyses that investigate each component of the category

boundary effect separately (cohesion and distinctiveness). Again, we found that co-

hesion decreased with taxonomic level across all ROIs (Fig. 2.5 B, top), such that is

was significantly weaker at the superordinate level compared to the other two levels

in the taxonomy in all ROIs (Superordinate < Basic & Subordinate V1: t16 = 6.9,

p < 0.001; V2: t16 = 6.2, p < 0.001; V3v: t16 = 6.9, p < 0.001; hV4: t16 = 6.5,

p < 0.001; LOC: t16 = 6.0, p < 0.001; FFA: t16 = 2.5, p = 0.026; PPA: t16 = 7.1,

p < 0.001; TOS: t16 = 6.4, p < 0.001; RSC: t16 = 6.3, p < 0.001). Concurrently,

between-category dissimilarity (distinctiveness) generally increased with taxonomic

level (Fig. 2.5 B, bottom), such that it was significantly weaker at the subordinate

level compared to the basic and superordinate levels in all ROIs, except for FFA, V1,

and V2 (Subordinate < Basic & Superordinate V1: t16 = 1.5, p = 0.142; V2: t16 =

1.9, p = 0.080; V3v: t16 = 2.6, p = 0.018; hV4: t16 = 3.1, p = 0.007; LOC: t16 = 3.3,

p = 0.005; FFA: t16 = 1.6, p = 0.130; PPA: t16 = 6.4, p < 0.001; TOS: t16 = 3.5, p =

0.003; RSC: t16 = 4.2, p < 0.001). In other words, Experiment 2 confirms our initial

findings: the ventral visual cortex is optimizing category representations and object

categories are represented such that they maximize within-category similarity and
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between-category dissimilarity, with the basic level striking the best balance between

category cohesion and distinctiveness.

Furthermore, in contrast to Experiment 1 where cohesion increased in LOC com-

pared to V1 at all levels of the taxonomy, in Experiment 2 we observed this effect

only at the basic level, but not at the subordinate or superordinate levels (LOC >

V1: Subord. t16 = 1.2, p = 0.249; Basic t16 = 2.9, p = 0.012; Superord. t16 = 0.6,

p = 0.551), suggesting that object representations become overall more homogenous

within their basic category in later visual areas. Note that this phenomenon cannot

be explained by animacy, real-world size, or image backgrounds, as our stimulus set in

this experiment did not vary across these factors. As in Experiment 1, distinctiveness

increased in LOC compared to V1 at all levels of the taxonomy (LOC > V1: Subord.

t16 = 3.3, p = 0.005; Basic t16 = 5.7, p < 0.001; Superord. t16 = 4.1, p < 0.001), which

suggests that object representations become better differentiated across categories in

later visual areas, regardless of taxonomic level. In other words, basic level category

representations benefit from both increased cohesion and distinctiveness as we move

up the ventral visual stream, whereas subordinate and superordinate categories only

exhibit increased distinctiveness, suggesting a potential advantage for the basic level

in higher visual areas.

To further investigate whether changes in cohesion and distinctiveness favor the

basic level, we compared these quantities across both taxonomic level and visual areas

(Fig. 2.5 E–H). The advantage of the basic level over the subordinate level in later

visual areas was again mainly due to the sharp increase in distinctiveness between

early visual areas and LOC (Fig. 2.5 G, Basic - Subord. distinctiveness increase

from V1 to LOC: p < 0.001; Friedman non-parametric test). Interestingly, however,

cohesion also exhibited a slight increase as we moved up the visual stream, albeit

much less so than distinctiveness (Fig. 2.5 E, Basic - Subord. cohesion increase from

V1 to LOC: p = 0.015; Friedman non-parametric test). This suggests that although

the contribution of cohesion to the difference between subordinate and basic level

representations is small, this component nonetheless exerts a quantifiable influence in

the category representations we observed.

Whereas in Experiment 1 the advantage of the basic level over the superordinate
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was mostly due to an increase in cohesion, here the same advantage was due to an

increase in both cohesion and distinctiveness between early visual areas and LOC

(Fig. 2.5 F,H; increasing trends in cohesion and distinctiveness difference from V1 to

LOC for: Cohesion Basic - Superord. p < 0.001; Distinctiveness Basic - Superord.

p < 001; Friedman non-parametric tests). It is possible that in Experiment 1 we

were unable to detect this emerging distinctiveness advantage for the basic level over

the superordinate because our ”natural object” category included both animate and

inanimate stimuli, which were overall more distinctive, and thus obscured a more

subtle change between levels.

Overall, our results replicate our findings in Experiment 1 which show that a

trade-off exists between category cohesion and category distinctiveness at the two

extremes of our taxonomy (subordinate and superordinate levels), with the basic level

potentially striking the best balance between these two quantities by encompassing

both strong within-category similarity and strong between-category dissimilarity. In

short, our data suggests that the basic level simultaneously gains an advantage over

both the subordinate and the superordinate levels as we move up the visual hierarchy

from V1 to LOC.

2.3.2.4 The Contribution of Low-Level Visual Features

Similarly to Experiment 1, we sought to show that the patterns of results obtained in

LOC were not attributed to low-level image features. As such, we computed category

boundary effect, cohesion, and distinctiveness in an analogous fashion for image de-

scriptor features extracted from our stimulus images: color histograms, GIST [103],

HOG [27], SIFT [87]. Here, we found an enhanced version of our findings from Exper-

iment 1: descriptor category boundaries strongly favored the subordinate level thus

more closely capturing early visual cortex representations (Fig. 2.5 A, inset). By con-

trast, neural patterns in LOC, TOS, PPA, and RSC exhibited a trend for reversing

the preference of subordinate and basic levels, favoring the latter.

Furthermore, we once again found that for all our feature descriptors, both cohe-

sion and distinctiveness had high positive values for all levels of the taxonomy. This

implies a high degree of similarity exists between all our stimulus images in terms
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of their low-level features, even among categories that were highly distinctive in our

neural data. Thus, while image features may partly explain cohesion, they do a poor

job at characterizing the distinctiveness between object categories we observe in the

neural data.

2.3.2.5 Correlation Classification Shows Basic Level Advantage in LOC

Finally, as we did in Experiment 1, we used a more data driven approach to assess cat-

egory boundaries by implementing an MVPA correlation classifier to decode category

identity from each ROI at each taxonomic level (subordinate, basic, superordinate).

We found that the information present in voxel-level neural patterns was sufficient to

distinguish above-chance between categories at all levels in the hierarchy and in all

brain regions considered: object-, scene-, and face-selective areas (LOC, FFA, PPA,

RSC, TOS), as well as early visual areas (V1, V2, V3v, hV4) (Fig. 2.6 A).

Critically, however, we again found that information about object category did

not increase monotonically with category generality (taxonomic level) in all brain

areas. In LOC, accuracy was highest at the basic level and we saw a significant drop

in decoding for both the subordinate and the superordinate levels, compared to the

basic level (LOC: Basic > Subord. t16 = 2.4, p = 0.031, Basic > Superord. t16 =

4.4, p < 0.001). Moreover, we found that in all regions, when classification errors did

occur, the confusions were more likely to be within the same basic level than between

basic levels (i.e. types of cars were commonly confused with other types of cars, but

not with types of ships, for example; Fig. 2.6 B), with the effect most salient in LOC

(Within Basic Confusions > Between Basic Confusions: V1: t16 = 5.3, p < 0.001;

V2: t16 = 5.7, p < 0.001; V3v: t16 = 6.3, p < 0.001; hV4: t16 = 5.1, p < 0.001; LOC:

t16 = 5.5, p < 0.001; FFA: t16 = 4.4, p < 0.001; TOS: t16 = 6.3, p < 0.001; PPA: t16

= 7.7, p < 0.001; RSC: t16 = 6.9, p < 0.001).

Our correlation classifier decoding results mirror the findings from Experiment 1,

which suggest that the basic level represents an optimal level of specificity in object

taxonomy in object-selective cortex. Furthermore, we again see evidence that MVPA

did not weigh cohesion and distinctiveness equally when assigning category labels to

neural activations, since decoding produces a stronger advantage for the basic level
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Figure 2.6: After controlling for animacy, real-world size, and naturalistic
backgrounds, MVPA classification reveals that object categories are most
distinct at the basic level in LOC. (A) Proportion above chance of correct de-
coding responses for all levels of the taxonomy (chance is zero): subordinate, basic,
and superordinate. Top insets denote whether differences between adjacent bars are
significant. Category information was discernible significantly above chance at all
taxonomic levels and in all ROIs. Decoding accuracy at the basic level was higher
than both at the subordinate and superordinate levels in LOC, but not in any of the
other brain areas considered. (B) Confusion matrix example: LOC basic level classi-
fication. Basic categories were ordered on the axes according to the pictograms: cars,
ships, planes, beds, chairs, tables, drums, guitars, and pianos. At the subordinate
level, within each basic category, the three corresponding subordinates were listed
alphabetically. At the superordinate level, the ”vehicle” category was listed first, the
”furniture” category was listed second, and the ”musical instrument” category was
listed last. (C) Confusion matrices for decoding analysis in A: top = subordinate
level; middle = basic level; bottom = superordinate level. In all regions, when classi-
fication errors did occur, the confusions were more likely to be within the same basic
level than between basic levels with the effect most salient in LOC. The basic level
matrices show that confusions become more common within the basic level as we
move up the visual hierarchy. ∗ p < .05, ∗∗ p < .01, ∗ ∗ ∗ p < .001, n.s. = not signif-
icant. Error bars: 95% confidence interval. SUBORD. = subordinate; SUPERORD.
= superordinate.
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that the category boundary analysis. This suggests that cohesion and distinctiveness

might not contribute equally to generating category boundaries in LOC.

Together, our two experiments show that category representations change as a

function of taxonomic level across the span of the human ventral visual processing

stream: initially, subordinate categories are more distinguishable in early visual areas,

but this advantage diminishes in later areas, and this is due to changes in both cate-

gory cohesion and distinctiveness between visual areas. Most importantly, by testing

two separate taxonomies, each representative of real-world hierarchical organization

of objects, we show that this effect is robust, generalizable, not fully explained by low-

level visual features, and persists after eliminating image backgrounds and removing

the contribution of animacy and real-world size.

2.4 Discussion

Our work establishes a link between the neural representation of object categories in

occipito-temporal cortex and human object taxonomy. We achieve this by showing

that for two category taxonomies which exhibit a clear behavioral basic level advan-

tage, category representations change as a function of taxonomic level as we move up

the ventral visual cortical hierarchy. This provides evidence that basic level structure

may be an emergent property of the human visual system.

Consistent with the tenets of categorization theory [116], patterns in high-level

visual cortex adhere to the principle of simultaneously maximizing within-group sim-

ilarity and between-group dissimilarity. Moreover, our results provide the first neu-

ral support for the hypothesis that the basic level strikes the best balance between

these two measures, whereas the subordinate and superordinate levels appear to each

optimize similarity along one dimension over the other [113]. Moreover, our data

underscore the importance of considering the joint contribution of both aspects that

give rise to the concept of a category in visual cortex: within-category similarity

(cohesion) may be an intuitive candidate for what makes a good category, but our

work shows that, in fact, distinctiveness is just as important in establishing neural

category boundaries and actually varies more sharply between early visual areas and
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object-selective cortex than cohesion. Most importantly, this organizational principle

emerges gradually as we move up the visual cortical hierarchy and is not present in ei-

ther low-level image features or early visual cortex activations (Fig. 2.2 and Fig. 2.5).

This suggests that objects in the world do not group naturally by basic level category

in terms of their appearance, but instead successive levels in the visual system may

be optimizing basic level categorizations.

Previous studies have reported that information decoding in early visual areas

using a linear classifier is at chance levels when retinal location, viewing angle, or

size is altered [20, 38, 39]. Perhaps surprisingly, our results show a predilection

for early visual areas to group objects strongly at the subordinate level, with this

grouping diminishing gradually in favor of the basic level only in later visual processing

regions. This effect can be well understood if we consider that objects within the same

subordinate level category share more low-level features in common with each other

than with members of other (subordinate, basic, or superordinate) categories, as

evidenced by the low-level feature analyses in Fig. 2.2 A,B and Fig. 2.5 A,B (insets).

Thus, given that subordinates share more overall low-level features in common, we

expect to observe greater subordinate level category cohesion, especially in early visual

areas. High cohesion here may also be partially explained by the fact that our stimuli

were all presented centrally, allowing the low-level features to overlap despite the

localized information processing and the small receptive fields in these areas [20, 38,

39]. Consequently, our results do not imply that fine-grained category distinctions are

most strongly represented in early visual cortex; instead, early visual cortex is simply

the region where low-level features best drive similarity of activity patterns. In fact,

decoding performance in early visual cortex indicates that subordinate categories are

less distinguishable than the other two, presumably reflecting their low distinctiveness.

Altogether, this suggests that the principle of maximizing within-category similarity

and between-category dissimilarity is necessary, but not sufficient for a good category

representation: for example, in early visual areas we see strong category boundaries,

but they are likely due to low-level features.

Our results support the hypothesis that fine-grained categories become more sep-

arable in higher visual areas at the scale of neural response afforded to us by fMRI.
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This trend is illustrated best in Fig. 2.5 B: initially, activity patterns elicited by sub-

ordinates are not distinguishable (distinctiveness near zero in V1), but they become

increasingly anti-correlated (significantly positive distinctiveness in hV4 and LOC).

This indicates that fine-grained distinctions increase with complexity of visual pro-

cessing and that the high category boundary effect values observed for subordinate

categories in early visual areas are mainly driven by high cohesion due to low-level fea-

ture overlap. Finally, while low-level features of our stimuli may, in part, contribute to

the overall trend we observe for subordinate categories, prior evidence suggests that,

indeed, visual features may be inextricably linked to categorical representations [42,

74].

Anatomically, prior evidence suggests that large-scale smooth selectivity gradients

for semantic category groupings [66] and object attributes, such as animacy [19, 23,

76, 81] and real-world size [76, 77] underlie object category responses in the human

visual system. By leveraging similarity in cortical activity patterns, our work comple-

ments this view by revealing what may be an important principle of categorization in

the brain: fine-grained representations trade off with more general basic level repre-

sentations after early visual areas. By analyzing the similarity between the patterns

of category responses, we uncovered a tendency for object-selective cortex (LOC) to

amplify basic level category boundaries compared to those at other taxonomic levels.

Although this tendency is strongest in LOC, other high level areas exhibit similar

trends compared to early visual cortex (albeit much less so than LOC). These include

both scene-selective (PPA, TOS, RSC) and face-selective areas (FFA). The fact that

object-related activity behaves similarly in these high-level visual areas, including

those are that are not typically associated with object processing (PPA, TOS, RSC),

suggests that these areas may share common computations; computations whose

byproduct is to clarify and separate categories.

The behavioral basic level advantage is mainly supported by evidence that most

objects are categorized faster at the basic level [71, 90, 98, 99, 116, 123, 125] (but

not for domain-level naming [127] and that basic level labels are used nearly exclu-

sively when people freely name an object [116]. Our results offer a plausible neural

explanation for these aspects of the basic level perceptual advantage. Under our
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proposed model, the basic level advantage arises due to cortical computations that

increase the efficacy of basic level category boundaries between early visual cortex and

object-selective cortex. If LOC primarily enhances category representations between

objects at the basic level, then areas which use its afferents as input (temporal [93] or

frontal [49, 95]) would require less computation and thus less time to extract or con-

struct categorical information at the basic level of specificity. Information about basic

category is easily linearly separable in LOC, whereas further computations would be

required to access subordinate and superordinate representations. Consequently, ba-

sic level information is mostly available from polling object-selective areas at little

additional computational cost, and thus voluntarily expressed faster, which is consis-

tent with prior behavioral findings [116]. Consequently, our results are also consistent

with the hypothesis that an enhanced basic level advantage for neural patterns of ac-

tivity might arise at a post-perceptual level of representation, such as in high level

semantic areas (e.g. pMTG, ITG) that likely represent and build amodal representa-

tions of object categories [15, 22, 43]. Indeed, we believe the search for such an area

and representation constitutes an interesting avenue for future study.

Although the basic level advantage is a well-accepted phenomenon, there is some

controversy surrounding its robustness: some behavioral studies report that either the

subordinate, or the superordinate level is accessed first, rather than the basic level of

specificity [71, 89, 90, 125, 127]. In our behavioral experiments, we found a strong

basic level advantage for virtually all categories we investigate in terms of speeded

categorizations, thus confirming that the entry-level for our taxonomy lies at the basic

level. Nonetheless, the real world contains several orders of magnitude more categories

embedded in a much deeper hierarchical tree than the three-tiered taxonomy we

used. Thus, the results reported here do not preclude the possibility that a carefully

picked stimulus set (e.g. containing less typical members of basic categories [71]), a

different task (e.g. ultra-fast categorization [89]), or a set of participants who possess

expertise in the categories being tested [125] may change the level of the taxonomy

at which neural patterns may group object stimuli. Furthermore, our results are

highly generalizable across two separate hierarchies where the superordinate level is

defined at different specificity distance from the basic level (arguably natural and
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man-made are farther from the basic level than vehicles, musical instruments, and

furniture). We are agnostic, however, whether other possible superordinates may fare

differently against our basic level categories. Nevertheless, we would then predict that

such effect would also be reflected in behavior. As such, all the above manipulations

provide interesting avenues of further inquiry.

More broadly, our data suggest an alternative hypothesis to the view that cat-

egorical distinctions emerge mainly from processing in anterior temporal or frontal

areas of the brain [49, 93, 95], a view also mirrored by models that strongly encapsu-

late vision from cognition [48, 108, 110]. Instead, our work shows that clear category

separations emerge gradually as early as occipito-temporal regions and in the absence

of an explicit categorization task, suggesting that categorization may be part of vi-

sual processing. This view is consistent with recent behavioral results that show that

categories alter perception [50], even when categorization is task-irrelevant [88].

The basic level advantage is a pervasive phenomenon that captures something

fundamental about human cognition. As such, it has influenced many fields of knowl-

edge, ranging from psychology and neuroscience, to molecular biology, engineering,

and the humanities. In fact, Rosch’s original finding was cited over 4,000 times across

these disciplines. Our work provides a long overdue understanding of why the basic

level might be privileged: the human brain appears to build basic level categories

over successive visual areas. Such an understanding is key to answering the broader

question about how the human brain extracts and organizes information from our

visual world.
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Chapter 3

Typicality Sharpens Category

Representations in

Object-Selective Cortex

As we argued in the previous chapter, the purpose of categorization is to identify

generalizable classes of objects whose members can be treated equivalently. Within

a category, however, some exemplars are more representative of that concept than

others and considerable evidence suggests that the typicality of a particular item is

reflected in how fast and how accurately we perceive it in our daily lives [109, 112,

115]. However, despite such long-standing behavioral effects, little is known about

how typicality influences the neural representation of real-world objects from the same

category.

To address this question, we used a functional neuroimaging experiment where

we showed participants 64 subordinate object categories (exemplars) grouped into

8 basic categories. Typicality for each exemplar was assessed behaviorally and we

used several multi-voxel pattern analyses to characterize how typicality affects the

pattern of responses elicited in early visual and object-selective areas: V1, V2, V3v,

hV4, LOC. We found that in LOC, but not in early areas, typical exemplars elicited

activity more similar to the central category tendency and created sharper category

45
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boundaries than less typical exemplars, suggesting that typicality enhances within-

category similarity and between-category dissimilarity. Additionally, we uncovered

a brain region (cIPL) where category boundaries favor less typical categories. Our

results suggest that typicality may constitute a previously unexplored principle of

organization for intra-category neural structure and, furthermore, that this represen-

tation is not directly reflected in image features describing natural input, but rather

built by the visual system at an intermediate processing stage. This chapter is joint

work with Michelle R. Greene, Diane M. Beck, and Fei-Fei Li, and was previously

published as [68].

3.1 Introduction

The purpose of categorization is to identify generalizable classes of objects whose

members can be treated equivalently. Within a category, however, some exemplars

are more representative of that concept than other members of the same category.

This typicality effect usually manifests behaviorally as increased speed of recognition,

as well as lower error rates for verifying category membership of the more typical

item [109, 112, 115]. Despite well-studied behavioral effects, little is known about

how typicality influences the neural representation of objects from the same category:

for example, why are some dog exemplars more representative of the category ”dog”

than others and where can we find evidence for this distinction in the brain?

Previous investigations of the neural basis for typicality have employed category

learning paradigms over artificially constructed categories [2, 29–31, 138]. By con-

trast, our environment contains tens of thousands of distinct object categories [11,

32]. Furthermore, considerable evidence suggests that perceived typicality is reflected

in how fast and how accurately we perceive many such real-world objects and cate-

gories [109, 112, 115]. Thus, the overarching goal of our present work is to investigate

how the typicality of real-world object categories affects their representation in human

visual cortex.

Many theories and cognitive models have been proposed for the instantiation of
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typicality as a dimension of object representation in human categorization (for re-

views, see e.g. [1, 8, 9, 96], however, a clear neural correlate of these models has yet

to be identified. Nevertheless, in virtually all such models, distinct objects are defined

as points in a multidimensional psychological space and similarity (in terms of fea-

tures or properties) between such items belonging to the same or different categories

represents the defining characteristic by which typicality (and categorization itself)

are instantiated. In the spirit of this observation, we set out to test one of the earliest

and most fundamental hypotheses regarding the instantiation of typicality relation-

ships between exemplars in a given category: the family resemblance hypothesis first

put forward by Rosch and Mervis [115]. Their proposed model states that highly

typical members of a category are those that share most features in common with

other members of that category (i.e. a typical subordinate level exemplar, such as a

Golden Retriever, is highly representative of the basic level category ”dog”), while si-

multaneously sharing the fewest features in common with other categories in a similar

semantic space (i.e. with other basic level categories within the same superordinate

category; e.g. Golden Retrievers would share very few features in common with cats).

Investigating hypotheses such as this one is challenging in the real-world domain

mainly because the sheer number of categories in our environment is estimated to

be in the tens of thousands [11] and because controlling for the features of natural

visual stimuli is notoriously difficult. In our present experiment, we put forward the

first attempt to push beyond small-scale, artificial, hand-designed datasets for inves-

tigating how typicality modulates neural representations by leveraging a large-scale

taxonomically structured image database (ImageNet [32]), along with employing a

method for obtaining high-throughput behavioral rankings (the Amazon Mechanical

Turk platform). As such, we are now able to test directly whether brain regions exist

where the family resemblance hypothesis represents a guiding principle for the neural

intra-class organization of a large set of real-world object categories and, further-

more, compare this organization against the corresponding low-level visual feature

representation of the over one thousand images we used as stimuli in our study.

To this end, we performed a passive viewing fMRI experiment in which partici-

pants viewed color photographs from 64 subordinate level object categories grouped
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into 8 basic level categories. The typicality of each subordinate category (hitherto re-

ferred to as an ”exemplar”) within its corresponding basic category (hitherto referred

to as a ”category”) was ranked behaviorally. The family resemblance model was origi-

nally defined using a semantic feature space: e.g. the category ”dog” is exemplified by

features such as ”has-tail”, ”wags-tail”, and ”is-furry”; and an exemplar which pos-

sesses more of these features would be rated as more typical. Although Rosch’s family

resemblance hypothesis has been well received, it has been difficult to find definitive

evidence for it primarily because the feature space used by the brain is unknown.

Here, we set out to investigate this question in the domain of neural activation pat-

terns, where we can remain agnostic as to the nature of the feature spaces, semantic

or otherwise, in which object categories are represented. Multi-voxel pattern analy-

ses allow us to characterize the similarity between neural patterns elicited by these

categories throughout human visual cortex, without making any explicit assumptions

regarding the building blocks of the feature spaces themselves. As such, we found

that in object-selective regions of occipito-temporal cortex, but not in early visual ar-

eas, typical exemplars were more similar to the central tendency of the category and

created significantly sharper category boundaries than less typical exemplars, sug-

gesting that typicality enhances category cohesion (within-category similarity) and

category distinctiveness (between-category dissimilarity). Thus, we present the first

evidence that typicality modulates neural representations of real-world object cate-

gories in object-selective cortex in a manner consistent with the family resemblance

hypothesis. Interestingly, using a whole-brain analysis, we also uncovered the first

evidence of a brain region where category boundaries favor less typical categories

(cIPL). Taken together, these findings suggests that the two extremes of the behav-

ioral typicality continuum may simultaneously exert separate influence on the neural

representation of real-world object categories across human visual cortex, and more-

over, that typicality may constitute a previously unexplored principle of organization

for intra-category neural structure, one that is likely built by the visual system at

an intermediate processing stage, rather than inherited from low-level features of our

input.
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3.2 Materials and Methods

3.2.1 Constructing a Behaviorally-Normed Category Set

The goal of our experiment was to test the family resemblance hypothesis [115] which

posits that highly typical members of a category share the most features in common

with other members of that category, while simultaneously sharing the fewest features

in common with members of semantically related categories. To test this model ap-

propriately, we required a set of basic level categories (e.g. dog, car), each comprising

multiple subordinate level categories (exemplars, e.g. Chihuahua, sedan) for which

perceived typicality could be assessed behaviorally.

In our experiment, we started with a four-tiered taxonomic hierarchy compris-

ing the following putative levels: two domain level categories (natural, man-made),

four superordinate level categories (animals, plants, musical instruments, vehicles),

sixteen basic level categories (e.g. bird, cat, dog, fish for ”animals”), and one hun-

dred and twenty-eight subordinate level categories (e.g. Chihuahua, stealth plane,

parsley). Subsequently, we assessed the entry levels in each of our four superordinate

tiers. We performed a match-to-category behavioral experiment in which we asked

participants to verify whether each image belonged to its subordinate, basic, superor-

dinate, or domain level category. We found that, of our four putative superordinate

categories, ”animals” and ”vehicles” were the only ones who adhered strongly to the

putative hierarchy, whereas plants and musical instruments varied across disparate

taxonomic tiers and, for some of their categories, the basic level was situated either

at a more general or more specific tier than their putative designation (e.g. putative

basic levels ”wind instruments”, ”string instruments”, ”garden plants” closer to su-

perordinate level; putative superordinate level ”plants” closer to basic level; putative

superordinate ”musical instruments” closer to domain level; see Appendix B, Fig. B.1,

Fig. B.2). Therefore, to maintain a consistent, verified hierarchy, we selected a subset

of our original dataset comprising eight basic level categories (dogs, cats, birds, fish;

cars, boats, planes, trains) and sixty-four subordinates (eight for each basic category,

e.g. Chihuahua, stealth plane, etc.). This hierarchy has the added advantage that

it contains equal numbers of natural / animate and man-made/inanimate categories,
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Figure 3.1: Typicality ranked stimulus set. Our stimulus set comprised 8 subor-
dinate level exemplars from each of 8 basic level categories. Participants were shown
16 images from each exemplar, varying in pose and color (only one representative im-
age is shown above). Within each basic category, exemplars are organized according
to behavioral typicality from the most typical (left) to the least typical (right): e.g.
airliners (rank 1) and fighter planes (rank 2) were judged to be much more typical
examples of planes than stealth planes (rank 7) and gyrocopters (rank 8).

a distinction known to affect representations of object categories in human visual

cortex [23, 76].

Subsequently, we used ImageNet [32] to collect 16 distinct images containing ob-

jects of interest from each of our sixty-four subordinate level categories; i.e. if the

subordinate category is pugs, then we showed 16 distinct photographs of pugs. Pic-

tures were cropped to feature the objects prominently and centrally within a square

region (400 x 400 pixels in size) and included their natural background. Within each

subordinate category, the images varied greatly in color and pose. Representative

images from each of our 64 categories are shown in Fig. 3.1.
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3.2.2 Behavioral Experiment: Typicality Rankings

3.2.2.1 Participants and Materials

40 participants were recruited on Amazon’s Mechanical Turk platform (AMT) from

a pool of trusted US-based participants with at least 2,000 previously accepted AMT

results at a minimum of 98% approval. Participants completed the study from their

own personal computing device.

3.2.2.2 Experimental Procedures

Each of the AMT hits contained 28 trials comprising each possible pairwise compar-

ison between the eight subordinate categories within a particular basic category. In

each trial, participants viewed a randomly drawn image from two subordinate cate-

gories and were asked to indicate by clicking which image was the most typical of its

corresponding basic category. Ten individual participants ranked each basic category,

with each participant ranking a median of six basic level categories overall. Partici-

pants were compensated $0.50 per hit and each hit took an average of 88 seconds to

complete.

3.2.2.3 Data Analysis

Pairwise typicality rankings for the eight subordinates in each basic category were

obtained. We computed the percentage of times each subordinate was chosen as the

more typical item in a pair and used this quantity to order subordinates according to

their typicality in each basic category independently. We also recorded a high value

for the inter-subject reliability of the collected typicality rankings (75% ± 2%, mean

± s.e.m.; see Appendix B, Fig. B.3).



CHAPTER 3. TYPICALITY SHARPENS CATEGORY BOUNDARIES 52

3.2.3 fMRI Experiment

3.2.3.1 Participants

12 volunteers (2 females, ages 24–32, including authors M.C.I. and M.R.G.) with

no past history of psychiatric or neurological disorders and normal or corrected-to-

normal vision participated in this experiment. Participants gave informed written

consent in compliance with procedures approved by the Stanford University Insti-

tutional Review Board. Except for the participating authors, all subjects received

financial compensation. One participant was subsequently rejected from our analy-

ses due to our inability to satisfactorily identify their regions of interest using the

localizer scanning procedures detailed in the corresponding section below.

3.2.3.2 Scanning Parameters and Preprocessing

Imaging data were acquired with a 3 Tesla G.E. Healthcare scanner. A gradient echo,

echo-planar sequence was used to obtain functional images (volume repetition time

(TR) 2 s; echo time (TE) 30 ms; flip angle 80 degrees; matrix 128 x 128 voxels; FOV

20 cm; 29 oblique 3 mm slices with 1 mm gap; in-plane resolution 1.56 x 1.56 mm).

We also collected a high-resolution (1 x 1 x 1 mm voxels) structural scan (SPGR; TR

5.9 ms; TE 2.0 ms; flip angle 11 degrees) in each scanning session. The functional data

were spatially aligned to compensate for motion during acquisition and each voxel’s

intensity was converted to percent signal change relative to the temporal mean of that

voxel using the AFNI software package [26]. To perform our analyses, we computed

the average voxel activity for each block. We did not perform any smoothing.

3.2.3.3 Experimental Procedures

Images were presented centrally subtending 21 x 21 degrees of visual angle and were

superimposed on an equiluminant gray background. We used a back-projection sys-

tem (Optoma Corporation) operating at a resolution of 1024 x 768 pixels at 75 Hz.

Participants performed 2 sessions, 8 runs each, with 16 blocks per run and 8 im-

ages per block. Each block consisted of a 500 ms fixation cross presented centrally,
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followed by 8 consecutive stimulus presentations from the same subordinate level cat-

egory, with a 12 s gap between the blocks. Each image was presented for 160 ms,

followed by a 590 ms blank gray screen. Subjects were asked to maintain fixation

at the center of the screen, and respond via button-press whenever an image was re-

peated (one-back task, 0–2 repetitions per block). Over the course of the experiment,

each participant viewed 2 blocks from each of the subordinate level categories. The

order of blocks, the number of repetitions in each block, and the images in each block

were counter-balanced across runs and between subjects.

3.2.3.4 Regions of Interest (ROIs)

The positions and extents of each participant’s lateral occipital complex (LOC) were

obtained using standard localizer runs conducted in a separate fMRI session. Par-

ticipants completed two runs, each with 12 blocks drawn equally from six categories:

child faces, adult faces, indoor scenes, outdoor scenes, objects (abstract sculptures

with no semantic meaning), and phase-scrambled objects. Blocks were separated by

12 s fixation cross periods and comprised 12 image presentations, each of which con-

sisted of images presented for 900 ms, followed by a 100 ms fixation cross. Each image

was presented exactly once, with the exception of two images during each block that

were repeated twice in a row. Subjects were asked to maintain fixation at the center of

the screen and respond via button press whenever an image was repeated. To avoid

any issues related to intrinsic variability in signal reliability across our participant

pool, we selected fixed-volume ROIs across all our participants. The volume of LOC

in mm3 was chosen conservatively, based on sizes previously reported in the literature,

accounting for resolution differences between studies [51, 67, 133]. Accordingly, LOC

was defined as the top 500 voxels bilaterally near the inferior occipital gyrus that

responded to an Objects > Scrambled Objects GLM contrast.

To determine the locations of early visual areas V1, V2, V3v, and hV4, we used a

standard retinotopic mapping protocol in a separate experiment, in which a checker-

board pattern undergoing contrast reversals at 5 Hz moved through the visual field

in discrete increments [119]. First, a wedge subtending an angle of 45 degrees from

fixation was presented at 16 different polar angles for 2.4 s each. Next, an annulus
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subtending 3 degrees of visual angle was presented at 15 different radii for 2.4 s each.

Each subject passively observed two runs of 6 cycles in each condition, yielding 512

timepoints per subject. The locations and extents of early visual areas were delin-

eated on a flattened cortical surface for each subject, using a horizontal vs. vertical

meridian general linear test, which gave the boundaries between retinotopic maps.

We aligned the positions of the ROIs to the experimental sessions using the AFNI

software package [26], by first aligning the structural scans between sessions with

sub-millimeter precision, and then applying the alignment transformation to the ROI

positions. Percent signal change was then extracted for each voxel in each ROI and

these vectors were submitted to the similarity analyses described next.

3.2.4 fMRI Data Analysis

3.2.4.1 Correlation Advantage

First, we assessed whether the most or the least typical exemplars in each category

were more similar to the central category tendency. To this end, for each basic cate-

gory, we used the average neural patterns of all exemplars as a proxy for the central

category tendency representation. This definition is similar to that of a putative

prototype for that category [121]. We then computed the correlation (Pearson’s r)

between this category central tendency, on the one hand, and the most and least

typical subordinates in each basic category, on the other hand. We hypothesized that

if the family resemblance hypothesis is upheld, then the most typical subordinate will

be more similar (correlated in its elicited pattern of activation) to the central category

tendency than the least typical subordinate. Additionally, we computed a version of

this analysis where we omitted from the computation of the central tendency the most

typical and least typical exemplars (leaving only the six middle-typicality exemplars

in each category). Results were similar, regardless of the method used to compute the

central category tendency. Throughout our analyses, we chose to focus on Pearson

correlation as a straightforward, scale-invariant measure of similarity of neural pat-

terns, which has the ability to normalize across differences in mean activation level

between stimuli and is therefore less susceptible to such variation across a large set
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of object categories.

3.2.4.2 Category Boundary Effect

Next, we assessed whether typical exemplars share fewer features in common with

other categories than less typical exemplars. Here, we refer to neural features (as

measured by voxel activity levels) and we make no assumption that the features

are semantic or otherwise [22], only that multi-voxel patterns reflect some underlying

feature space. By measuring similarity of brain activity patterns we aim to bridge the

gap between the two types of features, positing that similarity in one descriptive space

(voxels) is a good proxy for similarity in the other (internal feature representation).

We hypothesized that if this is the case, then categories defined solely by relatively

higher typicality exemplars would be more distinguishable from one another than

categories comprising only less typical exemplars. To this end, for each ROI and each

subject, we split our dataset into two halves comprising the four most typical and

four least typical exemplars, respectively, from each category. We then computed

a category boundary effect measure separately for each of the two halves of our

dataset. We defined the category boundary effect identically to previous work [67, 81]

as the difference between within-category similarity and between-category similarity,

averaged across all categories considered. For each basic level category, we computed

within-category similarity as the average correlation (Pearson’s r) between neural

patterns elicited by within-category pairs of blocks (e.g. for ”dogs”, this quantity is

defined as the average correlation between voxel activations for any two blocks where

any type of dog was shown). Similarly, we computed between-category similarity as

the average correlation between neural patterns elicited by between-category pairs of

blocks across basic level categories (e.g. for ”dogs”, this quantity is defined as average

correlation between voxel activations for a block where dogs were shown and another

block where, for example, planes were shown). We performed each of these analyses

for each subject and ROI separately. We used this measure to quantify how well

categories are separated in the neural space of representation, given their behavioral

typicality.
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3.2.4.3 Low-Level Feature Analysis

To show that the effects in the correlation advantage and category boundary effect

analyses above, are not solely due to low-level image features, we also performed anal-

ogous computations for image descriptor features extracted from our stimulus images:

LAB color histograms, GIST [103], and multi-scale Gabor wavelet features [73]. Color

histograms were represented using LAB color space. For each image, we created a

two-dimensional histogram of the a∗ and b∗ channels using 64 bins per channel. We

then averaged these histograms over each of the 16 distinct stimuli in each subordi-

nate category, such that each subordinate was represented as a 4,096-length vector

representing the averaged colors its corresponding images. For GIST, we used the

descriptor features first proposed by Oliva and Torralba [103]. This model provides

a summary statistic representation of the dominant orientations and spatial frequen-

cies at multiple scales coarsely localized on the image plane. We used spatial bins

at 4 cycles per image and 8 orientations at each of 4 spatial scales for a total of

3.072 filter outputs per image. We averaged the GIST descriptors for each of the

16 distinct stimuli in each subordinate category to arrive at a 3,072-dimensional rep-

resentation of each of our 64 subordinates. For wavelet features, we represented

each image in our stimulus set as the output of a bank of multi-scale Gabor filters.

This type of representation has been used to successfully model the representation

in early visual areas [73]. Each image was converted to grayscale, downsampled to

128 x 128 pixels, and represented with a bank of Gabor filters at three spatial scales

(3, 6, and 11 cycles per image with a luminance-only wavelet that covers the entire

image), four orientations (0, 45, 90, and 135 degrees), and two quadrature phases

(0 and 90 degrees). An isotropic Gaussian mask was used for each wavelet, with

its size relative to spatial frequency, such that each wavelet has a spatial frequency

bandwidth of one octave and an orientation bandwidth of 41 degrees. Wavelets were

truncated to lie within the borders of the image. Thus, each image is represented by

3 ∗ 3 ∗ 2 ∗ 4 + 6 ∗ 6 ∗ 2 ∗ 4 + 11 ∗ 11 ∗ 2 ∗ 4 = 1, 328 total Gabor wavelets. We created

the wavelet representation of each of our 64 subordinate categories by averaging over

the representation of the 16 distinct images associated with each of them.
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3.2.4.4 Whole-Brain Searchlight Analysis

For each participant’s brain, we extracted all grey matter voxels and placed a sphere

of radius 4 voxels at every other voxel location (step size: 2 voxels). We excluded all

locations where half or more of the voxels in the proposed cube did not overlap with

grey matter. For each cube, we computed a local category boundary effect (CBE)

for responses to the most typical and the least typical half of our dataset, similar to

the analysis procedure described above. We then used these values to identify brain

regions where category boundaries were stronger between more typical categories

(More Typical Half CBE > Less Typical Half CBE) and vice versa (More Typical

Half CBE < Less Typical Half CBE). Individual subject results were transformed

into group space by aligning to the Talairach atlas and averaging the aligned maps

together. To establish statistical significance for our results, we thresholded the group

maps for each analysis by using a false discovery rate (FDR) of 0.05, which was

determined by computing 1,000 simulated group maps, obtained by permuting the

category labels without replacement in each voxel cube searchlight.

3.2.5 Statistical Analyses

For all our experiments, we used paired two-tailed t-tests when comparing observed

effects against chance and when establishing whether a significant difference exists

between two observed effects. We used Kolmogorov-Smirnov tests to establish that

no significant deviation from normality exists for the distributions of all effects to

which t-tests were applied. All statistical tests were implemented in MATLAB.

3.3 Results

3.3.1 Typical Exemplars Are More Neurally Similar to Cat-

egory Central Tendency

Using two separate behavioral experiments (see Materials and Methods), we estab-

lished a dataset of eight verified basic level categories (4 natural / animate and 4
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man-made / inanimate), each of which comprised eight subordinate level categories

normed according to their typicality. Henceforth, we will use the term ”category”

to refer to one of our eight basic level categories and the term ”exemplar” to re-

fer to one of our sixty-four subordinate level categories. To investigate whether the

family resemblance hypothesis is upheld in visual cortex neural patterns of activa-

tion, we scanned participants viewing our sixty-four exemplars (16 visually different

images per exemplar, see Materials and Methods). Since psychological representa-

tions of categories are influenced by factors such as task, learning, and attention [57,

86, 101], we asked participants to perform a one-back repetition task in the scanner

(i.e. no explicit categorization or typicality judgment task) used solely to ensure they

maintained alertness during the experiment. Our analyses focused on object-selective

cortex (lateral occipital complex (LOC)) and early visual areas (V1, V2, V3v, hV4).

First, we assessed the intra-class component of the family resemblance hypothesis,

namely that more typical exemplars in a category share more features in common

with the central category tendency that do atypical exemplars. To test this, within

each of our eight categories, we compared how similar (using Pearson’s r) the most

typical and least typical exemplars were to the central category tendency, defined

here by averaging together the neural patterns corresponding to all exemplars in

each category. This definition is similar to that of a putative prototype for that

category [121].

Here, we hypothesized that if family resemblance provides a good model for the

organization of neural patterns of activation elicited by real-world objects with respect

to their typicality, then more typical items should sit closer to the center of this

space and hence be more similar to the central category tendency, than the atypical

exemplars. Indeed, we found that highly typical exemplars were by far more similar

to the category average than less typical exemplars in object-selective cortex (i.e.

LOC), but not in early visual areas (Fig. 3.2 A; LOC: high > low t10 = 3.8, p =

0.003; V1: high > low t10 < 1, p = 0.491; V2: high > low t10 = 1.3, p = 0.228; V3v:

high > low t10 < 1, p = 0.468; hV4: high > low t10 = 1.2, p = 0.261). Additionally,

these results replicate using a version of the analysis where we omitted from the

computation of the central tendency the most typical and least typical exemplars
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(leaving only the six middle-typicality exemplars in each category, see Appendix B,

Fig. B.4). Interpreted differently, an equivalent prediction of the family resemblance

hypothesis is that the degree of similarity of each subordinate within a basic category

to the most typical subordinate in that category should consistently decrease with

the typicality rating given to that particular subordinate. Indeed, we found that this

alternative prediction mirrors our results above: similarity is highest between the two

most typical subordinates within a basic category and drops successively as typicality

for a given subordinate decreases (see Appendix B, Fig. B.5). Together, these findings

show that intra-class structure of real-world categories is consistent with the family

resemblance hypothesis in LOC and provides evidence that the representation of

object categories shares key properties in common with prototype- and norm-based

representations (see e.g. [1, 83, 120].

To show that the effects we observed cannot be explained solely on the basis

of the low-level properties of the stimuli themselves, we replicated our similarity

analysis using several sets of descriptor features extracted from our images: LAB color

histograms, GIST [103], and multi-scale Gabor wavelet features [73] (see Materials

and Methods for details on how each of the features was computed). We found that all

features show similar numerical correlations between the most typical and least typical

exemplars with the central category tendency. Additionally, for GIST and wavelet

features, we saw an opposite pattern to our LOC results, namely that correlation

with the central category tendency was numerically higher for exemplars ranked as

less typical (GIST high r = 0.86, low r = 0.84; Wavelet: high r = 0.60, low r = 0.64;

Color: high r = 0.88, low r = 0.84). For color histograms, a small trend is observed for

typical exemplars to be more correlated with the central category tendency, however

this trend disappears (and in fact reverses) when excluding the most and the least

typical exemplars from the computation of the central category tendency (middle-six

exemplars analysis: GIST: high r = 0.87, low r = 0.89; Wavelet: high r = 0.54, low r

= 0.60; Color: high r = 0.91, low r = 0.93; see Appendix B, Fig. B.4). Overall, this

implies that low-level features alone cannot fully account for the pattern of results

we observe in object-selective cortex, and further suggests the human visual system

likely constructs (or, at the very least, strongly amplifies) feature descriptions of our
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Figure 3.2: Typical exemplars are more correlated with category central
tendency than less typical exemplars in object-selective cortex. Correlation
between category central tendency and most typical exemplar in each category (or-
ange) or least typical exemplar in each category (blue), averaged across all 8 basic
level categories. In object-selective cortex (LOC), typical categories are more similar
to the average category representation than less typical categories and this effect is
not present in early visual areas. (Inset) We performed a similar analysis using the
image-level features from our stimulus set: LAB color histograms (C), GIST features
(G), and multi-scale Gabor wavelet features (W). All features show similar values for
both highly typical and less typical exemplar correlations, with the GIST and wavelet
features exhibiting an opposite trend to our LOC results (higher correlation for less
typical exemplars). Therefore, low-level stimulus features cannot solely explain our
results in object-selective cortex. ∗ ∗ ∗ p < .001, ∗∗ p < .01, n.s. - not significant.
Error bars: 95% confidence interval.
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visual input that correlate with behavioral typicality judgments later on.

3.3.2 Typical Exemplars Exhibit Stronger Inter-Category

Boundaries

We saw that typicality is correlated with how similar an exemplar is to its central

category tendency. Next, we investigated whether typicality affects the second di-

mension of the family resemblance hypothesis: are typical exemplars more dissimilar

to other categories than atypical ones? We hypothesized that if this is the case, then

categories defined solely by relatively higher typicality exemplars would be more dis-

tinguishable from one another than categories comprising only less typical exemplars.

As such, we split our dataset into two halves, corresponding to the most typical and

least typical exemplars from each category. We subsequently computed the category

boundary effect [67, 81] for each of the two halves of the dataset as the difference

between within-category similarity and between-category similarity, averaged across

our eight basic level categories. We predicted that if the family resemblance hypoth-

esis holds, then the category boundary effect would be stronger when computed on

the half of the dataset comprising the four most typical exemplars from each cate-

gory than when computed on the half of the dataset consisting of the least typical

four exemplars from each category. Using this measure of how separable categories

are in the space of neural patterns of activation, we found that typical exemplars

are more easily distinguishable than less typical exemplars in object-selective cortex

(Fig. 3.3 A; LOC: most typical > least typical, t10 = 3.0, p = 0.013). By contrast,

typicality does not modulate how separable categories are in the space of neural acti-

vations in early visual areas (V1: most typical > least typical, t10 < 1, p = 0.597; V2:

most typical > least typical, t10 = 1.5, p = 0.167; V3v: most typical > least typical,

t10 = 1.1, p = 0.298; hV4: most typical > least typical, t10 = 1.9, p = 0.092).

Analogously to our previous analysis, we asked whether low-level features of our

stimulus set are sufficient to explain the pattern of results we observed in object-

selective cortex. Accordingly, we computed the category boundary effect on feature

descriptors (LAB color histograms, GIST, and multi-scale Gabor wavelet features)
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Figure 3.3: Category boundaries are stronger for highly typical exemplars
in object-selective cortex. Category boundary effect for the two halves of our
dataset comprising the most typical 4 exemplars from each category (orange) and the
least typical 4 exemplars from each category (blue). In object-selective cortex (LOC),
typical exemplars from one category are more distinguishable from exemplars of other
categories, an effect not reflected in early visual areas’ patterns of activation. (Inset)
We performed a similar analysis using the image-level features from our stimulus set:
LAB color histograms (C), GIST features (G), and multi-scale Gabor wavelet features
(W). All of the feature representations show an opposite trend to that observed in
LOC (stronger category boundaries for less typical items) and therefore cannot fully
explain our results in object-selective cortex. ∗∗ p < .01, ∗ p < .05, n.s. - not
significant. Error bars: 95% confidence interval.
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extracted from the most typical half and least typical half of our dataset. For all

of our feature representations, we found an opposite effect to the one present in

LOC: numerically more pronounced category boundaries for the less typical half of

our dataset, compared to the most typical half (high vs. low category boundary:

Color 0.09 vs. 0.14; GIST 0.13 vs. 0.14; Wavelet 0.27 vs. 0.32). These results,

together with the finding that category boundaries are identical in early visual areas

for the two halves of our dataset, provide evidence that it is unlikely that low-level

features are directly responsible for the emergence of the typicality effect we observe in

object-selective regions. In short, this suggests that typical exemplars become more

separated in their neural representation in LOC, and that this effect is not purely

driven by the visual appearance of our exemplars and categories, but instead is a

direct result of sequential processing along the ventral visual stream.

Finally, the category boundary effect is a compound measure that relies on both

within-category similarity (category cohesion) and between-category dissimilarity

(category distinctiveness) [67, 81]. To investigate the contributions of each of these

components of category representation on the strength of the typicality effect we

observed, we computed these measures separately for our two halves of the dataset

comprising the most and least typical categories, respectively. In all visual areas,

we observed no significant differences in cohesion or distinctiveness between the two

halves of our dataset (cohesion: LOC: most typical > least typical, t10 = 1.7, p =

0.120; V1: most typical > least typical, t10 < 1, p = 0.564; V2: most typical > least

typical, t10 = 1.5, p = 0.153; V3v: most typical > least typical, t10 < 1, p = 0.631;

hV4: most typical > least typical, t10 < 1, p = 0.763; distinctiveness: LOC: most

typical > least typical, 10 < 1, p = 0.736; V1: most typical > least typical, t10 < 1,

p = 0.735; V2: most typical > least typical, t10 < 1, p = 0.537; V3v: most typical

> least typical, t10 < 1, p = 0.760; hV4: most typical > least typical, t10 = -1.2, p

= 0.247). Considering our main finding that a significant difference exists between

category boundaries elicited by more and less typical exemplars in LOC, the lack

of a significant effect for cohesion and distinctiveness suggests that neither within-

category similarity, nor between-category similarity differences drive our effects on

their own, but rather it is their combined effect (difference) that separates typical
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and atypical exemplars in this brain region.

An analogous prediction of this second aspect of the family resemblance hypothesis

indicates that if typical subordinates are indeed more separable from other categories,

then they should sit farther from a putative fixed category boundary between two ba-

sic categories compared to less typical categories. Indeed, a separate analysis that

defined fixed support-vector-machine (SVM) boundaries between every pair of basic

categories indicated that, on average, the most typical four subordinates in each cat-

egory exhibited larger distances to their corresponding boundary than the four least

typical subordinates in LOC, but not in early visual regions (Appendix B, Fig. B.6).

Overall, our findings provide strong evidence in favor of the neural plausibility of

the family resemblance hypothesis in LOC. In this brain region, typical exemplars

are more similar to the average category representation and are more separable (as

conferred by their larger category boundary effect) across categories than atypical

exemplars, which suggests that typicality exerts a measurable and consistent mod-

ulatory effect on the nature of the distributed patterns of neural representation of

real-world object categories in object-selective cortex.

3.3.3 Whole-Brain Analysis

So far, we have limited our analyses to functionally defined cortical areas. However, it

may be the case that activity in other brain areas beyond our pre-selected ROIs may

favor the representation or dissociation of typical and atypical exemplars from the

same category. To investigate this hypothesis, we performed a whole-brain searchlight

analysis [80] where we computed the category boundary effect for the most typical half

of the dataset and the least typical half of the dataset for equally spaced spheres of

voxels tiling the entire gray matter surface of our participants’ brains. This analysis

identifies brain regions where typicality organizes the neural representation space

according to the family resemblance hypothesis (typical exemplars more similar to

central category tendency, while maximizing distance to other categories). More

interestingly, by performing the reverse contrast, we may also uncover brain regions

where the opposite is true: since we know that even atypical exemplars are still
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identified as members of their respective categories, it is likely that computations

exist which are meant to ensure differentiation between these exemplars and thus

enable correct assignment into their purported categories.

Consistent with our previous ROI results, we found that typicality modulates

the strength of category distinctions in right LOC and to a lesser extent in a region

adjacent to right hV4 (Fig. 3.4, right). This finding indicates that, indeed, typicality

modulates representation of object categories in object-selective cortex and that this

effect is strongest in this region, not simply a late vs. early visual cortex difference

in representation.

Interestingly, we also uncovered an advantage for neural patterns of activation

distinguishing best between atypical exemplars, compared to highly typical exem-

plars, in the caudal inferior parietal lobule (cIPL; Fig. 3.4, left). This region has been

previously implicated in contextual processing [75] and category learning [138], which

raises the possibility that enhanced category boundaries for atypical categories here

may be due to additional or specialized processing required to disambiguate between

less typical exemplars and subsequently assign them a correct category label.

Taken together, our results suggest that typicality is linked to the neural repre-

sentation of object categories across several brain regions, with its effects extending

to both intra-class and inter-class organization. Our results provide neural confir-

mation for both predictions of the family resemblance hypothesis in object-selective

cortex [115] and, furthermore, we provide the first evidence that typicality provides

a concrete dimension of neural organization for real-world object categories in both

object-selective cortex (LOC) and cIPL, but outside of early visual cortex, which

further suggests that this representation is not directly reflected in image features

describing natural input, but rather built by the visual system at an intermediate

processing stage.
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Figure 3.4: Whole-brain searchlight analysis uncovers brain regions where
category boundaries are stronger between most typical and least typical
exemplars. We performed a whole-brain searchlight analysis where we computed
the difference between the category boundary effects obtained for the most typical
half of our dataset and the least typical half of our dataset. Figure shows group map
results, corrected for multiple comparisons using an FDR measure (see Materials and
Methods for details). Regions shown in orange (right LOC, right hV4) showed a
significant effect of typicality: highly typical exemplars were more distinguishable
from exemplars of other categories. Conversely, regions shown in blue (left cIPL)
showed the opposite trend: less typical exemplars were more easily distinguishable
form members of other categories. This cortical region has been previously impli-
cated in category learning [138] and contextual processing [75], which suggests the
possibility that it may aid in the categorization of atypical items, perhaps through
mediating contextual facilitation of recognition.
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3.4 Discussion

Typicality is a ubiquitous, yet often overlooked property of virtually all objects we

interact with in our visual environment. Despite well-studied and long-standing be-

havioral effects associated with typicality, such as increased speed of recognition and

lower error rates for identifying the category membership of more typical items [109,

112, 115], little is known about how typicality relates to the neural representation of

objects from the same category. Our work is the first to address this fundamental

question using a large array of real-world stimuli. As such, we provide the first neural

test of the predictions of the family resemblance hypothesis for real-world object cat-

egories: namely, that highly typical exemplars share most features in common with

other members of their category (e.g. ”Golden retriever” is a highly representative

dog), while simultaneously sharing the fewest features in common with other exem-

plars from semantically-related categories (e.g. Golden retrievers share fewer features

with cats than less typical exemplars such as Chihuahuas). Using several similarity-

based multivariate pattern analyses, which make no explicit assumptions regarding

the nature of the neural feature space in which objects are represented, we found that

this conception of category structure describes the organization of neural patterns

better in object-selective regions than in early visual areas of the brain. Coupled

with the fact that this representation is not directly reflected in image features de-

scribing natural input, these data suggest that such a representation is not given in

the input, but rather built by the visual system at an intermediate processing stage.

In the current set of experiments, we exclusively investigated how typicality affects

the neural representation of a set of carefully normed, hierarchically organized object

categories. While there is no reason to believe that a separate collection of categories

(i.e. one not possessing a taxonomic relationship) would behave differently within the

context of neural typicality measures as exemplified in our results, such an experiment

remains an interesting question for future work.

The neural basis of typicality has been previously investigated almost exclusively

using learning paradigms over artificially constructed category spaces (see e.g. [2, 31,

120, 121]. One of the main advantages of using artificial categories is the tremendous
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degree of control one possesses over the instantiation of the feature space, as well as

the stimuli themselves. Additionally, synthetic category spaces remove all potential

confounds related to object properties that may be directly linked to typicality it-

self, such as familiarity, discriminability, and expertise. Nevertheless, these idealized

and impoverished spaces not only noticeably lack the complexity of visual stimuli

we encounter in our everyday environment, but participants’ experience with them

are necessarily more limited, leaving open the question as to what degree such find-

ings generalize to the real world and to categories that are overlearned. By testing

the predictions of the family resemblance hypothesis on real-world categories directly,

our current experiment provides long overdue concrete evidence for a typicality-based

organization of the neural representation space for such categories in human visual

cortex. In our experiment, we not only found that highly typical objects generate

stronger category boundaries in object-selective cortex, but we also uncovered the first

evidence for a brain region where the opposite is true: in the caudate inferior pari-

etal lobule (cIPL), we see atypical exemplars becoming more differentiated by neural

patterns of activity than their highly typical counterparts. This region is superior to

the trans-occipital sulcus and the functionally defined scene-selective region TOS (or

OPA) [34, 53], likely overlapping with functionally defined area IPS0 [122]. A repre-

sentation of objects is known to exist in posterior parietal cortex (PPC), independent

of action planning, and this cortical region has been shown to exhibit adaptation to

object properties, including shape and size [75]. Furthermore, the PPC has also been

implicated in the learning of new categories [138], in the recall of words and objects,

provided the stimuli are associated with strong memory of source context [70, 107,

130, 131], as well as in the representation of perceptual decision variables [62, 128].

Taken together, these findings raise the possibility that this cortical region may aid

in the categorization of atypical items, perhaps through mediating contextual facil-

itation of recognition. Intuitively, processing category boundaries both in terms of

typical and atypical exemplars are both potentially necessary for arriving at a unified

percept of a category: to recognize a ”dog” in our visual interaction with the world,

our brain must understand both what a dog usually looks like (typicality), as well as

what degree of deviation from this representation should place our percept outside of
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that particular category.

Nevertheless, caution is necessary in interpreting these results, especially in dorsal

stream regions: given that typicality is a subjective measure that subsumes multiple

dimensions and features of object categories (including e.g. frequency of occurrence

in the world and familiarity with such objects), the possibility exists that our find-

ings may have been influenced by differences in the allocation of attentional resources

across such dimensions (e.g. if participants paid more attention to blocks containing

less familiar subordinate categories). However, our searchlight analysis identified re-

gions where the category boundary effect (computed via the similarity of multi-voxel

patterns) differs consistently between typical and atypical members of our categories,

which indicates the presence of discriminable category information in these brain re-

gions. Thus, if attention plays a role in our findings, then it would necessarily have

to be operating on the category representations themselves, bringing within category

members closer in neural space and pulling between category members apart. Addi-

tionally, previous work has shown that two parallel and hierarchically organized neural

systems for object representation exist along the ventral and dorsal pathways [13, 75,

129, 134] and our results in cIPL are consistent with such an account.

Recent work has shown that distance from an inferred category boundary con-

structed from patterns of neural activation in human inferotemporal cortex can be

used to successfully predict behavioral categorization [17, 111]. This distance-based

model of category representation is consistent with our results in LOC, where we show

that category boundaries are stronger between highly typical exemplars than between

less typical exemplars, with the latter sitting farther from the category central ten-

dency. Relatedly, many distance metrics have been previously employed for charac-

terizing the similarity of neural patterns of activity in human visual cortex in general,

and typicality in particular, ranging from overall cortical activity level [83, 104] to

Pearson correlation (e.g. [28, 31, 58, 67]) and Euclidean or city block distance [9,

120]. Of these, we chose to focus on Pearson correlation as a straightforward, scale-

invariant measure of similarity of neural patterns [28]. This is especially relevant,

given that we perform a large-scale experiment using 64 real-world categories and

prior evidence has shown that objects from different categories have the potential to
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elicit consistently different univariate activity profiles both within and between brain

regions (e.g. animate vs. inanimate categories [23, 76], small vs. big objects [76, 77]).

Moreover, our decision is consistent with analyses used in many recent experiments

investigating the underpinnings of object categorization and typicality in humans and

non-human primates( e.g. [23, 31, 58, 67, 81]).

Several cognitive theories have been proposed that suggest we may expect real-

world object categories to have a strong prototype-dominated cortical representa-

tion [9, 102], with typical exemplars closer in neural distance to the basic level proto-

type (category central tendency) and less typical exemplars generating a more distinct

neural pattern of activation (i.e. larger neural distance from prototype). Indeed, pre-

vious work involving artificially constructed face stimuli suggests that both feature-

based and neural distance from a category central tendency are usually correlated

with perceived typicality [31, 83, 84, 120]. Prototype theory is typically contrasted

with exemplar theory, which proposes that we represent categories with respect to

several emblematic exemplars (or perhaps all exemplars) in each category, which

serve to map that particular category’s representational space [9, 100, 102]. This

theory has also received some support; recent work has shown that exemplar models

explain a comparable amount of variance in human performance on category gener-

alization and prediction tasks [1] and even surpass prototype models in performance

using data from humans and monkeys categorizing cartoon depictions of faces and

fish [120]. In our work, we find brain areas that separately emphasize characteristics

from both of these putative representational models, raising the possibility that the

human brain may use both strategies for forming categories. First, we show that, in

object-selective regions, typical categories are closer to the central category tendency

and category boundaries are sharpened between typical and atypical exemplars, a

finding that is consistent with the family resemblance hypothesis, as well as with a

prototype-based encoding of category structure (but see [9] for an alternate explana-

tion of how exemplar theory may also account for such a prediction). Conversely, we

also find that atypical exemplars exhibit stronger category boundaries in cIPL. One

potential explanation for this finding is that real-world categories, especially due to

their inherent intra-class complexity, may not be fully or accurately captured by a
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single prototype per category. Thus, while a prototype representation would imply

that the intra-class distribution of subordinate categories within a basic is less im-

portant compared to the location of the category central tendency (i.e. prototype),

by contrast an exemplar representation would predict a much heavier reliance on less

typical subordinates for differentiating between basic categories, which may be the

case in cIPL. Taken together, these two contrasting patterns of results suggest that

the human brain may, in fact, use both exemplar and prototype models to structure

category representations, albeit in different brain regions. Such a position could rec-

oncile the seemingly contradictory behavioral and modeling results that have yet to

eliminate either model as the sole framework for intra-category organization [83, 120].

Critically, our results provide clear evidence that LOC and cIPL are strong candidates

for future investigations attempting to elucidate the contributions of these individual

models in explaining the eventual emergence of perceptual typicality.

Over the past two decades, evidence has been uncovered for specific cortical re-

gions selective for broad stimulus classes such as faces, scenes, objects, and bodies [35,

40, 72, 91], as well as organizational principles corresponding to broad attribute di-

mensions, including animacy [19, 23, 76, 81] and real-world object size [76, 77]. Fur-

thermore, many studies have demonstrated that category information is recoverable

from distributed representations [25, 38, 39, 58, 60, 61, 66], yet what constitutes a

category representation in the high-dimensional space of neural patterns of activity

is still poorly understood. Here, we show that perceived typicality, a high-level cog-

nitive property of objects, directly modulates the representation of exemplars and

categories fairly early in visual processing. Our results raise the possibility that the

same theoretical principles that guide the cognitive formation of categories (cognitive

usefulness and feature correlation constraints present in the environment [116]) may,

in fact, fundamentally and sequentially guide the processing of visual input from its

very early cortical stages. Indeed, previous work from our lab has already shown

that this early link to cognition also holds for hierarchical organization of category

structure, whose influence on the organization of neural patterns becomes apparent

as early as lateral occipito-temporal cortex [67]. In the process of building category
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representations, the inclusion of such principles would improve the utility and flex-

ibility of eventually generated categories by emphasizing better boundaries between

them and by allowing distinctions between individual exemplars and multiple levels

of generality to emerge gradually from the neural representation. Furthermore, such

principles constitute important signposts for recent work whose goal is to map the

layers of deep learning models for visual categorization onto successive stages of the

ventral visual hierarchy [16, 135, 136]. Most such computational models include few,

if any, high-level cognitive constrains on their internal representation aside from cat-

egorization itself as an end-goal. Moving forward, we argue that attempts to build

models of visual processing that more accurately mirror the human visual processing

hierarchy would benefit from incorporating (either explicitly or at a verification stage)

other high-level properties such as typicality, which we have presently identified as

having a measurable impact on the feature spaces of visual regions strongly involved

in object and category recognition (e.g. LOC).

Together, these findings solidify our understanding of how we define and describe

boundaries between category representations in the brain, and moreover, put forward

a new hypothesis for the organization and goals of intermediate visual processing: it

is not simply focused on isolating and identifying primitives such as shapes, objects,

or scenes, and their interplay, but also on employing cognitively relevant principles

of category organization (of which typicality and hierarchical organization are two

examples) to directly guide the development of the neural representation, for the

ensuing purpose of improved and more flexible categorization, action, and cognition.
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Chapter 4

Category Boundaries and

Typicality Warp the Neural

Representation Space of

Real-World Objects in Human

Ventral Visual Cortex

Categories create cognitively useful generalizations by leveraging the correlational

structure of the world. Although previous work has shown that object categories

possess both hierarchical structure (basic- and entry-level effects [71, 116] and typi-

cality structure [112, 115], still little is known about the neural underpinnings of how

these processes help give rise to our object category structure.

To address this goal, we extend upon on our findings described in Chapters 2

and 3 to propose a new model of object processing in human ventral visual cortex

based on the hypothesis that sequential computations across brain regions optimize

specifically for cognitively useful aspects of category structure, such as the emergence

of category boundaries and typicality gradients within a category. Using two fMRI

experiments employing ninety-four object categories, we found strong evidence that

between-category distinctions and within-category typicality structure both warped

73
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neural representations sequentially across the ventral stream: category distinctions

slowly pushed representations apart between early and mid-level visual areas and, si-

multaneously, perceived typicality of category members modulated the internal neural

category space so that in later processing stages highly typical items became more

similar to one another and less typical items were pushed away from the category

central tendency. This suggests that eventual cognitive goals of visual categorization

directly guide the feature transformations underlying sequential neural processing of

visual input along the ventral visual stream hierarchy of brain regions from early

visual cortex to inferotemporal cortex. This chapter is joint work with Michelle R.

Greene, Diane M. Beck, and Fei-Fei Li.

4.1 Introduction

Categorization is a fundamental building block of cognitive experience whose goal

is to generalize across similar objects and assign them a cognitively useful label.

Within visually selective cortex, numerous regions show preferential activation for

broad stimulus classes such as faces, scenes, objects, and bodies have been found

across human visual cortex [35, 40, 53, 72, 91]. Furthermore, category information

for scenes, faces, and various objects is widespread and linearly decodable across most

visually selective cortex [23, 66, 67, 133], suggesting that neural activity across many

of these regions may contribute to the ultimate goal of separating seemingly distinct

visual stimuli into interpretable, actionable categories further down the processing

stream.

When investigating the emergence of visual category information in the brain, an

underlying hypothesis is that in the retina and early visual areas, categories start out

as tangled surfaces in a high dimensional space of low-level features. As such, we can

think of individual stimuli (such as my Chihuahua, Mr. Woof) being represented as

points in a multidimensional space of neural activity patterns. A category (e.g. dog)

then becomes a surface joining together the points corresponding to its members, with

the implicit assumption that the resulting manifold is continuous. Concordantly, as

we go up the ventral visual stream, we expect that sequential processing would slowly



CHAPTER 4. MODEL OF OBJECT PROCESSING 75

disentangle these manifolds of representation such that regions of inferotemporal cor-

tex and beyond are able to access and represent invariant category information[33,

44, 110, 126]. It is unknown, however, whether this process happens in a stepwise

fashion across visual cortex, and if so, what are the transformations that occur at

each step.

The prevalent view of object categorization suggests that information present in

posterior occipito-temporal cortex does not reflect cognitive constraints (such as gen-

erating explicit and unequivocal category distinctions), which are instead enforced

and instantiated later on in the processing stream (e.g. anterior temporal and frontal

regions [49, 93, 95]). This perspective is also mirrored by models that strongly en-

capsulate vision from cognition [45, 48, 108, 110]. Here, we propose a competing

model of object categorization where sequential computations in visually selective

cortex optimize specifically for cognitively useful aspects of category structure. More

specifically, we posit that the eventual cognitive goals of visual categorization directly

guide the feature transformations underlying sequential neural processing along the

ventral visual stream hierarchy of brain regions involved in object categorization.

To address this hypothesis, we focus our investigation on two distinct aspects of

category structure and subsequently test how they modulate the representation of

visual stimuli. First, categories arise cognitively such that they simultaneously maxi-

mize similarity between members of the same category and dissimilarity with members

of other categories [109, 116]. If categorization as an end-goal drives aspects of this

sequential computation, then we could quantify and measure this process stepwise

across the ventral visual hierarchy: accordingly, we predict that objects belonging

to the same category should become increasingly similar, while objects belonging to

different categories should become increasingly distinctive, regardless of their low-

level feature properties. Second, within a category, not all members are created equal

and this has cognitive implications for categorization. Indeed, most concrete object

categories are described internally by a graded typicality structure present among

their members that directly influences speed and accuracy of recognition [112, 115].

Motivated by the cognitive organization of exemplars in a category according to their
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perceived typicality, we predict that this graded representation should become increas-

ingly apparent in the activity patterns elicited by category members as we measure

stepwise changes in neural representation going up the ventral visual hierarchy.

To test these predictions, we conducted two fMRI experiments in which partici-

pants were shown color photographs of 15 subordinate level categories from each of

two basic level categories (Experiment 1: dogs and cars), and 8 subordinate-level

categories from each of eight basic level categories (Experiment 2: birds, cats, dogs,

fish, airplanes, boats, cars, trains). Typicality for each subordinate within its basic

category was also assessed behaviorally. We then used several multi-voxel pattern

analyses to measure whether the multidimensional neural representation of each of

these categories warps in a principled way in relationship to their cognitive structure

across the span of the human ventral visual processing hierarchy.

In both of our experiments, we found strong evidence that both aspects of category

structure we investigated warped the neural representation directly and sequentially

across the ventral stream: category distinctions slowly pushed representations apart

as we moved between early and mid-level visual areas, and simultaneously, perceived

typicality of category members rearranged the internal neural category space so that

in later processing stages highly typical items became more similar to one another

and less typical items were pushed away from the category central tendency.

4.2 Materials and Methods

4.2.1 Experiment 1: Two Basic Level Categories - Thirty

Subordinate Categories

4.2.1.1 Constructing a Normed Category Set

The goal of our study was to investigate whether the cognitive structure of our cat-

egory space exerts a measurable influence on the sequential processing of stimuli

in visual cortex. To test this hypothesis, we focused on category distinctions and
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perceived typicality as critical elements of human category structure elements. Ac-

cordingly, we first chose two distinct basic level categories which are well differen-

tiable based on the neural patterns of activity they elicit in visual cortex: dogs and

cars [68]. From each of these two basic level categories, we first obtained typicality

ratings for twenty-four subordinate level categories (e.g. pug, jeep) from each basic-

level category. We then used these ratings to select fifteen subordinates from each

basic category grouped into three tiers: five highly typical subordinates (dogs: golden

retriever, beagle, Saint Bernard, mastiff, collie; cars: Ford Mustang, Chevrolet Cross-

fire, BMW Z4, Rolls Royce, Lamborghini), five middle typicality subordinates (dogs:

Doberman, pug, schnauzer, sheepdog, schipperke; cars: Cadillac, Mini Cooper, Mit-

subishi Miev, Land Rover, Nissan Cube), and five low typicality subordinates (dogs:

Airedale, poodle, Chihuahua, Afghan hound, Komondor; cars: antique car, Jeep

Wrangler, Ford Ranger, limousine, Hummer). Typicality ratings for all twenty-four

subordinate categories within their basic level category are shown in Appendix C.

Subsequently, we used ImageNet [32] and Google image search to collect 28 distinct

images containing objects of interest from each of our resulting thirty subordinate

level categories for the purpose of showing these pictures to participants during an

fMRI experiment; i.e. for the subordinate category ”pug”, we obtained 28 distinct

photographs of pugs. Pictures were cropped to feature the objects prominently and

centrally within a square region (400 x 400 pixels in size) and included their natural

background. Within each subordinate category, the images varied greatly in color

and pose. Representative images from each of our 30 categories, together with their

respective typicality ratings are shown in Fig. 4.1 A. Representative images from our

initial set of 48 categories, together with their respective typicality ratings are shown

in Appendix C, Fig. C.1.

4.2.1.2 Behavioral Experiment: Typicality Rankings

Participants and Materials

40 participants were recruited on Amazon’s Mechanical Turk platform (AMT) from

a pool of trusted US-based participants with at least 2,000 previously accepted AMT
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results at a minimum of 98% approval. Participants completed the study from their

own personal computing device.

Experimental Procedure

Each of the AMT hits contained 300 trials comprising each possible pairwise compari-

son between the twenty-four subordinate categories within a particular basic category.

In each trial, participants viewed a randomly drawn image from two subordinate cat-

egories and were asked to indicate by clicking which image was the most typical of its

corresponding basic category. Participants were compensated $0.50 per hit and each

hit took an average of 925 seconds to complete.

Data Analysis

Pairwise typicality rankings for the twenty-four subordinates in each basic category

were obtained. We computed the percentage of times each subordinate was chosen as

the more typical item in a pair and used this quantity to order subordinates according

to their typicality in each basic category independently.

4.2.1.3 fMRI Experiment

Participants

14 volunteers (5 females, ages 21–34, including authors M.C.I. and M.R.G.) with

no past history of psychiatric or neurological disorders and normal or corrected-to-

normal vision participated in this experiment. Participants gave informed written

consent in compliance with procedures approved by the Stanford University Insti-

tutional Review Board. Except for the participating authors, all subjects received

financial compensation.

Scanning Parameters and Preprocessing

Imaging data were acquired with a 3 Tesla G.E. Healthcare scanner. A gradient echo,

echo-planar sequence was used to obtain functional images (volume repetition time

(TR) 2 s; echo time (TE) 30 ms; flip angle, 77 degrees; matrix, 80 x 80 voxels; FOV
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23.2 cm; 42 oblique 2.9 mm slices; in-plane resolution 2.9 x 2.9 mm). We also collected

a high-resolution (0.9 x 0.9 x 0.9 mm voxels) structural scan (BRAVO; TR 7.24 ms;

TE 2.78 ms; flip angle, 12 degrees) in each scanning session. The functional data

were spatially aligned to compensate for motion during acquisition and each voxel’s

intensity was converted to percent signal change relative to the temporal mean of that

voxel using the AFNI software package [26]. To perform our analyses, we computed

the average voxel activity for each block (see below for block design details). We did

not use a GLM analysis and did not perform any smoothing.

Experimental Procedure

Images were presented centrally subtending 12 x 12 degrees of visual angle and were

superimposed on an equiluminant gray background using the PsychToolbox [12, 106]

extension of MATLAB (Mathworks, Natick, MA). We used an LCD display (Reso-

nance Technology) operating at a resolution of 640 x 480 at 240 Hz, visible from a

mirror within the head-coil. Participants performed one session comprising 8 runs,

with 15 blocks per run and 8 images per block. Each block consisted of a 500 ms fix-

ation cross presented centrally, followed by 8 consecutive stimulus presentations from

the same subordinate level category, with a 12 s gap between the blocks. Each image

was presented for 160 ms, followed by a 590 ms blank gray screen. Subjects were

asked to maintain fixation at the center of the screen, and respond via button-press

whenever an image was repeated (one-back task, 0–2 repetitions per block, totaling

28 unique image presentations and 4 repetitions per subordinate category per subject

during the experiment). Over the course of the experiment, each participant viewed

4 blocks from each of the subordinate level categories. The order of blocks, the num-

ber of repetitions in each block, and the images in each block were counter-balanced

across runs and between subjects.

Regions of Interest (ROIs)

The positions and extents of each participant’s functional ROIs (LOC, TOS, PPA,

and FFA) were obtained using standard localizer runs conducted in a separate fMRI

session. For functional ROIs, subjects observed two runs, each with 12 blocks drawn
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equally from six categories: child faces, adult faces, indoor scenes, outdoor scenes,

objects (abstract sculptures with no semantic meaning), and phase-scrambled ob-

jects. Blocks were separated by 12 s fixation cross periods and comprised 12 image

presentations, each of which consisted of images presented for 900 ms, followed by a

100 ms fixation cross. Each image was presented exactly once, with the exception

of two images during each block that were repeated twice in a row. Subjects were

asked to maintain fixation at the center of the screen and respond via button press

whenever an image was repeated. To avoid any issues related to intrinsic variability

in signal reliability across our participant pool, we selected fixed-volume ROIs across

all our participants. The volume of each region in mm3 was chosen conservatively,

based on sizes previously reported in the literature, accounting for resolution differ-

ences between studies [51, 67, 68, 133]: LOC: 210 voxels (5,100 mm3); TOS: 85 voxels

(2,100 mm3); PPA: 125 voxels (3,000 mm3); FFA: 50 voxels (1,200 mm3). LOC was

defined as the top 210 contiguous voxels bilaterally near the inferior occipital gyrus

that responded to an Objects > Scrambled Objects GLM contrast. PPA was defined

as the top 125 contiguous voxels bilaterally near the parahippocampal gyrus that

responded to a Scenes > Objects GLM contrast. TOS was defined as the top 85 con-

tiguous voxels bilaterally near the trans-occipital sulcus that responded to a Scenes >

Objects GLM contrast. FFA was defined as the top 50 contiguous voxels bilaterally

near the fusiform gyrus that responded to a Faces > Objects GLM contrast.

To determine the locations of early visual areas V1, V2, V3v, and hV4, we used a

standard retinotopic mapping protocol in a separate experiment, in which a checker-

board pattern undergoing contrast reversals at 5 Hz moved through the visual field

in discrete increments [119]. First, a wedge subtending an angle of 45 degrees from

fixation was presented at 16 different polar angles for 2.4 s each. Next, an annulus

subtending 3 degrees of visual angle was presented at 15 different radii for 2.4 s each.

Each subject passively observed two runs of 6 cycles in each condition, yielding 512

timepoints per subject. The locations and extents of early visual areas were delin-

eated on a flattened cortical surface for each subject, using a horizontal vs. vertical

meridian general linear test, which gave the boundaries between retinotopic maps.

We aligned the positions of the ROIs to the experimental sessions using the AFNI
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software package [26], first aligning the structural scans between sessions with sub-

millimeter precision, and then applying the alignment transformation to the ROI

positions. Percent signal change was then extracted for each voxel in each ROI and

these vectors were submitted to the multi-voxel pattern analyses described next.

4.2.1.4 fMRI Data Analysis

Category Warping

For each ROI, we computed the correlation distance (1 - Pearson’s r) between the

average voxel-wise patterns elicited by each pair of subordinate categories. Average

patterns for a subordinate category were obtained by z-scoring the percent signal

change vectors described above and averaging them across all blocks corresponding

to that particular subordinate category (e.g. the four blocks in which pugs were

shown to participants in the scanner). To examine whether the range of correlation

(as a proxy for the span of the representational space) changes as we move up the

ventral visual stream, we first computed and plotted the ranges of the raw correlation

values for within-category distances (e.g. between two breeds of dogs or two types

of cars) and between-category distances (e.g. between a breed of dog and a type of

car). Subsequently, to investigate the relative change in neural distances across brain

regions, we generated histograms of z-scored within- and between-category distances

for each ROI. Finally, to investigate how distributions of distances change across brain

regions, for each pair of ROIs, we plotted the z-scored distances corresponding to each

pair of subordinate categories against one another on a 2D plot. Here, when a point

representing a subordinate category pair is above the diagonal, then the distance

between those two subordinates increases between the representational spaces of the

X-axis brain region and the Y-axis brain region. Similarly, when a point is below the

diagonal, the distance it represents decreases between the representational spaces of

the X-axis brain region and the Y-axis brain region. Accordingly, for each plot, we

computed a ”category warping index” that measures how many subordinate category

pairs sit above versus below the diagonal in the graph plots corresponding to each

pair of ROIs as the difference between these quantities.
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Typicality Warping

Analogous to the previous analysis, we computed the z-scored correlation distances

(1 - Pearson’s r) within and between the high typicality and low typicality tiers of

subordinate categories in each of our two basic categories. We generated histograms

for these distances in each ROI and plotted these distances in each pair of ROIs

against each other. Finally, following a similar reasoning to above, we also generated

a ”typicality warping index” that measures how many subordinate category pairs sit

above versus below the diagonal in the graph plots corresponding to each pair of ROIs

as the difference between these quantities.

4.2.2 Experiment 2: Eight Basic Level Categories - Sixty-

Four Subordinate Categories

Experiment 1 used two basic level categories, each comprising fifteen subordinate

categories, to investigate whether the cognitive structure of our category space exerts

a measurable influence on the sequential processing of stimuli in visual cortex. Our

environment, however, contains thousands of distinct object categories [11, 32]. To

show that our findings represent a generalizable principle of category representation in

visual cortex, one that would be applicable beyond our choice of stimuli in Experiment

1, we conducted a second experiment where we constructed a larger and much more

varied stimulus set comprising eight basic level categories (birds, cats, dogs, fish,

boats, cars, planes, trains), which are well differentiable based on the neural patterns

of activity they elicit in visual cortex (Iordan et al. in press) and which span natural,

man-made, animate, and inanimate superordinate category boundaries. From each of

these eight basic categories, we chose eight subordinate level categories (e.g. pug, jeep)

and used an identical behavioral experiment as in Experiment 1 to obtain typicality

ratings for each subordinate category within its basic. We then used these ratings to

group the subordinates from each basic category into two tiers: four highly typical

subordinates (e.g. cats: Egyptian, Angora, Manx, Abyssinian) and four low typicality

subordinates (e.g. cats: Tortoiseshell, Siamese, Persian, Sphinx). Typicality rankings

and full names for all sixty-four subordinate categories are shown in Appendix C.
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Subsequently, we used ImageNet [32] and Google image search to collect 16 distinct

images containing objects of interest from each of our resulting sixty-four subordinate

level categories for the purpose of showing these pictures to participants during an

fMRI experiment; i.e. for the subordinate category ”pug”, we showed 16 distinct

photographs of pugs. Pictures were cropped to feature the objects prominently and

centrally within a square region (400 x 400 pixels in size) and included their natural

background. Within each subordinate category, the images varied greatly in color

and pose. Representative images from each of our sixty-four categories, together with

their respective typicality ratings are shown in Fig. 4.1 C.

4.2.2.1 Behavioral Experiment: Typicality Rankings

Participants and Materials

40 participants were recruited on Amazon’s Mechanical Turk platform (AMT) from

a pool of trusted US-based participants with at least 2,000 previously accepted AMT

results at a minimum of 98% approval. Participants completed the study from their

own personal computing device.

Experimental Procedure and Data Analysis

Analogous to Experiment 1.

4.2.2.2 fMRI Experiment

Participants

10 volunteers (4 females, ages 23–31, including authors M.C.I. and M.R.G.) with

no past history of psychiatric or neurological disorders and normal or corrected-to-

normal vision participated in this experiment. Participants gave informed written

consent in compliance with procedures approved by the Stanford University Insti-

tutional Review Board. Except for the participating authors, all subjects received

financial compensation.
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Scanning Parameters and Preprocessing

Imaging data were acquired with a 3 Tesla G.E. Healthcare scanner. A gradient echo,

echo-planar sequence was used to obtain functional images (volume repetition time

(TR) 2 s; echo time (TE) 30 ms; flip angle 80 degrees; matrix 128 x 128 voxels; FOV

20 cm; 29 oblique 3 mm slices with 1 mm gap; in-plane resolution 1.56 x 1.56mm). We

also collected a high-resolution (1 x 1 x 1 mm voxels) structural scan (SPGR; TR 5.9

ms; TE 2.0 ms; flip angle 11 degrees) in each scanning session. The functional data

were spatially aligned to compensate for motion during acquisition and each voxel’s

intensity was converted to percent signal change relative to the temporal mean of that

voxel using the AFNI software package [26]. To perform our analyses, we computed

the average voxel activity for each block. We did not use a GLM analysis and did

not perform any smoothing.

Experimental Procedure

Images were presented centrally subtending 21 x 21 degrees visual angle and were

superimposed on an equiluminant gray background. We used an LCD display (Res-

onance Technology) operating at a resolution of 640 x 480 at 240 Hz, visible from

a mirror within the head-coil. Participants performed 8 runs, with 16 blocks per

run and 8 images per block Each block consisted of a 500 ms fixation cross presented

centrally, followed by 8 consecutive stimulus presentations from the same subordinate

level category, with a 12 s gap between the blocks. Each image was presented for 160

ms, followed by a 590 ms blank gray screen. Subjects were asked to maintain fixation

at the center of the screen, and respond via button-press whenever an image was re-

peated (one-back task, 0-2 repetitions per block). Over the course of the experiment,

each participant viewed 2 blocks from each of the subordinate level categories. The

order of blocks, the number of repetitions in each block, and the images in each block

were counter-balanced across runs and between subjects.

Regions of Interest (ROIs)

The positions and extents of each participant’s functional ROIs (LOC, TOS, PPA,

and FFA) were obtained using standard localizer runs conducted in a separate fMRI
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session. The details are analogous to Experiment 1. The volume of each region in

mm3 was chosen conservatively, based on sizes previously reported in the literature,

accounting for resolution differences between studies [51, 67, 68, 133]: LOC: 500 vox-

els; TOS: 200 voxels; PPA: 300 voxels; FFA: 100 voxels. To determine the locations

of early visual areas V1, V2, V3v, and hV4, we used a standard retinotopic mapping

protocol in a separate experiment, in which a checkerboard pattern undergoing con-

trast reversals at 5 Hz moved through the visual field in discrete increments [119],

analogously to Experiment 1.

We aligned the positions of the ROIs to the experimental sessions using the AFNI

software package [26], first aligning the structural scans between sessions with sub-

millimeter precision, and then applying the alignment transformation to the ROI

positions. Percent signal change was then extracted for each voxel in each ROI and

these vectors were submitted to the multi-voxel pattern analyses described next

4.2.2.3 fMRI Data Analysis

Category Warping and Typicality Warping

All analyses were performed analogously to Experiment 1. To determine category

warping effects, we measured distances within each basic category (e.g. pug and

malamute) and compared them to distances between subordinates belonging to dif-

ferent basic categories (e.g. pug and jeep). To determine typicality warping effects,

we measured distances between the four most typical subordinates in each basic cat-

egory (see Behavioral Experiment details above) and compared them to distances

between the four least typical subordinates in each basic category.

4.2.3 Statistical Analyses

For all our analyses, we used paired two-tailed t-tests when comparing observed effects

against chance and when establishing whether a significant difference exists between

two observed effects or between the means of two distributions. We used Kolmogorov-

Smirnov tests to establish that no significant deviation from normality exists for the

distributions of all effects to which t-tests were applied. Because statistical tests were
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applied to a single number derived from the pattern of voxels within an ROI per

condition of interest, and these conditions are relatively few, we did not correct for

multiple comparisons within our ROI analyses. All statistical tests were implemented

in MATLAB.

4.3 Results

4.3.1 Experiment 1: Two Basic Level Categories - Thirty

Subordinate Categories

4.3.1.1 Category Representations Become More Separable Across the

Ventral Visual Stream

The prevalent model for representing and processing visual information in visual

cortex posits that object categories start out as tangled surfaces in a high dimensional

space of low-level features and sequential processing across the ventral stream slowly

disentangles these manifolds of representation such that regions of inferotemporal

cortex and beyond are able to access and represent invariant category information [33,

44, 110, 126]. It is unknown, however, whether this process happens in a stepwise

fashion across visual cortex, and if so, what are the transformations that occur at

each step.

To address this question, we conducted a passive-viewing fMRI experiment where

we showed participants pictures from two basic categories (dogs and cars), each com-

prising 15 subordinate categories with 28 distinct images per subordinate that varied

substantially in pose and color (Fig. 4.1 A). Using average subordinate-category level

responses elicited by our stimuli across the visual cortex of our participants, we first

set out to test whether the a central tenet of most categorization models is upheld: do

neural representations of categories become more separable as we go up the ventral

visual stream, moving from feature spaces that favor low-level properties (e.g. V1)

to feature spaces that favor higher, more abstract properties of the input (e.g. hV4,

object-selective cortex LOC).

Given that we have little insight into the composition and principles guiding the
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Figure 4.1: Stimulus Sets and Corresponding Typicality Rankings. (A) The
Experiment 1 stimulus set comprised 15 subordinate categories from each of 2 basic
level categories (dogs and cars). Participants were shown 28 images per subordinate,
varying in pose and color (only one representative image shown for each subordinate).
(B) Typicality rankings for Experiment 1 were obtained using a behavioral experiment
conducted on the Amazon Mechanical Turk crowd-sourcing platform. Within each
basic category, subordinates are ordered according to typicality from the most typical
(golden retriever and BMW Z4 on left) to the least typical (Komondor and Hummer
on right). (C-D) The Experiment 2 stimulus set comprised 8 subordinate categories
from each of 8 basic level categories (birds, cats, dogs, fish, boats, cars, planes, and
trains). Participants were shown 16 images per subordinate, varying in pose and color
(only one representative image shown for each subordinate). Typicality rankings
for Experiment 2 were obtained using a behavioral experiment conducted on the
Amazon Mechanical Turk crowd-sourcing platform. Within each basic category in
part C, subordinates are ordered according to typicality from the most typical (e.g.
malamute on left) to the least typical (Komondor on right). Categories marked with
purple squares in panels (B) and (D) were used as high typicality subordinates in
the subsequent ”typicality warping” analyses. Similarly, subordinates marked with
orange squares in panels (B) and (D) were used as low typicality subordinates in the
same analyses.
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organization of these feature spaces across virtually all regions in the ventral stream,

it would be difficult to attempt to model such spaces directly (although attempts

have been made to establish relationships between distinct layers of neural network

models and visual processing stages, see e.g. [63]. Instead, we reasoned that if activity

patterns elicited by distinct categories in a brain region can be thought as points in a

multi-dimensional space (e.g. the space defined by all the voxels in that region), then

we can focus on measuring the similarity between representations of such categories

as a proxy for gaining insights about how the space is organized within that par-

ticular cortical region. Consequently, we computed the Pearson correlation between

patterns of activity corresponding to each pair from our thirty subordinate categories

across multiple ventral visual brain regions known to be involved in representing in-

formation about object category representations [66, 67]: early visual cortex (V1, V2,

V3v, hV4), object-selective (lateral occipital complex LOC), scene-selective (parahip-

pocampal place area PPA, trans-occipital sulcus TOS / OPA), and face-selective areas

(fusiform face area FFA). Consistent with recent prior work [63], we found that al-

though we expect category representations to become more invariant as we move up

the ventral stream, the absolute range of the similarity space remains at least as large

or slightly increases in intermediate-level object selective regions, compared to early

visual regions (V1: r range = 1.22 ± 0.12 r; LOC: r range = 1.37 ± 0.15; LOC > V1:

t13 = 3.6, p = 0.003) (Fig. 4.2 A). This suggests that visual processing doesn’t ex-

clusively emphasize generalization of representation across the span of each category,

but instead maintains and perhaps enhances specificity of information extracted from

the visual input at the level of each individual category.

Nevertheless, a central tenet of both our model, as well as many previous ones [33,

44, 110, 126] is that as feature spaces become more complex going up the ventral visual

hierarchy, stimuli belonging to the same category should become increasingly similar

in how they are represented in patterns of activity, while simultaneously becoming

more dissimilar to stimuli from other categories. To test this hypothesis, we computed

the similarity distances (1 - Pearson’s r) between all pairs of subordinates, conditioned

on whether the two subordinates in a pair belonged to the same basic category (Wth,

e.g. pug and Chihuahua) or to distinct basic categories (Btw, e.g. pug and jeep). To
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Figure 4.2: Correlation Ranges for Within- and Between-Category Dis-
tances in V1 and LOC. Pearson correlation ranges for within-category distances
(blue) and between-category distances (red) for V1 and LOC. Consistent with prior
work [63], as we move up the ventral stream, the absolute range of the similarity
space remains at least as large or slightly increases in intermediate-level object se-
lective regions (LOC), compared to early visual regions (V1). (A) Experiment 1: 30
subordinate categories. (B) Experiment 2: 64 subordinate categories.
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normalize between different ranges of similarity across brain regions, we z-scored the

similarity distances within each brain region and compared the histograms of these

within-basic-category and between-basic-category distances both within brain regions

(which is indicative of the nature of the local representation), as well as between brain

regions (which gives as a measure of the effect each subsequent computation has on the

organization of the feature space). The resulting histograms of distances are shown

in Fig. 4.3. Beginning in V1, we already see a reasonable degree of separation and

a significant difference between the means of the two distributions (V1: Wth < Btw

mean diff. = 0.9, t13 = 8.2, p < 0.001). This suggests that our two basic categories

(dogs and cars) are already quite distinct even in the space of low-level features. At the

next step of visual computation, V2, the distributions of distances look very similar

to V1 and, again, we see a significant difference between the mean within-category

and mean between-category distances (V2: Wth < Btw mean diff. = 1.1, t13 = 8.8,

p < 0.001). Interestingly, however, when we examine the two endpoints of the visual

object ventral stream pathway, namely how the representation changes between V1

and object-selective cortex, LOC, we immediately see a striking difference between

these two regions: the within- and between-category distances are much more strongly

separated in LOC than V1, which is consistent with patterns of activity organizing

by category much better in LOC than V1 (LOC: Wth < Btw mean diff. = 1.7, t13 =

19, p < 0.001). By contrast, measurements in intermediate and scene-selective visual

regions show a similar representation to early visual regions (hV4: Wth < Btw mean

diff. = 1.0, t13 = 7.9, p < 0.001; PPA: Wth < Btw mean diff. = 0.8, t13 = 9.6, p <

0.001; TOS: Wth < Btw mean diff. = 0.8, t13 = 6.2, p < 0.001). This suggests that

a sharp qualitative change in the structure of the feature space may arise between

hV4 and LOC, which is not mirrored in other stimulus selective regions of occipito-

temporal cortex. A potential exception to this trend may be FFA, which shows an

intermediate degree of increased separation between the within- and between-category

distances, compared to V1 and LOC (FFA: Wth < Btw mean diff. = 1.4, t13 = 15,

p < 0.001), although this effect may be driven by the presence of animal faces in the

dog basic category. Taken together, our results suggest that the human visual system

likely constructs (or, at the very least, strongly amplifies) feature descriptions of our
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Figure 4.3: Experiment 1 Category Distance Histograms. Graphs show z-
scored Pearson correlation distance histograms for within-category distances (blue)
and between-category distances (red) for early visual (V1, V2, hV4), object-selective
(LOC), scene-selective (PPA, TOS), and face-selective (FFA) regions. The basic
categories ”dog” and ”car” are reasonably separable in virtually all brain regions
considered with the highest distinction arising in LOC (top right, grey). This suggests
that a sharp qualitative change in the structure of the feature space may arise between
hV4 and LOC, which is not mirrored in other stimulus selective regions of occipito-
temporal cortex.

visual input that correlate with category boundaries.

4.3.1.2 Proposed Model of Category Disentanglement

Our initial findings above provide evidence for our hypothesis that as we move up

the ventral visual stream the complexity of the feature spaces increases and in these

subsequent spaces categories become more internally cohesive (lower within-category

distances) and more mutually distinctive (higher between-category distances). This

is consistent with findings showing that categories become more easily separable in

object-selective regions of inferotemporal cortex (e.g. LOC), compared to early visual

regions (e.g. V1) [63, 66, 67]. However, it remains unclear how the within- and

between-category information change step by step as visually selective brain regions

increasingly farther from V1 process visual stimuli. Moreover, a common assumption

of object categorization frameworks suggests that information present in early visual
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regions and posterior occipito-temporal cortex does not reflect cognitive constraints,

which are instead enforced and instantiated later on in the processing stream (e.g.

anterior temporal and frontal regions [49, 93, 95]). This perspective is also mirrored

by models that strongly encapsulate vision from cognition [47, 108, 110]. Here, we

propose a competing model of object categorization where sequential computations in

visually selective cortex optimize specifically for cognitively useful aspects of category

structure. More specifically, we posit that the eventual cognitive goals of visual

categorization directly guide the feature transformations underlying sequential neural

processing along the ventral visual stream hierarchy of brain regions involved in object

categorization.

One of the most straightforward predictions of our model is that that as feature

spaces become more complex going up the ventral visual hierarchy, we should observe

stimuli belonging to the same category become increasingly similar in how they are

represented in patterns of activity, while simultaneously becoming more dissimilar to

stimuli from other categories, which is directly supported by our previously described

within- and between-category distance histograms results (Fig. 4.3). Furthermore, if

categorization as an eventual goal of the processing underlying the hierarchy of visual

brain regions indeed drives aspects of this processing, it may play a role not only in

the grouping of categorical stimuli within each feature space, but also in the manner

in which the feature spaces themselves are organized. To address this possibility,

we examined how the relative organization of the representational spaces changes

across the ventral visual stream by plotting the distances elicited by the same pairs of

subordinates (and basic categories) in two different brain regions against each other

(Fig. 4.4).

Using this framework and assuming a straightforward sequential increase in distin-

guishability of category representations (i.e. categories slowly become more separable,

but the different feature spaces across visual cortex represent them in a consistent

manner), we can put forward an initial prediction of how we expect category repre-

sentations to evolve as we move up the ventral visual stream (Fig. 4.5). Here, we

propose that categories would start out partially overlapping, and this representa-

tion would be slow to change in the first few stages of visual processing (e.g. going
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Figure 4.4: Evolution of Relative Category Distances across Brain Regions.
Each pair of subordinate categories is plotted as a point in a two dimensional rep-
resentation, where the X and Y axes are defined as the Pearson correlation distance
between the two subordinates in each of two separate brain regions (in the example
above: V1 and LOC). Projecting the resulting distribution onto either of the axes re-
covers the corresponding category distance histogram for that particular brain region
represented on the axis (cf. Fig. 4.3). By examining the position of the subordinate
category pairs (i.e. points in the graph) relative to the diagonal, we can identify sim-
ilarities and differences between the representational spaces of the two brain regions.
For example, if all points are close to the diagonal, then representations change very
little between the two brain areas; however, if there is a significant deviation from the
diagonal, then this indicates that the representational space changes in a principled
way from one brain are to another (as seen above between V1 and LOC; see text for
details).
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A B C

Figure 4.5: Initial Model for Evolution of Category Representations across
Ventral Visual Stream. We propose that categories would start out partially over-
lapping, mainly due to overlap in low-level features (A). As we move up the ventral
visual stream, computations in successive intermediate visual brain regions would con-
tribute to incrementally shrinking the distances within categories and expanding the
distances between categories (B). Finally, at the apex of ventral stream computation
(inferotemporal cortex), this process reaches its peak in generating fully dissociable
category representations with the least amount of distribution overlap (C).

from V1 to V2, Fig. 4.5 A). Then, as we proceed up the ventral stream, sequential

computations would incrementally shrink distances within and expand distances be-

tween eventual categories (e.g. hV4, Fig. 4.5 B). Finally, in inferotemporal cortex

(e.g. LOC, Fig. 4.5 C), distances between objects in different categories become sig-

nificantly larger than distances between objects within the same category and the

two distributions of distances are strongly separable.

Going forward, we tested the predictions of this model using our set of thirty

subordinates and two basic level categories. In the resulting graphs, if a point is

close to the diagonal, then the distance between the two subordinates it represents

is highly similar across the two visual areas being compared. However, any potential

deviation from the diagonal indicates a relative shift in the distance between that

pair of subordinates as we go from one brain area to another. To foreshadow our

upcoming results, the presence of consistent shifts across the ventral visual hierarchy

correlated with category boundaries between our stimuli would provide evidence for

our hypothesis that the goal of eventually building categories (i.e. the organization

of responses elicited by visually distinct stimuli into coherent, self-similar groups

of points close together in the corresponding multidimensional space) influences the

manner in which the intermediate feature spaces are organized.
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4.3.1.3 Category Boundaries Warp Neural Distances in Occipito-Temporal

Cortex

Our main hypothesis states that as feature spaces become more complex going up the

ventral visual hierarchy, we should observe stimuli belonging to the same category

become increasingly similar in how they are represented in patterns of activity, while

simultaneously becoming more dissimilar to stimuli from other categories. Using the

between-brain-region analysis (Fig. 4.6), we see that this change is slow to occur as

processing starts out in early visual regions. In the V1 - V2 plot, our two conclusions

from earlier become immediately apparent: distances within categories (in blue) are

usually smaller than distances between categories (in red). Moreover, virtually all

the points sit close to the diagonal, which suggests that the representations of these

categories are quite similar in the feature spaces of V1 and V2, which is recognizable

from comparing the histograms of within- and between-category distances in Fig. 4.3.

Next, by looking across a larger extent of the object processing pathway, namely

how the representation changes between V1 and object-selective cortex, LOC (Fig. 4.6,

gray box), we see a striking difference from the V1 - V2 step: not only are distance

distributions farther apart, but they each sit on different sides of the diagonal. In the

large step between V1 - LOC, within-category distance pairs sit below the diagonal,

thus within-category distances in LOC are smaller relative the span of their represen-

tation space, compared to the within-category distances in V1. Essentially, the feature

space in LOC, whatever its properties and primitives, shrinks relative distances be-

tween a pair of dogs or a pair of cars compared to their original representation in the

feature space of V1. Conversely, between-category distances sit above the diagonal,

so they are relatively larger in the representational space of LOC than in V1. This

indicates that the feature space in LOC expands the relative distance between sub-

ordinates belonging to separate categories (e.g. a dog and a car) compared to their

original V1 representation. This process is akin to a principled relative warping of

the representational space between V1 and LOC towards grouping information in this

space such that category boundaries are emphasized. To measure this change in the

structure of the representational space, we first computed the proportion of points
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Figure 4.6: Category Boundaries Warp Neural Representations in Occipito-
Temporal Cortex. (Top, Middle) Graphs show how representations of distances
corresponding to subordinate category pairs change as we move up the ventral vi-
sual stream. Axes represent z-scored distances between pairs of categories in the
corresponding brain region. Representations are relatively stable between early vi-
sual regions (V1, V2, hV4), as well as between early visual cortex and scene-selective
regions (PPA, TOS). However, we see a striking shift in the quality of the repre-
sentation as we move between hV4 and LOC. Here, within-category distance pairs
lie below the diagonal, while between-category distance pairs sit above the diagonal,
which indicates that the feature space of LOC shrinks relative distances within cat-
egories and expands relative distances between categories, compared to the feature
space of V1. This effect is also present to a lesser extent between early visual regions
and face-selective cortex (FFA), likely due to the presence of faces in the ”dog” basic
level category. (Bottom) We measured this ”category warping” effect quantitatively
by computing the proportion of within- and between-category distance pairs that sit
above the diagonal. Concordantly, we see that across the ventral stream, a signifi-
cant category warping effect exists not just between hV4 and LOC, but also between
V1 and V2, indicating that visual processing proceeds in a manner that sequentially
facilitates the emergence of categorical distinctions.
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corresponding to pairwise distances between subordinates from a particular condi-

tion (e.g. within-category distances) relative to the diagonal in each graph (Fig. 4.6,

bottom). Here, a proportion of 50% for within-category distances would signify that

these distances have an equal probability of being stretched or compressed when going

from the feature space of the brain region on the X-axis (e.g. V1) to the feature space

of the brain region on the Y-axis (e.g. V2). Concordantly, a proportion approaching

100% indicates that virtually all distances of that particular type increase between

the two feature spaces, while a proportion near 0% implies that most distances of that

kind shrink. Finally, we can define a ”category warping coefficient” as the difference

between proportions in the two conditions (i.e. Wth and Btw). By our reasoning

above, this quantity measures whether a principled warping of the representational

space occurs between two given brain regions, such that within-category and between

category distances are affected in an asymmetrical manner from one another. In our

experiment, we observed principled warping effects to occur across multiple region

pairs throughout the span of the classical ventral stream processing path (V1 - V2

- hV4 - LOC), with strongest effects at the hV4 - LOC boundary, but also present

fairly early on, at the boundary between V1 and V2 (Fig. 4.6, bottom row; V1 - V2:

Wth - Btw warp = 11.4%, t13 = 2.9, p = 0.013; V2 - hV4: Wth - Btw warp = -4.1%,

t13 = 0.8, p = 0.441; hV4 - LOC: Wth - Btw warp = 33.9%, t13 = 8.2, p < 0.001; V1 -

LOC: Wth - Btw diff. = 34.1, t13 = 8.3, p < 0.001). Additionally, a category warping

effect was present between early visual cortex and face-selective regions (V1 - FFA:

Wth - Btw warp = 17.%, t13 = 4.7, p < 0.001), but not between early visual regions

and scene-selective areas (V1 - PPA: Wth - Btw warp = -4.1%, t13 = 0.8, p = 0.447;

V1 - TOS: Wth - Btw warp = -1.0%, t13 = 0.2, p = 0.831). This is likely due to the

presence of faces in the dog basic category and suggests that representational space

warping may not be exclusive to objects, but instead may underlie a more general

process related to the processing of visual stimuli across human occipito-temporal

cortex.

Interestingly, when significant category warping did occur, it occurred exclusively

in one direction, compressing within category distances and expanding between-

category distances between early visual cortex and intermediate, stimulus selective
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regions of occipito-temporal cortex (e.g. LOC, FFA). Taken together, our results sug-

gest that as we move up the ventral stream, the neural representation space of object

categories, at the population level, warps by making exemplars more similar within a

category and more dissimilar between categories, and this happens in discrete steps,

as we see here between V1 and V2 and between hV4 and LOC. In turn, this provides

evidence for our original hypothesis that visual processing proceeds in a manner that

sequentially facilitates the emergence of categorical distinctions.

4.3.1.4 Typicality Warps Neural Distances in Occipito-Temporal Cortex

The category warping results above provide strong evidence that categorization as a

primary goal of computations across the ventral visual stream is indeed intimately

tied into the organization of feature spaces of visually selective cortical areas. How-

ever, from prior work, we also have reasons to believe that another cognitively useful

dimension of objects, namely their typicality, plays an important role in how cate-

gories are internally represented across the feature spaces of successive visual cortical

regions [31, 68]. Motivated by neural evidence that typicality sharpens category

boundaries in occipito-temporal cortex [68], we predict in the context of our model

that this graded representation should become increasingly apparent in the activ-

ity patterns elicited by category members as we measure stepwise changes in neural

representation going up the ventral visual hierarchy.

To investigate how typicality modulates the internal structure of categories, we

behaviorally assessed the typicality of each of our 15 subordinate categories within

their corresponding basic category, thus allowing us to identify the five most typical

(Fig. 4.1 B, purple indicators) and five least typical (Fig. 4.1 B, orange indicators)

breeds of dogs and types of cars from our stimulus set. We then used these two

typicality tiers to contrast the representation of distances between pairs of highly

typical subordinates and pairs of less typical subordinates within and across visually

selective brain regions across the ventral stream. If cognitively useful dimensions of

object representation are indeed mediated by a common mechanism in their influence

over the organization of feature spaces in visual cortex, then we predict that our two

separate typicality tiers would behave in a similar fashion to category distinctions



CHAPTER 4. MODEL OF OBJECT PROCESSING 99

themselves. More specifically, we hypothesize that as we go up the ventral visual

stream, typicality would modulate intra-category representation by bringing highly

typical items closer to the category center and emphasizing the relative dissimilarity

of atypical items to the rest of the category. Previous work suggests that this is a

plausible hypothesis for intra-category organization [68], however it remains unclear

whether this process is analogous to the category warping effect we observed earlier

and, more importantly, how this process proceeds stepwise in the hierarchy of visual

processing.

First, to test whether distances between the highly typical and less typical pairs

of subordinates become increasingly separated as we go up the ventral stream, we

constructed corresponding histograms of these quantities for our brain regions of

interest (Fig. 4.7), analogously to the category boundary histograms in our previous

analysis. Consistent with prior work [68], we saw that histograms of distances for

typical and less typical pairs of subordinates showed a moderate degree of overlap in

early visual cortex (V1: High Typ. < Low Typ. mean diff. = 0.3, t13 = 2.2, p =

0.051; V2: High Typ. < Low Typ. mean diff. = 0.3, t13 = 1.8, p = 0.096; hV4: High

Typ. < Low Typ. mean diff. = 0.2, t13 = 1.8, p = 0.084), which upholds the theory

that typicality is not strongly linked to low-level feature representations in these

regions. Additionally, as predicted, we observed a strong qualitative difference in the

representation of these typicality tiers in LOC: the means of the two distributions

are much more robustly separated (LOC: Wth < Btw mean diff. = 0.6, t13 = 5.3, p

< 0.001), which indicates that neural distances in object-selective cortex are usually

smaller between highly typical items than between less typical items. Finally, we

found that typicality does not significantly modulate the representation of object

categories in scene-selective regions (PPA: High Typ. < Low Typ. mean diff. = 0.0,

t13 = 0.0, p = 0.965; TOS: High Typ. < Low Typ. mean diff. = 0.1, t13 = 0.6, p

= 0.538), and only moderately affects face-selective cortex (FFA: High Typ. < Low

Typ. mean diff. = 0.3, t13 = 2.8, p = 0.016), again potentially due to the presence

of animal faces in our ”dog” basic category.

Subsequently, we used the between-brain-region analysis (see Fig. 4.4 for an exam-

ple in the category boundary case) to test whether the emergent influence of typicality
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Figure 4.7: Experiment 1 Typicality Distance Histograms. Graphs show Z-
scored Pearson correlation distance histograms for within-highly-typical-subordinates
distances (purple) and within-less-typical-subordinates distances (orange) for early
visual (V1, V2, hV4), object-selective (LOC), scene-selective (PPA, TOS), and face-
selective (FFA) regions. In early visual regions and scene-selective regions, typicality
does not significantly modulate the representation of real-world objects. By contrast,
typical and less typical subordinates are strongly separable in LOC (top right, grey),
which suggests a sharp qualitative change in the structure of the feature space may
arise between hV4 and LOC, which is not mirrored in other stimulus selective regions
of occipito-temporal cortex.
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on the organization of object categories in LOC is mirrored by a similar warping ef-

fect we observed for category boundaries. In effect, per our hypothesis, we set out

to test whether category boundaries and typicality share a common effect on the or-

ganization of the feature space across the ventral visual stream. Here, inter-category

typicality warping would manifest as a trend for distances between less typical sub-

ordinates (in orange) to lie mainly above the diagonal and / or distances between

highly typical subordinates to fall below the diagonal. Consistent with the histogram

results, typicality warping is not present in early visual regions, but arises mostly in

a stepwise fashion between hV4 and LOC (Fig. 4.8, top row; V1 - V2 warp = -3.0%,

t13 = 0.6, p = 0.569; V2 - hV4 warp = -2.8%, t13 = 0.3, p = 0.792; hV4 - LOC

warp = 26.7%, t13 = 3.1, p = 0.008; V1 - LOC warp = 20.9%, t13 = 3.3, p = 0.006).

This suggests that between hV4 and LOC (and implicitly between V1 and LOC),

the feature space in which these objects are represented changes in a way such that

less typical items stand out more from the rest of the category representation. In

effect, they are pushed away from the category central tendency. We also see a trend

for distances between highly typical subordinates to shrink (purple points lie mostly

below the diagonal between these brain regions). Interestingly, this effect does not

extend to scene- and face-selective areas or (V1 - TOS warp = -15.7%, t13 = 1.2, p

= 0.241; V1 - FFA warp = 2.0%, t13 = 0.2, p = 0.852), and in fact an opposite effect

is observed in the most anterior scene-selective visual region PPA (Fig. 4.8, bottom

row; V1 - PPA warp = -21.5%, t13 = 2.4, p = 0.034), such that less typical exemplars

become more similar to each other compared to highly typical exemplars. A potential

explanation for this finding would be that PPA is not only known to possess discrim-

inative object information citeiordan2015a, but also heavily involved in representing

scene context [85] and, as such, may tend to homogenize across all members of an

object category, regardless of typicality (i.e. equalizing distances between all exem-

plars in a category by shrinking distances between less typical items and enhancing

distances between highly typical items).

Taken together, these results suggest that as we go up the ventral visual stream,

intra-category neural representation space warps to increase similarity between highly

typical subordinates and distinguish more strongly between atypical subordinates and
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Figure 4.8: Typicality Warps Neural Distances Across Occipito-Temporal
Cortex. (Top, Middle) Graphs show how representations of z-scored distances corre-
sponding to subordinate category pairs of high (purple), low (orange), and intermedi-
ate (gray) typicality change as we move up the ventral visual stream. Representations
are relatively stable between early visual regions (V1, V2, hV4), as well as between
early visual cortex and face-selective regions (FFA). However, we see a striking shift in
the quality of the representation as we move between hV4 and LOC. Here, high typ-
icality subordinate category pairs exhibit a tendency to lie below the diagonal, while
low typicality subordinate category pairs sit above the diagonal, which indicates that
the feature space of LOC shrinks relative distances between typical exemplars within
a category and expands relative distances between low typicality exemplars, compared
to the feature space of V1. The opposite effect is present to a lesser extent between
early visual regions and scene-selective cortex (PPA). (Bottom) We measured the
”typicality warping” effect quantitatively by computing the proportion of high and
low typicality subordinate category pairs that sit above the diagonal. Concordantly,
we see that across the ventral stream, the main significant category warping effect oc-
curs not between hV4 and LOC, suggesting a sharp shift in the modulation of object
representations by typicality at this stage in visual processing.
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the rest of the category, with a sharp jump between hV4 and LOC. Moreover, our

results suggest that in the successive transformations operating over the relative rep-

resentations of objects across multiple brain regions, typicality has a similar warping

effect on the intra-category space as we observed earlier with category distinctions

themselves affecting on inter-category differentiation.

4.3.1.5 Updated Model of Visual Processing in Ventral Visual Cortex

Our results above suggest the presence of widespread effects of category and typical-

ity warping throughout occipito-temporal cortex, and as such provide evidence for

our hypothesis that eventual cognitive goals of visual categorization directly guide

the feature transformations underlying sequential neural processing along the ventral

visual stream hierarchy.

Going back to our original posited model of category processing (Fig. 4.5), we

not only confirmed that it is consistent with the tenets of how visual information is

represented across the ventral visual stream, but we are additionally in a position to

update and enrich it according to our new found evidence. Accordingly, we propose

an updated model that posits how both category distinctions (as an inter-category

principle) and typicality (as an intra-category principle) guide category processing

across successive areas of visual cortex (Fig. 4.9). Here, we see that in the early stages

of visual processing, representations of objects belonging to different categories start

out partially overlapping, likely due to similarities and differences in their low-level

features (e.g. V1, Fig. 4.9 A). As we move up the ventral stream, however, categories

become more separated, yet typicality still plays little role in the organization of

intra-category structure (e.g. hV4, Fig. 4.9 B). Finally, this representation undergoes

an abrupt change as we go from intermediate visual areas (hV4) to object-selective

regions (LOC): not only do categories become increasingly separated in this space,

but also become internally organized according to how typical their members would

eventually be perceived (Fig. 4.9 C). Critically, these two processes don’t simply

rearrange the representations of objects in a static feature space, but appear to warp

and reshape the feature spaces themselves contrasted to earlier visual processing

regions: the representational space of object-selective cortex becomes doubly warped
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A B C

Figure 4.9: Updated Model for Evolution of Category Representations
across Ventral Visual Stream. We propose that categories would start out par-
tially overlapping, mainly due to overlap in low-level features (A). As we move up the
ventral visual stream, computations in successive intermediate visual brain regions
would contribute to incrementally shrinking the distances within categories and ex-
panding the distances between categories (B). At both these initial stages, typicality
plays little role in the intra-category organization of visual objects. However, at the
apex of ventral stream computation (inferotemporal cortex), this process would reach
its peak in generating fully dissociable category representations with the least amount
of distribution overlap and furthermore organize exemplars within each category such
that highly typical members gravitate closer to one another and less typical members
are pushed away (C). Critically, these two processes also fundamentally warp the
feature spaces themselves contrasted to earlier visual processing regions: the repre-
sentational space of object-selective cortex becomes doubly warped to, on a global
scale, relatively decrease within-category distances and inflate between-category dis-
tances (i.e. category warping) and, on a local scale, bring highly typical items closer
to one another within the same category and push less typical items away from the
category center (i.e. typicality warping).

to, on a global scale, relatively decrease within-category distances and inflate between-

category distances (i.e. category warping) and, on a local scale, bring highly typical

items closer to one another within the same category and push less typical items away

from the category center (i.e. typicality warping). Given that these processes occur

simultaneously and are both most evident as a sharp change in the representation

between hV4 and LOC, this suggests that category and typicality warping may, in

fact, represent two-tiered facets of the same mechanism or phenomenon. As such,

they provide the first evidence for a hierarchically organized cognitive-structure-driven

hypothesis of visual object information across the human ventral visual stream.
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4.4 Experiment 2: Eight Basic Level Categories -

Sixty-Four Subordinate Categories

To show that the warping with respect to within and between category distances rep-

resents a generalizable principle of category representation in visual cortex, one that

would be applicable beyond our choice of stimuli in Experiment 1, we conducted a

second fMRI experiment where we constructed a larger and much more varied stim-

ulus set comprising eight basic level categories (birds, cats, dogs, fish, boats, cars,

planes, trains), which are well differentiable based on the neural patterns of activity

they elicit in visual cortex [68] and which span natural, man-made, animate, and

inanimate superordinate categories (Fig. 4.1 C). From each of these eight basic cat-

egories, we chose eight subordinate level categories (e.g. pug, jeep) and, analogously

to Experiment 1, obtained typicality ratings for each subordinate category within its

basic (Fig. 4.1 D). Using data from this subsequent fMRI experiment, we set out

to investigate whether the predictions of our model (Fig. 4.9) hold at a large scale

and thus provide evidence that the cognitive structure of our category space exerts a

measurable influence on the sequential processing of stimuli in visual cortex.

4.4.1 Category Representations Become More Separable and

Warp the Neural Representation Space Across the

Ventral Visual Stream

As a first step, we tested whether basic categories become more separable as we move

up the ventral stream and whether, in doing so, they maintain a representational range

large enough to potentially accommodate enhanced specificity of information, rather

than suppress it. Indeed, by computing the Pearson correlation between patterns of

activity corresponding to each pair from our sixty-four subordinate categories across

visually selective cortex (V1, V2, hV4, LOC, PPA, TOS / OPA, FFA), we found

that the absolute range of the similarity space increases in intermediate-level object

selective regions, compared to early visual regions (V1: r range = 1.14 ± 0.15 r;

LOC: r range = 1.30 ± 0.17; LOC > V1: t9 = 3.5, p = 0.007) (Fig. 4.2 B), consistent
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with prior work [63] and our initial findings using two basic level categories above.

This suggests that increased separability between categories and developing putative

invariant representations with increased proximity to inferotemporal cortex does not

entail a shrinking of the space in absolute terms, but rather the opposite; by showing

that the correlation ranges increase from early visual cortex to object-selective regions

we leave open the possibility that low-level and detailed information about the stimuli

may be preserved and, perhaps, even enhanced as we go up the ventral stream, rather

than abstracted away.

Nevertheless, the representational space of higher-level visual areas should neces-

sarily be different and likely more complex than that of early visual regions. In our

model, we posit that this increase in complexity brought forth through feature trans-

formations underlying sequential neural processing along the ventral visual stream

hierarchy is closely tied to eventual cognitive goals of visual categorization, such as

generating strong boundaries between category representations and a salient intra-

category organization of its constituent members (e.g. typicality relationships). For

category boundaries, this hypothesis predicts that in later stages of the ventral stream

exemplars belonging to the same category should become increasingly similar in how

they are represented in patterns of activity, while simultaneously becoming more

dissimilar to exemplars from other categories. We tested this prediction on the large-

scale, diverse set of real-world categories employed in Experiment 2 by comparing the

normalized similarity distance (1 - Pearson’s r) between pairs of subordinates from

the same (Wth, e.g. pug and Chihuahua) and distinct basic categories (Btw, e.g.

pug and jeep) both within and across visually selective brain regions. The resulting

histograms of distances are shown in Fig. 4.10. Similarly to Experiment 1, patterns

of activity from different basic level categories start out highly overlapped, yet not

indistinguishable from one another in early and intermediate visual cortex (V1: Wth

< Btw mean diff. = 0.1, t9 = 4.7, p = 0.001; V2: Wth < Btw mean diff. = 0.1, t9 =

5.6, p < 0.001; hV4: Wth < Btw mean diff. = 0.2, t9 = 5.8, p < 0.001). This suggests

that our eight basic categories (bird, cat, dog, fish, boat, car, plane, train) exhibit

enough variability in their low-level features to elicit differentiable patterns of activity

from the very beginning of visual processing. As we moved up the ventral stream to
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object-selective regions, we observed a marked difference in the nature of the within-

and between-category distance histograms: separability between categories increased

dramatically in LOC, compared to early visual regions (LOC: Wth < Btw mean diff.

= 0.5, t9 = 8.1, p < 0.001). In a modest departure from the results of Experiment

1, here we also noticed an increased degree of separability between our basic level

categories in the most anterior scene-selective region compared to V1 (PPA: Wth <

Btw mean diff. = 0.4, t9 = 6.2, p < 0.001), but not in dorsal scene areas (TOS:

Wth < Btw mean diff. = 0.2, t9 = 5.0, p < 0.001) or face-selective regions (FFA:

Wth < Btw mean diff. = 0.2, t9 = 5.0, p < 0.001). There results likely reflect the

diverse composition of our second stimulus set, where contextual effects may play a

role in the differentiation observed in PPA and the relatively smaller proportion and

strength of face-like stimuli in Experiment 2 compared to Experiment 1 is a plausible

explanation for the weakening of the effect observed in FFA. All in all, analogously to

Experiment 1, our results suggest that the sequential computation across the human

visual system likely amplified, rather than conserved feature descriptions of our visual

input that correlate with category boundaries.

Our model also predicts that not only do category representations become more

easily separable in later visual regions, but also that the representational space em-

ployed in these regions changes in an expected manner given the eventual categorical

distinctions that are drawn perceptually between collections of visual stimuli. To test

whether this hypothesis holds in the context of a large collection of categories, we used

a between-brain-region analysis (see Fig. 4.4 for a detailed example in the context of

Experiment 1) to plot the evolution of distances between pairs of subordinate cate-

gories across the span of the ventral visual stream (Fig. 4.11). Here, we immediately

noticed a higher degree of variability in the span of within- and between-category

distances across our stimulus set compared to Experiment 1. Nevertheless, consistent

with our initial results, most distances remained close to the diagonal in the steps

between V1 - V2 and V2 - hV4, suggesting that the representational spaces change

slowly in early and intermediate visual regions. Critically, the largest change arose at

the hV4 - LOC boundary, where the distribution of within-category distances begins

to visibly shift below the diagonal. This cumulative effect across the span of the first
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Figure 4.10: Experiment 2 Category Distance Histograms. Graphs show z-
scored Pearson correlation distance histograms for within-category distances (blue)
and between-category distances (red) for early visual (V1, V2, hV4), object-selective
(LOC), scene-selective (PPA, TOS), and face-selective (FFA) regions. The eight basic
categories: bird, cat, dog, fish, boat, car, plane, and train are reasonably separable
in virtually all brain regions considered with the highest distinction arising in LOC
(top right, grey). This suggests that a sharp qualitative change in the structure of
the feature space may arise between hV4 and LOC, which is not mirrored in other
stimulus selective regions of occipito-temporal cortex.
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few stages of the ventral visual stream is summarized in the large step between V1

- LOC (Fig. 4.11, top right, grey): between early visual regions and object-selective

cortex, the feature space warps to minimize the distance between members of the

same category in an asymmetrical way compared to the span of the entire represen-

tational space, which, surprisingly here, has less of an impact on the inter-category

space compared to Experiment 1. As foreshadowed in the distance histogram analysis

above, we also observed a strong warping effect for object categories in PPA, but less

so for TOS and FFA, the former of which may be due to contextual effects, as our

stimuli comprised a centrally presented object surrounded by naturalistic background.

To quantify the change in the nature of the representational space across the visual

hierarchy, we used a similar ”category warping” coefficient to Experiment 1 for each

condition, which we defined as the difference in the proportion of points that a partic-

ular condition (i.e. Wth: within-category subordinate pairs; Btw: between-category

subordinate pairs) possesses above the diagonal. Concordantly, a high proportion (50-

100%) denoted a trend for the feature space of the latter region to expand distances

in that particular condition, compared to the earlier region. Conversely, a low pro-

portion coefficient (0-50%) is indicative of a relative shrinking of the distances in the

given condition as we go from the area on the X-axis to the area on the Y-axis. There-

fore, a significantly positive or negative category warping coefficient signifies that the

representational space affects within- and between-category distances asymmetrically

as we go from one brain area to another. In our data, we observed principled cate-

gory warping effects across multiple region pairs throughout the span of the classical

ventral stream processing path (V1 - V2 - hV4 - LOC), with strongest effects at the

hV4 - LOC boundary, but also present one step earlier, at the boundary between V2

and hV4 (Fig. 4.11, bottom row; V1 - V2: Wth - Btw diff. = 1.0%, t9 = 1.1, p =

0.281; V2 - hV4: Wth - Btw diff. = 5.0%, t9 = 2.9, p = 0.017; hV4 - LOC: Wth

- Btw diff. = 15.4%, t9 = 7.3, p < 0.001; V1 - LOC: Wth - Btw diff. = 16.8%, t9

=7.5, p < 0.001). Category warping was also present between early visual cortex and

the most anterior scene-selective region PPA (V1 - PPA: Wth - Btw diff. = 10.5%,

t9 = 5.5, p < 0.001) and to a lesser extent between early visual cortex and dorsal

scene-selective cortex (V1 - TOS: Wth - Btw diff. = 3.8%, t9 = 2.4, p = 0.041),
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Figure 4.11: Category Boundaries Warp Neural Representations in
Occipito-Temporal Cortex for a Large Array of Real-World Basic Cate-
gories. (Top, Middle) Graphs show how representations of distances corresponding
to subordinate category pairs change as we move up the ventral visual stream. Axes
represent z-scored distances between pairs of categories in the corresponding brain
region. Representations were relatively stable between early visual regions (V1, V2,
hV4), as well as between early visual cortex and face-selective regions (FFA). How-
ever, we saw a striking shift in the quality of the representation as we moved between
hV4 and LOC. Here, within-category distance pairs lied below the diagonal, while
between-category distance pairs sat above the diagonal, which indicated that the fea-
ture space of LOC shrinks relative distances within categories and expands relative
distances between categories, compared to the feature space of V1. This effect is
also present to a lesser extent between early visual regions and scene-selective areas
(PPA, TOS), likely due to contextual effects. (Bottom) We measured this ”category
warping” effect quantitatively by computing the proportion of within- and between-
category distance pairs that sit above the diagonal. Concordantly, we see that across
the ventral stream, a significant category warping effect exists not just between hV4
and LOC, but also between V2 and hV4, indicating that visual processing proceeds
in a manner that sequentially facilitates the emergence of categorical distinctions.
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but not between V1 and face-selective regions (V1 - FFA: Wth - Btw diff. = 3.6%,

t9 = 1.9, p = 0.089). Critically, analogously to Experiment 1, all observed category

warping occurred exclusively in one direction, compressing within-category distances

and expanding between-category distances between early visual cortex and interme-

diate, stimulus selective regions of occipito-temporal cortex (e.g. LOC, PPA). Taken

together, our findings suggest that as we move up the ventral stream, the neural rep-

resentation space of object categories warps by making items more similar within a

category and more dissimilar between categories, and this occurs in discrete steps, as

we see here between V2 and hV4 and between hV4 and LOC. Moreover, our results

in scene-selective PPA raise the possibility that the warping of the representational

space may not be exclusive to objects, but instead may underlie the existence of a

more general process across human occipito-temporal cortex, one in which visual pro-

cessing proceeds in a manner that sequentially facilitates the emergence of categorical

distinctions across a variety of classes of input.

4.4.2 Typicality Warps the Intra-Category Neural Represen-

tation Space in Object-Selective Cortex

Our findings using a large category set support the predictions of our model that

categorization as a primary goal of visual processing is indeed intimately tied into

the organization of feature spaces of visually selective cortical areas. Next, we set

out to test whether the secondary set of claims put forward by our model generalize

beyond the two-category case where they were first observed, namely that typicality

as a high-level cognitively useful property of intra-category organization also plays a

role in shaping the representational spaces in visual cortex.

To investigate how typicality modulates the internal structure of categories, we

used a large-scale Amazon Mechanical Turk behavioral experiment to assess the typi-

cality of each of our sixty-four subordinate categories within their corresponding eight

basic categories, thus allowing us to identify the four most typical (Fig. 4.1 D, purple

indicators) and four least typical (Fig. 4.1 D, orange indicators) subordinate from

each basic. Subsequently, we measured and contrasted the distances between pairs of
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highly typical subordinates and pairs of less typical subordinates within and across

visually selective brain regions across the ventral stream, reasoning that if typicality

as a cognitively useful dimension of object representation exerts a measurable influ-

ence over the organization of the feature spaces across the ventral visual stream, then

we should observe a similar trend to our first experiment where highly typical exem-

plars are brought closer together and less typical exemplars are pushed away from

the category center as we move up the visual hierarchy.

Our first test of this hypothesis relied on constructing histograms for such highly

typical or less typical subordinate pairs for each of our visual regions of interest

(Fig. 4.12). Consistent with our results in Experiment 1, we observed that typicality

is not strongly linked to category representations in early visual regions (V1: High

Typ. < Low Typ. mean diff. = 0.0, t9 = 0.9, p = 0.407; V2: High Typ. < Low Typ.

mean diff. = 0.1, t9 = 2.1, p = 0.069; hV4: High Typ. < Low Typ. mean diff. = 0.1,

t9 = 0.9, p = 0.386), but is instead strongly represented as a differentiating factor

in the activity patterns elicited by our stimuli in object-selective cortex (LOC: High

Typ. < Low Typ. mean diff. = 0.2, t9 = 3.2, p = 0.010). In effect, in LOC distances

between highly typical subordinate pairs were significantly smaller than distances

between pairs of less typical subordinates, which suggests a reorganization of the

representational space towards emphasizing typicality distinctions. Furthermore, we

found that typicality had little modulating effect on the representations in scene-

selective regions (PPA: High Typ. < Low Typ. mean diff. = 0.0, t9 = 0.4, p = 0.668;

TOS: High Typ. < Low Typ. mean diff. = 0.1, t9 = 1.3, p = 0.241) or face-selective

regions (FFA: High Typ. < Low Typ. mean diff. = 0.1, t9 = 0.9, p = 0.405). All

in all, our results suggest that typicality is indeed a high-level property of objects, as

representations of the stimuli in early visual cortex cannot fully explain the pattern

of results we observe in object-selective cortex.

Subsequently, we used our between-brain-region analysis to investigate whether

typicality influences the representation of object categories stepwise across the ventral

visual hierarchy, and if so, to what extent at each step. Analogously to Experiment 1,

we defined a typicality warping coefficient which measured the propensity for distances

between highly typical subordinates to become compressed across brain regions and
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Figure 4.12: Experiment 2 Typicality Distance Histograms. Graphs show z-
scored Pearson correlation distance histograms for within-highly-typical-subordinates
distances (purple) and within-less-typical-subordinates distances (orange) for early
visual (V1, V2, hV4), object-selective (LOC), scene-selective (PPA, TOS), and face-
selective (FFA) regions. In early visual regions, scene- and face-selective regions,
typicality does not significantly modulate the representation of real-world objects.
By contrast, typical and less typical subordinates are strongly separable in LOC (top
right, grey), which suggests a sharp qualitative change in the structure of the feature
space may arise between hV4 and LOC, which is not mirrored in other stimulus
selective regions of occipito-temporal cortex.
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the tendency for distances between low typicality subordinates to expand. Consistent

with our initial results, typicality warping was not present in early visual regions, but

arose mostly in a stepwise fashion between hV4 and LOC (Fig. 4.13; V1 - V2 diff.

= 4.4%, t9 = 2.1, p = 0.069; V2 - hV4 diff. = -2.0%, t9 = 0.4, p = 0.704; hV4 -

LOC diff. = 9.7%, t9 = 2.3, p = 0.044; V1 - LOC diff. = 12.1%, t9 = 3.0, p =

0.015). This suggests that between V1 and LOC (and implicitly between hV4 and

LOC), the feature space in which these objects are represented changes in a way such

that less typical subordinates are more dissimilar to the rest of their basic category.

In effect, they are pushed away from the category central tendency. We also see a

trend for distances between highly typical subordinates to shrink (purple points lie

mostly below the diagonal between these brain regions), although this trend was not

significant (Fig. 4.13, bottom row). Additionally, in contrast to Experiment 1, we

did not observe a significant modulation of typicality on the relative representation

of distances between early visual cortex and scene- and face-selective regions (V1 -

PPA diff. = -1.1%, t9 = 0.3, p = 0.775; V1 - TOS diff. = 2.8%, t9 = 0.9, p = 0.368;

V1 - FFA diff. = 2.2%, t9 = 0.4, p = 0.668). This finding is consistent with prior

work showing that typicality effects on real-world object category representations in

occipito-temporal cortex are strongest in object-selective cortex [68].

Finally, to ensure that our results are not solely due to a superordinate distinction

within our category set, we also successfully replicated all our analyses above (cate-

gory and typicality warping, distance histograms, and between-brain-region analyses)

independently on each of the two halves of our large stimulus set from Experiment 2

corresponding to two broad superordinate distinctions: natural / animals and man-

made / vehicles (Appendix C, Figs. C.2–C.9). Moreover, our results from Experiment

1 also replicated thoroughly when solely using the ”dog” and ”car” exemplars shown

to our participants in the second fMRI study, which comprise a quarter subset of the

latter’s eight basic level categories (Appendix C, Figs. C.10–C.13).

Taken together, our results suggest the presence of widespread effects of category

and typicality warping throughout occipito-temporal cortex, and as such provide evi-

dence for our hypothesis that eventual cognitive goals of visual categorization directly

guide the feature transformations underlying sequential neural processing along the
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Figure 4.13: Typicality Warps Neural Distances in Object-Selective Cortex.
(Top, Middle) Graphs show how representations of z-scored distances corresponding
to subordinate category pairs of high (purple), low (orange), and intermediate (gray)
typicality change as we move up the ventral visual stream. Representations are rel-
atively stable between early visual regions (V1, V2, hV4), as well as between early
visual cortex and scene- (PPA, TOS) and face-selective regions (FFA). However, we
see a striking shift in the quality of the representation as we move between hV4 and
LOC. Here, high typicality subordinate category pairs exhibit a tendency to lie below
the diagonal, while low typicality subordinate category pairs sit above the diagonal,
which indicates that the feature space of LOC shrinks relative distances between typi-
cal exemplars within a category and expands relative distances between low typicality
exemplars, compared to the feature space of V1. (Bottom) We measured this ”typ-
icality warping” effect quantitatively by computing the proportion of high and low
typicality subordinate category pairs that sit above the diagonal. Concordantly, we
see that across the ventral stream, the main significant category warping effect oc-
curs not between hV4 and LOC, suggesting a sharp shift in the modulation of object
representations by typicality at this stage in visual processing.
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ventral visual pathway. This allowed us to put forward a two-tiered model of ob-

ject category processing (Fig. 4.9) that posits that object representations start out

highly overlapping in early visual cortex and gradually become more separated along

category boundaries as we move up the ventral stream. Eventual category distinc-

tions, in effect, become an organizing principle for the feature spaces of successive

visual regions in the object processing pathway: representational spaces warp in later

areas compared to early regions to bring together items that belong to the same

category and further enhance separation between categories. This process is mir-

rored in how typicality reorganized the intra-category organization of objects in these

feature spaces by shrinking distances between highly typical members and pushing

less typical items away from the category center. Given that these processes occur

simultaneously and are both most evident as a sharp change in the representation

between hV4 and LOC, this suggests that category and typicality warping may, in

fact, represent distinct facets of the same two-tiered mechanism or phenomenon. As

such, they provide the first evidence that the cognitive structure of our perceptual

object space may directly modulate the hierarchical processing of visual information

across the human ventral visual pathway.

4.5 Discussion

Prior work has emphasized the important role that broad categorical distinctions

play in the functional organization of visual cortex, as numerous regions showing

preferential activation for broad stimulus classes such as faces, scenes, objects, and

bodies have been uncovered across human visual cortex [35, 40, 53, 72, 91], suggest-

ing that neural activity across many of these regions may contribute to the ultimate

goal of separating visual stimuli into interpretable, actionable categories further down

the processing stream. In agreement with this view, many prevailing models of the

ventral visual processing pathway propose that it contains mechanisms designed to

take intertwined high dimensional representations of visual stimuli (low-level feature

collections in early visual areas) and systematically disentangle and rearrange them
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into separable, invariant category representations later on (e.g. in inferotemporal cor-

tex [33, 44, 110, 126]. The details behind this process have so far remained unclear,

as well as whether this untangling occurs in a stepwise fashion across visual cortex,

and if so, what are the transformations that occur at each step. Our work addressed

these questions by putting forward a principled framework for investigating how in-

formation processing related to the eventual perception of object categories proceeds

sequentially across human ventral visual cortex. The central tenet of our model pro-

poses that this sequential computation is driven in part by and specifically optimizes

for the fulfillment of eventual perceptual goals of visual processing, such as generating

clear category distinctions and organizing members of a category along a typicality

gradient.

The prevalent view of object categorization, however, posits that information

present in posterior occipito-temporal cortex does not reflect cognitive constraints,

which are instead enforced and instantiated later on in the processing stream (e.g.

anterior temporal and frontal regions [49, 93, 95]. This perspective is also mirrored

by models that strongly encapsulate vision from cognition [45, 47, 108, 110]. In direct

contrast to this view, in the current study we propose a competing model of object

processing in human ventral visual stream based on the hypothesis that sequential

computations in visually selective cortex optimize specifically for cognitively useful

aspects of category structure. More specifically, in both of our fMRI experiments, we

found strong evidence that both aspects of category structure we investigated (gener-

ating category distinctions and engendering typicality distinctions between members

of a category) warped the neural representation directly and sequentially across the

ventral stream: category distinctions slowly pushed their representations apart as we

moved between early and mid-level visual areas, and simultaneously, perceived typi-

cality of category members rearranged the internal neural category space so that in

later processing stages highly typical items became more similar to one another and

less typical items were pushed away from the category central tendency. Thus, our

results suggest that these eventual cognitive goals of visual categorization directly

guide the feature transformations underlying the sequential neural processing of vi-

sual input along the ventral visual stream hierarchy of brain regions from early visual
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cortex to inferotemporal cortex.

Moreover, recent neuroimaging work has shown that the representation space in

occipito-temporal cortex is highly fluid and can be influenced in an online fashion by

learning [21], attention [18], or shifting task demands [57]. By contrast, our study

investigated the representation of objects throughout the ventral stream while explic-

itly attempting to eliminate the influence of such factors: throughout our experiments

stimuli are never repeated and we employ an image-level 1-back task not related to

categorization or typicality, solely for ensuring participant alertness. This suggests

that our findings are likely not due to explicit transient top-down constraints imposed

on the visual system by higher level processing regions (e.g. anterior temporal and

frontal regions [49, 93, 95]), but instead reflect properties of a fundamental mechanism

of object processing across the ventral visual pathway.

Concordantly, our proposed model has direct implications for recent avenues of

research whose goal is to understand the sequential stepwise computation in visual

cortex via parallels to emergent properties observed in layers of deep artificial neu-

ral networks trained for solving specific visual tasks [16, 135, 136]. Such deep net-

works are trained to optimize performance on a single specific end-goal task, usually

basic-level categorization. By showing that multiple cognitively useful goals of object

perception influence the representation of visual input throughout the human ventral

stream, our work puts forth the possibility that achieving a strong connection between

deep artificial models and biological vision may require incorporating (either explic-

itly or at a verification stage) other high-level properties such as typicality, which

we have presently identified as having a measurable impact on the feature spaces of

visual regions strongly involved in object and category recognition (e.g. LOC). Fur-

thermore, it remains unknown whether inter-category boundaries and intra-category

graded typicality relationships represent isolated or independently arising properties

of category structure. Our findings suggest that the same warping mechanism by

which items which are sought to be made more similar are brought together and

items which are sought to be made dissimilar are pushed away relative to each other

across successive representational spaces may, in fact, be shared between typicality

gradients and category boundaries, between inter-category and intra-category scales
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of object representation. This raises the question of whether multiple cognitive utility

constraints operating on the visual processing hierarchy engage in mutual interaction,

be it interference or facilitation. While it is virtually impossible to test this question

in the context of our current study, using complex modeling approaches afforded to

us by advances in deep neural networks designed to solve visual tasks may be able to

approach this issue through imposing distinct learning objectives on the same archi-

tecture known to eventually develop a representation correlated with that of primate

visual cortex [16].

Looking beyond object categorization, our results also raise the possibility that a

generalized mechanism based on cognitive utility of category structure may drive pro-

cessing across a larger swath of functionally selective occipito-temporal cortex. Prior

work from our lab has shown that computations in this brain region optimize for

basic-level categorization and they don’t do so exclusively in object-selective regions,

but to a lesser degree across scene- and face-selective regions, as well [67]. Similarly,

in the current study we show that category warping is not limited to LOC, but again

extends to other category-selective regions such as PPA, TOS, and FFA (Fig. 4.6

and Fig. 4.11). Moreover, prior work has shown that while they exhibit activation

preference for a particular stimulus type above all others (e.g. faces for FFA, scenes

for PPA and TOS / OPA), nevertheless a graded activation profile pervades such

functional regions such that they respond to [34, 40, 72, 97] and likely process in-

formation about other non-preferred stimuli, as well [67, 97]. Taken together, this

suggests that the warping mechanism may be indicative of a larger type of processing

constraint pervading intermediate visual areas: cognitive utility as a default force

driving refinement of visual information representation as we go up the ventral visual

stream. If such a mechanism indeed exists, it would predict similar warping effects for

other high-level stimulus classes, such as scenes and faces, but with PPA / TOS and

respectively FFA as the highest level visually selective areas of their corresponding

computational pathways. Testing these predictions represents an exciting avenue of

research for future studies on the effect of cognitive utility constraints on processing

in visual cortex.

Although fundamental to our understanding of visual processing and eventual
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perception, the primitives underlying feature spaces of high-level visual regions are

unknown. For object-selective cortex, we have evidence that the representation space

is modulated by high-level properties of objects, such as animacy [19, 23, 76] and

real-world size [76, 77], by structural features, such as shape [54, 78] and parts [41,

56], and may, in fact, include cross-modal information beyond visual object details [4,

5, 105]. Our work identifies a separate level of description for this representational

space, one that addresses its function and its organization relative to the spaces from

which it derives most of its feed-forward input. By proposing and testing a model for

how representations of objects change across regions involved in object processing, we

established a novel way to divine information about axes of positive variance in this

space without having direct access to the underlying representation itself. Moreover,

our results imply that this space organizes itself in a manner driven by even higher-

level constraints, which are likely many synapses removed from the computations

performed by this particular region of the cortex: eventual contribution of its efferent

output to the later instantiation of cognitively useful percepts and decisions about

the world. Indeed, by showing that category boundaries and typicality gradients

modulate processing as early as posterior occipito-temporal cortex, we broaden the

space of potential properties which may constitute relevant dimensions of organization

for the feature spaces of stimulus selective regions in visual cortex and beyond.

We started our endeavor with a simple hypothesis that represents a logical ex-

tension to previous neural models of object category processing: cognitively useful

aspects of category structure are not just the end-goal of the computation, but, in fact,

guide it sequentially as we go up the ventral visual stream. Consequently, we proposed

a new model of category processing and uncovered evidence for a two-tiered organi-

zational principle mitigated by cognitive utility: category boundaries and typicality

simultaneously warp the neural representation space across the span of visual cortex

by reorganizing the internal structure of the successive feature spaces to emphasize

these two eventual cognitively useful aspects of real-world objects. By examining the

makeup of this space in an indirect fashion, we showed that the guiding principles

for its internal organization might be more accessible than previously thought, if only

at a higher, more complex level than hitherto expected. And with these alternative
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descriptions in hand, we may be able to eventually recover the lower level primitives

that we have so arduously sought to define since we first uncovered selectivity to

particular stimulus classes in visual cortex.
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Chapter 5

Locally-Optimized Inter-subject

Prediction of Functional Cortical

Regions

Our brains solve visual recognition through the interplay of computational, represen-

tational, and physical levels of interpretation of input from our eyes [92]. Concurrently

with investigating the mechanisms of object perception, we also seek to develop tools

that help us better understand this key relationship between the function of neural

circuits and their position on the cortical surface, a relationship that is currently not

well understood.

To address this goal, we approach the problem of inter-subject registration of

cortical areas, as a necessary step in functional imaging (fMRI) studies for making

inferences about equivalent brain function across a population. The main challenge

behind successfully predicting the location of cortical regions in never-before-seen cor-

tical sheets it that many high-level visual brain areas are defined as peaks of functional

contrasts whose cortical position is highly variable. As such, most alignment methods

fail to accurately map functional regions of interest (ROIs) across participants. To

address this problem, we propose a locally optimized registration method that di-

rectly predicts the location of a seed ROI on a separate target cortical sheet by max-

imizing the functional correlation between their time courses, while simultaneously
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allowing for non-smooth local deformations in region topology. Our method outper-

forms the two most commonly used alternatives (anatomical landmark-based AFNI

alignment and cortical convexity-based FreeSurfer alignment) in overlap between pre-

dicted region and functionally-defined LOC. Furthermore, the maps obtained using

our method are more consistent across subjects than both baseline measures. Crit-

ically, our method represents an important step forward towards predicting brain

regions without explicit localizer scans and deciphering the poorly understood rela-

tionship between the location of functional regions, their anatomical extent, and the

consistency of computations those regions perform across people. This chapter is

joint work with Armand Joulin, Diane M. Beck, and Fei-Fei Li, previously published

as [69].

5.1 Introduction

A common and reasonable assumption of modern neuroscience is that virtually all

human brain areas, whether functionally or anatomically defined, are shared across

the vast majority of the population and a correspondence of processing role exists

between such equivalent areas. However, no two brains have the same anatomical

shape or folding pattern, and thus finding a precise correspondence between locations

in two separate cortical surfaces is a highly non-trivial problem.

Currently, most state-of-the-art cortical prediction and alignment methods define

transformations between entire cortical volumes that attempt to preserve anatomi-

cal landmarks, cortical curvature, or functional connectivity, and subsequently check

whether specific regions of interest (ROIs) are accurately matched between sub-

jects [24, 118, 137]. However, many high-level visual brain areas are defined as peaks

of functional contrasts (e.g. higher activation for objects versus scrambled objects

for lateral occipital complex LOC [55]) and it is usually difficult to identify clear

anatomical landmarks and boundaries for these areas, due to large variability in their

cortical position [3, 132] and functional response [7] (Fig. 5.1, left). As a consequence,

although they provide a reasonable global matching, previous methods usually fail to

accurately map such functional ROIs across participants.
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Figure 5.1: (Left) LOC variability. Location and extent of lateral occipital com-
plex (LOC) is highly variable across subjects, even when using the same localizer
experiment, same scanner, and same analysis pipeline. (Right) Schematic rep-
resentation of our proposed method. Our algorithm tiles the seed region with
smaller sub-regions and finds the best functional match for each of them in the target
map. The sub-regions are allowed to move independently from one another, pro-
vided only that the distance between any two initially adjacent sub-regions does not
increase by more than a set threshold.

Thus, our goal is to increase the reliability of inter-subject mapping for these

cortical functional peaks, as well as for the visual areas they define, using fMRI data.

To address this problem, we describe a general-purpose method for predicting the

location of functional areas across people that we apply to the problem of localizing

object-selective cortex, LOC.

5.2 Related Work

Our problem can be thought of as a special instance of cortical alignment, where the

main goal becomes accurate prediction of a particular region’s location, rather than

finding a complete correspondence between entire brain volumes. By comparison,

virtually all extant alignment methods ([24, 26, 46, 59, 117, 118, 124, 137]) define

transformations across full cortical volumes and subsequently check whether specific

regions of interest (ROIs) are accurately matched between subjects.

Anatomical alignment relies on large scale correspondences between all human

brains, including the reliable presence and the relatively consistent position of pri-

mary features such as major sulci and gyri on the cortical surface (e.g. Talairach [124],
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AFNI [26]). Additionally, given that the main obstacle in aligning the cortical surface

between subjects is its folding variability, methods have been proposed that warp gray

matter meshes using local curvature properties of the cortex (e.g. FreeSurfer [46]).

These methods, as well as recent extensions [137] also suffer from significant short-

comings in matching functional areas.

A recent method incorporates functional connectivity constraints in the map-

ping [24] and shows improved ability to align intertwined networks in the brain (i.e.

default mode network). However, many functional areas are not usually a strong part

of these networks and thus receive little benefit from this approach.

Finally, another class of alignment methods uses functional correlation con-

straints. For example, hyperalignment [59, 117] and other methods that rely on low-

dimensional embeddings of functional responses (e.g. [82]) usually offer improvements

over commonly used anatomical alignment methods (e.g. Talairach [124], AFNI [26]).

Nevertheless, such methods represent a point in the target map as a linear combina-

tion of (possibly) all voxels in the other map, and thus are not directly amenable to

transferring the location of one contained area across maps without explicit additional

knowledge, such as post-hoc labeling. Another promising recent method [118] starts

with FreeSurfer alignment and maximizes local functional correlation across the cor-

tical surface to nudge the vertices of the surface map. This method performs well for

early visual areas, but shows limited ability to match functional regions as distance

from the occipital pole increases. In contrast to [118], we enforce maximal alignment

and prediction specificity to a single region of interest and, furthermore, we allow

for locally non-smooth deformations in our mapping, which bypasses the (otherwise

ubiquitous in previous work) expectation of using continuous maps between cortical

sheets or volumes.

5.3 Locally-Optimized Cortical Region Prediction

Our goal is to predict the location of functionally-defined high-level visual areas be-

tween participants. To compute a correspondence between equivalent functional re-

gions, we reasoned that although two cortical surfaces (corresponding to two separate
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subjects) must express the same necessary computational units that give rise to ob-

served function, these units might not be perfectly equivalent or identically distributed

spatially across the two ROIs [66]. Thus, a key design principle behind our method is

to allow a small degree of non-smoothness in the local deformations afforded by the

mapping between the two cortical surfaces.

Our method was inspired by a computer vision object co-localization technique

first discussed in [36, 37] and takes as input pairs of flattened cortical surfaces from

participants who previously took part in an arbitrary fMRI experiment that exposed

them to complex, varying stimuli (e.g. visual categorization [67]). We standard-

ized the cortical surfaces by resampling the multidimensional functional data of each

subject to a regular square grid at a resolution of 2 x 2 mm. Each point in the

resulting grids has a functional time course associated with it which corresponds to

the estimated response of that point to the stimuli shown across the entire duration

of the fMRI experiment (e.g. using a 512 TR fMRI experiment as input implies a

512-dimensional representation for each point in the resulting standardized cortical

maps). Then, for each possible pair of participants, one of them is selected as the seed

and the other as the target (for our final results, each participant in each pair is, in

turn, selected as the seed and target, and performance is averaged across both these

configurations). The location of the functionally defined region of interest in the seed

subject is then tiled with a grid of n x n patches, where each patch is associated with

a small area on the brain surface (e.g. 5 x 5 voxels). Finally, the algorithm seeks to

find maximal functional correspondences between each seed patch and an equivalent

region in the target map by maximizing the sum of time course correlations across

all the patches, while enforcing that the distances between adjacent patches change

by less than a specified amount in each direction (i.e. ρ = 4 voxels) between the seed

and target maps. An example seed ROI parcellation and target matching are shown

in Fig. 5.1 (right). The optimization problem can be written as:

minimize
M

∑
i dF (Fi, Fmi

)

subject to ds(pmi
, pmj

) ≤ ρ,
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where M = {(i,mi)} is the collection of correspondences between seed (i) and target

patches (mi); dF is the feature distance between the patches in each correspondence,

computed as 1 - Pearson’s r; ds is the cortical distance difference between the original

and mapped configuration of each pair of patches (patch i mapped to patch j) in

the two maps; and ρ is the maximum allowable distance change between neighboring

patches across maps. We solve the optimization problem above using a deterministic

grid search through the space of all possible patch jitter permutations.

5.3.1 Advantages Over Previous Methods

Our method presents several key advantages over other alignment methods, which

render it more general and more precise. First, virtually all previous methods com-

pute a complete correspondence code between entire cortical surfaces. Afterwards,

the location of functional areas is obtained second-hand, e.g. by aligning a con-

trast map and re-thresholding. Here, we instead focus on maximizing the quality

of the mapping for a single, specific seed ROI. Furthermore, other alignment meth-

ods usually generate a smooth manifold transformation between cortices. However,

this entails a very strong assumption that activation profiles vary smoothly and with

the same spatial distribution across subjects. We forgo this assumption by allow-

ing locally-non-smooth deformations in the topology of the predicted ROI. Finally,

cortical registration methods are usually described by highly complex optimization

problems that can only be solved up to a local minimum, and are thus highly sensitive

to parameter initialization. By contrast, our method has a global optimum solution

to which we converge deterministically and is therefore much more robust.

5.4 Experiments

5.4.1 fMRI Dataset and Baselines

We tested our method by predicting the location of a difficult to match, functionally

defined, object-selective ROI (lateral occipital complex LOC) between subjects using

data from a block design passive-viewing fMRI experiment where participants (n = 7)
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Figure 5.2: Stimulus set for fMRI experiment used to perform and evaluate
the cortical prediction algorithm. During the experiment, participants were
shown images from 32 object categories: 8 breeds of dogs, 8 types of flowers, 8 types
of planes, 8 types of shoes (32 images per category; 1,024 images total).

were shown 1,024 images of objects from 32 categories (Fig. 5.2, see [67] for details

about the procedure and preprocessing). We computed the position of each partici-

pant’s LOC using standard localizer runs conducted in a separate fMRI session [51,

119]. We then used the AFNI-SUMA software package [26] to project and interpolate

the data from the 3D volume onto a 2D flattened regular grid cortical map.

We compared our algorithm against the two most commonly used cortical registra-

tion methods: anatomical landmark-based AFNI 3dvolreg [26] and cortical convexity-

based FreeSurfer [46]. AFNI uses information about overall brain shape and automat-

ically defined anatomical points of interest to warp cortical volumes across subjects.

FreeSurfer also uses brain shape, as well as information about cortical curvature (sulci

and gyri locations, distribution of normals to the gray matter surface) to iteratively

distort one cortical surface into another.

5.4.2 Results

To test how well our method predicts the location of LOC across subjects, we used

two metrics: accuracy and consistency. Accuracy represents the percentage of overlap

between functionally-defined LOC and predicted LOC after mapping from a different
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subject’s brain. Consistency is defined as the amount of overlap between predicted

regions from multiple subjects aligned to the same target map. For both metrics,

overlap is computed as intersection over union.

We show results for the two baselines, as well as our method in Fig. 5.3. Our reg-

istration method vastly outperformed the two canonical baselines in overlap between

predicted region and ground truth LOC: baselines 10-11%, ours 24-25%. Furthermore,

the maps obtained using our method are more consistent across subjects than both

baseline measures (overlap of region commonly mapped from 3+ subjects: baselines

9-11%, ours 26%).

Qualitatively, the cortical maps further showcase the strength of our results com-

pared to the AFNI and FreeSurfer baselines. In the first two panels of Fig. 5.3 (bottom

left) we see that functional regions in other subjects are mapped with a high degree

of variance onto the target subject cortical sheet. Often, there is little overlap with

our localizer-defined ROI and, most importantly, the mapping may place the region

several centimeters away from its desired location, often on a different gyrus. By con-

trast, our method (Fig. 5.3, bottom right) shows much less variance in the predicted

area, with the peak of the prediction fully contained within our localizer-defined re-

gion.

These results suggest that our registration technique significantly increases the

reliability of transferring the location of functional ROIs between subjects.

5.5 Conclusion

In this paper, we proposed a locally optimized registration method that predicts the

location of a seed region of interest (ROI) on a separate target cortical sheet by max-

imizing the functional correlation between regions and simultaneously constraining

the global structure of the mapping, while allowing for non-local deformations in its

topology.

Our method vastly outperforms two canonical alignment baselines (anatomical

landmark based AFNI [26] and cortical curvature based FreeSurfer [46]) in both pre-

cision and consistency. By improving the quality and reliability of matching and
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Figure 5.3: Alignment Results: Accuracy and Consistency (n = 7 subjects).
For every target subject, we align LOC from all other 6 subjects to the target cor-
tical surface using functional data from the above experiment. (Top Left) Overlap
between predicted LOC and LOC defined using separate standard localizer proce-
dure, measured as intersection over union of surfaces. (Top Right) We select the
voxels predicted consistently in the target map for n+ subjects and compute the
overlap between this restricted region and ground truth LOC for n ∈ {1, 2, 3, 4}.
(Bottom) Consistency of predicted LOC obtained from aligning using AFNI 3dvol-
reg, FreeSurfer, and Our Method for a representative subject. Heatmap indicates how
many subjects’ LOC were mapped to that voxel on the target surface. White outline
indicates LOC boundaries defined using separate standard localizer procedure.
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transferring the location of functional ROIs across subjects, our technique represents

an important step towards obviating the need for running separate time- and resource-

consuming localizer scans for every functional brain region. Instead, we envision an

eventual solution where a single ’localizer’ experiment is performed using a high vari-

ance stimulus (i.e. natural movie [66]), which is then used to define all functional

ROIs, including potential regions which have yet to be identified. Such a mapping is

also useful in settings where one needs to compare analyses and hypotheses between

datasets where functional localizers are missing and gathering extra sessions of data is

either expensive (large number of participants) or impossible (unavailability of former

subjects).

Finally, the relationship between peaks of functional contrasts and the compu-

tation performed by the cortex surrounding them is not well understood. Since our

method improves the quality of functional ROI mapping between subjects, it becomes

especially useful for investigating the key complex relationship between anatomy,

functional contrast peaks, and cortical computation.



Chapter 6

Conclusion

How does our visual system take a noisy sea of colored dots encoded by our retinas

and generate salient labels for everything we see? What’s more, implicit in this

process is a marvelous generalization step: we almost invariably refer to, act upon,

and think about concrete entities in our world through their category, rather than

their individuality; we gloss over their visual discrepancies to collect them into self-

similar bins whose members share features, affordances, and meaning. Within the

realm of our vision, categorization is a fundamental building block of our perceptual

experience.

But there are many components to our shared human category structure, most of

which remain hidden in how they are built and extracted by our visual cortex from

raw photons impinging upon our sensorium. The main goal of this dissertation has

been to use computational approaches to explore how pervasive, yet poorly under-

stood, dimensions of object categorization are represented in our brain and how they

contribute to our building a coherent picture of the world.

For example, our category space is hierarchically organized: the same picture can

be simultaneously interpreted as an animal, a dog, a collie, or ”Mr. Woof”; although

most people would prefer the basic-level label ”dog”. While a preponderance of evi-

dence suggests that this basic-level advantage captures something fundamental about

human perceptual categorization [6, 10, 14, 65, 71, 90, 94, 98, 99, 114, 116, 123, 125],

it is surprisingly unknown how it (or, more broadly, the hierarchical representation

132
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of object categories) is achieved in the brain. We address this question at length in

Chapter 2, where we provide the first neural evidence that preferentially extracting

information at a mid-level of generality (e.g. ”dog”, the most privileged in our daily

interaction with the world) may be an emergent property of the human visual system

and that such categorization may be part of visual processing from its very early

stages.

On the other hand, even within their ”category”, not all dogs are created equal:

most people would agree that a Golden Retriever is more representative of the con-

cept ”dog” than a Chihuahua. Indeed, in our interaction with the world we enjoy the

benefits of generalization (i.e. categories), but the meaning and characteristics of in-

dividual objects is far from lost. Interestingly, this preference for particular members

of a category is not trivial or purely descriptive, as considerable evidence suggests

that the typicality of a particular item is reflected in how fast and how accurately

we perceive it in our daily lives [109, 112, 115]. And yet, little is known about how

typicality influences the neural representation of real-world objects from the same cat-

egory. We address this question in Chapter 3, where we show that everyday typicality

judgments are correlated with neural distance between categories in object-selective

regions of our brain. As such, our results suggest that typicality may constitute a

previously unexplored principle of organization for intra-category neural structure in

high-level visual cortex.

Ultimately, it falls on us to attempt to use our new found insights into the neural

underpinnings of category structure to describe in a principled way how the process of

extracting category information from our visual input is accomplished by the brain.

Consequently, in Chapter 4, we built upon our previous findings to put forward a

model of object category processing in human visual cortex based on the hypothesis

that cognitive utility aspects of our category structure drive successive computations

across the ventral visual stream. By testing the predictions of our model, we showed

that category distinctions slowly pushed representations apart between early and

mid-level visual areas and, simultaneously, perceived typicality of category members

modulated the internal neural category space so that in later processing stages highly

typical items became more similar to one another and less typical items were pushed
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away from their category central tendency. This provides the first glimpse into the

neural underpinnings of processes we’ve known about and built cognitive models for

over the course of forty years, but have until now remained elusive in the brain. Yet,

this is not an endpoint, but a stepping stone into a rich space of questions that can

help us understand how fluid our representation of the world is and how our brain

adapts its processing to task demands.

Finally, our brain solves visual recognition through the interplay of computational,

representational, and physical levels of interpretation of input from our eyes. Con-

currently with investigating the mechanisms of object perception, we also strive to

develop tools that help us better understand this key relationship between the func-

tion of neural circuits and their position on the cortical surface, a relationship that

is currently not well understood. In Chapter 5 we put forward a novel algorithm

aimed at predicting the location of functional visual regions across people, thus help-

ing to decipher the poorly understood relationship between the location of functional

regions, their anatomical extent, and the consistency of computations those regions

perform across individuals.

Taken together, the insights we gathered in this dissertation have helped paint

a clearer picture of how both the vertical (taxonomy) and horizontal (typicality) di-

mensions of our category structure are computed and represented by the visual cortex

in our brains’ quest to understand and portray the world. Nevertheless, many more

unanswered questions remain, some of which are borne from our new characteriza-

tions of these processes themselves. For example, what components of the neural

representation space of object and scene taxonomies are shared and unique across

different populations? Does this representational space warp in relationship to differ-

ences in native language, subject-level familiarity or expertise with different parts of

the category space? Or, even more fundamentally, how much of the structure of this

category space is shared across primate species or uniquely human? Future answers to

these questions will not only help indicate how stable such principles of categorization

are across multiple instantiations of vision solvers (brains), but also to what extent

we can potentially use our findings as a guiding principle for the implementation of

human-level-performance artificial recognition systems.
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Supplementary Fig. A.1. The relationship among the various taxonomic levels
was closer to human behavioral categorization in later regions than in
early visual cortex. To show this, we performed an additional analysis where we
computed the correlations between neural representation of categories in Experiment
2 and behavioral similarity (top) and low-level similarity of stimulus images (bottom).
We plotted these average across-subject correlations on a flat cortical representation
of the group map occipito-temporal region. We observed that low-level features were
indeed most correlated with neural representation in early visual cortex, but this
correlation decreased as we moved up the ventral visual stream. Conversely, an
opposite pattern was observed for the correlation with behavioral similarity: this
quantity increased gradually from V1 to LOC, where it reached a peak. This offers
further evidence that our results are in agreement with previous studies: category
distinctions become more pronounced and more similar to behavioral reports as we
move up the ventral visual stream. The authors would like to thank Clara Fannjiang
for her assistance in running these additional analyses.
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Supplementary Fig. A.2. Category boundary effect searchlight analysis. A
clear neural basic level advantage may not be clearly evident until we reach higher-
level, perhaps amodal representations of visual information. To investigate whether
we can find evidence of such a higher-level area, we performed a searchlight analy-
sis [80] in which we tiled the cortical gray matter of each subject with fixed-size spheres
(radius = 4 voxels) and computed our category boundary effect measure for the neu-
ral activity pattern contained within each such sphere across the entire cortex. This
new analysis did not reveal any significant category boundary effect beyond occipito-
temporal cortex: we show above average maps of all subjects’ occipito-temporal cortex
aligned to Talairach atlas. However, we found that the subordinate level is well rep-
resented in early visual areas, more strongly than LOC, which is consistent with our
ROI analyses. Moreover, the basic level analysis only survives multiple comparisons
testing in object-selective cortex. Given the inherent limitations of a searchlight anal-
ysis (fixed searchlight size, ignoring putative boundaries between functional selective
regions, highly stringent multiple comparison correction thresholds), the results are
much more coarse than the ROI-specific analyses, so our null result in this case does
not necessarily imply that a high-level area with a clear basic-level advantage does
not exist. In fact, the search for such an area and / or representation is an interesting
avenue of future study.
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List of Subordinate Categories (categories in blue selected for fMRI Experiment)

• Natural object

– Animals

∗ Birds

· Cockatiel

· Humming bird

· Vulture

· Hawk

· Owl

· Hen

· Ostrich

· Swan

∗ Cats

· Egyptian

· Angora

· Manx

· Abyssinian

· Tortoiseshell

· Siamese

· Persian

· Sphinx

∗ Dogs

· Malamute

· Mastiff

· Pug

· Schipperke

· Chihuahua
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· Welsh Corgi

· Schnauzer

· Komondor

∗ Fish

· Goldfish

· Clownfish

· Angelfish

· Sturgeon

· Flying fish

· Pufferfish

· Needlefish

· Catfish

– Plants

∗ Flowers

· Violet

· Chrysanthemum

· Blue daisy

· Cosmos

· Ice poppy

· Orchid

· Sunflower

· Toadflax

∗ Garden Plants

· Zucchini

· Broccoli

· Cabbage

· Corn

· Cucumber
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· Jalapeno

· Soybeans

· Tomato

∗ Herbs

· Parsley

· Mint

· Basil

· Catnip

· Chives

· Cilantro

· Sage

· Oregano

∗ Trees

· Aspen tree

· Coffee tree

· Conifer tree

· Apple tree

· Bonsai

· Magnolia tree

· Palm tree

· Willow

• Man-Made object

– Transportation

∗ Boats

· Canoe

· Rowboat

· Galleon
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· Cruise ship

· Battleship

· Icebreaker

· Sailboat

· Aircraft carrier

∗ Cars

· Sedan

· Sports car

· Minivan

· Limousine

· Mini car

· Racecar

· Station wagon

· Antique car

∗ Planes

· Airliner

· Fighter plane

· Seaplane

· Glider

· Delta plane

· Biplane

· Stealth plane

· Gyroplane

∗ Trains

· Commuter train

· Freight train

· Subway

· Tram
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· Monorail

· Bullet train

· Incline railway

· Trolley

– Musical Instruments

∗ Drums

· Bass drum

· Bongos

· Timpani

· Snare drum

· Steel drum

· Tenor drum

· Timbale

· Bodhran

∗ Keyboards

· Upright piano

· Hammond organ

· Clavichord

· Grand piano

· Harpsichord

· Mechanical piano

· Pipe organ

· Synthesizer

∗ Strings

· Violin

· Sitar

· Dulcimer

· Cello
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· Bass

· Banjo

· Viola

· Mandolin

∗ Wind Instruments

· Clarinet

· Oboe

· Flute

· Pennywhistle

· Trombone

· Trumpet

· Saxophone

· Tuba
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Supplementary Fig. B.1. Distribution of entry-levels for the 128 subordinate
category dataset. The X-axis denotes the number of categories behaviorally veri-
fied to have the corresponding entry level on the Y-axis. Ideally, we would like entry
levels for all categories to lie at the basic level (A, F, I). (B-E) Entry-level distribution
for each subordinate category in a particular superordinate category. (G-H, J) Dis-
tribution of entry levels collapsed across superordinate categories: (G) animals and
transportation categories; (H) plants and musical instruments; (J) all superordinate
categories. Green highlight indicates category set distribution chosen for the fMRI
experiment data analysis.
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Supplementary Fig. B.2. Response time z-score difference between putative
categorization levels. (A) Advantage of basic-level classification versus subordinate
level classification (positive values indicate strong basic-level effects). (B) Advantage
of basic-level classification versus superordinate level classification (positive values
indicate strong basic-level effects). Error bars: standard error of the mean.
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Supplementary Fig. B.3. Inter-Subject Reliability for Typicality Rankings.
The X-axis denotes the absolute value difference in typicality rank between cate-
gories, where rank 1 indicates the most typical subordinate and rank 8 indicates the
least typical subordinate in a given basic category. The Y-axis denotes the level of
agreement between subjects, where chance is 0.5 (typicality rankings were obtained
through judgment of pairs of two categories). We observed a mean agreement of 75%
± 2%, mean ± s.e.m. across all rank differences.
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Supplementary Fig. B.4. Correlation with central category tendency when
omitting the most and least typical exemplar in the computation of the
central tendency. Correlation between central category tendency and most typical
exemplar in each category (light gray) or least typical exemplar in each category (dark
gray), averaged across all 8 basic level categories. In object-selective cortex (LOC),
typical categories are more similar to the average category representation than less
typical exemplars and this effect is not present in early visual areas. We performed
a similar analysis using the image-level features from our stimulus set: LAB color
histograms, GIST features, and multi-scale Gabor wavelet features. All features show
similar values for both highly typical and less typical exemplar correlations and all
features show an opposite trend to our LOC results (higher correlation for less typical
exemplars). ∗ ∗ ∗ p < .001, ∗∗ p < .01, ∗ p < .05, n.s. - not significant. Error bars:
95% confidence interval.
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Supplementary Fig. B.5. Similarity of Each Subordinate with Most Typical
Subordinate Category. Each bar represents similarity between a subordinate cat-
egory at a particular typicality rank (2–8) and the most typical subordinate (rank
1) in its corresponding basic category, averaged across all basic categories. Using
Friedman non-parametric tests, we found that similarity decreases significantly with
typicality rank in object-selective cortex (LOC), but not in early visual regions (V1,
V2, V3v, hV4). ∗ ∗ ∗ p < .001, ∗∗ p < .01, ∗ p < .05. Error bars: 95% confidence
interval.
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Supplementary Fig. B.6. Distances from SVM Category Boundary. We hy-
pothesized that if more typical subordinates are better separated form other basic
categories, then they should exhibit larger distances (compared to less typical subor-
dinates) to a putative category boundary separating their basic category from others.
To test this hypothesis, we trained a series of linear support vector machine (SVM)
classifiers and computed, for each of our 8 typicality ranks, the average distance per
subject per ROI between all subordinates of that rank and their corresponding cat-
egory boundary. Graph shows average distance from linear support vector machine
(SVM) category boundaries averaged over most typical four subordinates and least
typical four subordinates. We found that typical subordinates usually lie farther from
their respective category boundary than less typical subordinates in LOC, but not in
early visual areas (V1, V2, V3v, hV4). ∗ ∗ ∗ p < .001, ∗∗ p < .01, ∗ p < .05. Error
bars: 95% confidence interval.
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Supplementary Fig. B.7. Stimuli for ”Pug” Subordinate Category. We selected
16 images from each subordinate category varying greatly in pose, color, shape, and
shape-occlusion. Shown above are the 16 images presented for the ”pug” category.
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Experiment 1: Full Names and Typicality Ratings for Initial Set of 48

Subordinate Categories. Typicality ratings are computed as proportion chosen

in a pairwise 2AFC task (0 = never chosen, low typicality; 1 = always chosen, high

typicality). Color highlights indicate subordinates that were eventually selected as

stimuli for the scanning phase of Experiment 1 (green = high typicality; orange =

middle typicality; red = low typicality; black = not chosen for scanning).

• Dogs

– Golden retriever (0.83)

– Beagle (0.76)

– Saint Bernard (0.71)

– Mastiff (0.67)

– Collie (0.65)

– Basset hound (0.62)

– Elk hound (0.60)

– Welsh corgi (0.58)

– Malamute (0.58)

– Doberman (0.55)

– Pug (0.51)

– Bloodhound (0.50)

– Schnauzer (0.49)

– Terrier (0.48)

– Sheepdog (0.46)

– Schipperke (0.40)

– Pomeranian (0.36)

– Chow-chow (0.35)

– Airedale (0.32)
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– Dinmont (0.30)

– Poodle (0.27)

– Chihuahua (0.23)

– Afghan hound (0.17)

– Komondor (0.11)

• Cars

– Ford Mustang (0.84)

– Chevrolet Crossfire (0.79)

– BMW Z4 (0.77)

– Rolls Royce (0.71)

– Lamborghini Diablo (0.71)

– Kia Rio (0.70)

– Volvo Hatchback (0.69)

– Volkswagen Cabrio (0.68)

– Toyota Prius (0.66)

– Lotus Elise (0.62)

– Caddillac (0.58)

– Mini Cooper (0.50)

– Mitsubishi Miev (0.42)

– Land Rover (0.39)

– Nissan Cube (0.36)

– Isuzu Vehicross (0.34)

– Honda Element (0.30)

– Antique car (0.28)
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– Racecar (0.28)

– Minivan (0.27)

– Jeep Wrangler (0.23)

– Ford Ranger (0.16)

– Limousine (0.13)

– Hummer (0.10)

Full Names and Typicality Ratings for the 64 Subordinate Categories Used

in Experiment 2. Typicality ratings are computed as proportion chosen in a pair-

wise 2AFC task (0 = never chosen, low typicality; 1 = always chosen, high typicality).

Color highlights indicate typicality tier (green = high typicality; red = low typicality).

• Natural objects / Animals

– Birds

∗ Cockatiel (0.78)

∗ Humming bird (0.75)

∗ Vulture (0.64)

∗ Hawk (0.57)

∗ Owl (0.53)

∗ Hen (0.42)

∗ Ostrich (0.25)

∗ Swan (0.22)

– Cats

∗ Egyptian (0.70)

∗ Angora (0.64)

∗ Manx (0.62)
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∗ Abyssinian (0.57)

∗ Tortoiseshell (0.56)

∗ Siamese (0.54)

∗ Persian (0.41)

∗ Sphinx (0.13)

– Dogs

∗ Malamute (0.70)

∗ Mastiff (0.63)

∗ Pug (0.53)

∗ Schipperke (0.53)

∗ Chihuahua (0.40)

∗ Welsh Corgi (0.32)

∗ Schnauzer (0.31)

∗ Komondor (0.24)

– Fish

∗ Goldfish (0.76)

∗ Clownfish (0.74)

∗ Angelfish (0.66)

∗ Sturgeon (0.62)

∗ Flying fish (0.43)

∗ Pufferfish (0.34)

∗ Needlefish (0.34)

∗ Catfish (0.31)

• Man-Made objects / Vehicles

– Boats

∗ Canoe (0.67)
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∗ Rowboat (0.53)

∗ Galleon (0.49)

∗ Cruise ship (0.48)

∗ Battleship (0.45)

∗ Icebreaker (0.41)

∗ Sailboat (0.27)

∗ Aircraft carrier (0.26)

– Cars

∗ Sedan (0.67)

∗ Sports car (0.61)

∗ Minivan (0.60)

∗ Limousine (0.51)

∗ Mini car (0.37)

∗ Race car (0.36)

∗ Station wagon (0.33)

∗ Antique car (0.25)

– Planes

∗ Airliner (0.88)

∗ Fighter plane (0.58)

∗ Seaplane (0.55)

∗ Glider (0.50)

∗ Delta plane (0.47)

∗ Biplane (0.31)

∗ Stealth plane (0.28)

∗ Gyroplane (0.28)

– Trains

∗ Commuter train (0.71)
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∗ Freight train (0.70)

∗ Subway (0.65)

∗ Tram (0.57)

∗ Monorail (0.44)

∗ Bullet train (0.41)

∗ Incline railway (0.40)

∗ Trolley (0.32)
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Supplementary Fig. C.1. Representative Images from the Initial 48 Subordi-
nate Categories in Experiment 1. We selected twenty-found subordinates from
each of two basic level categories known from prior work to be well differentiable
in their elicited patterns of activity in occipito-temporal cortex (see e.g. [68]). Full
names of the subordinate categories ordered by their typicality are given in the first
list above. Red borders indicate subordinates that were ultimately chosen as stimuli
for the scanning phase of Experiment 1.
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Supplementary Fig. C.2. Category Distance Histograms for Natural / An-
imals Superordinate Category Subset of Experiment 2. Graphs show z-
scored Pearson correlation distance histograms for within-category distances (blue)
and between-category distances (red) for early visual (V1, V2, hV4), object-selective
(LOC), scene-selective (PPA, TOS), face-selective (FFA) regions. The natural basic
categories ”dog” and ”car” are reasonably separable in virtually all brain regions ex-
cept V1, with the highest distinction arising in LOC (top right, grey). The natural
basic categories are reasonably separable in virtually all brain regions (with the ex-
ception of V1), with the highest distinction arising in LOC (top right). This suggests
that a sharp qualitative change in the structure of the feature space arises between
hV4 and LOC, which may be mirrored in other stimulus selective regions of occipito-
temporal cortex.



APPENDIX C. MODEL OF OBJECT PROCESSING 161

Supplementary Fig. C.3. Category Distance Histograms for Man-Made /
Vehicles Superordinate Category Subset of Experiment 2. Graphs show z-
scored Pearson correlation distance histograms for within-category distances (blue)
and between-category distances (red) for early visual (V1, V2, hV4), object-selective
(LOC), scene-selective (PPA, TOS), face-selective (FFA) regions. The man-made
basic categories are reasonably separable in virtually all brain regions, with the highest
distinction arising in LOC (top right). This suggests that a sharp qualitative change
in the structure of the feature space arises between hV4 and LOC, which may be
mirrored in other stimulus selective regions of occipito-temporal cortex.
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Supplementary Fig. C.4. Category Warping for Natural / Animals Super-
ordinate Category Subset of Experiment 2. (Top, Middle) Graphs show how
representations of distances corresponding to subordinate category pairs change as we
move up the ventral visual stream. Representations are relatively stable between early
visual regions (V1, V2, hV4), as well as between early visual cortex and scene- and
face-selective regions (PPA, TOS, FFA). However, we see a striking shift in the qual-
ity of the representation as we move between hV4 and LOC. Here, within-category
distance pairs lie below the diagonal, while between-category distance pairs sit above
the diagonal, which indicates that the feature space of LOC shrinks relative distances
within categories and expands relative distances between categories, compared to the
feature space of V1.
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Supplementary Fig. C.5. Category Warping for Man-Made / Vehicles Super-
ordinate Category Subset of Experiment 2. (Top, Middle) Graphs show how
representations of distances corresponding to subordinate category pairs change as
we move up the ventral visual stream. Representations are relatively stable between
early visual regions (V1, V2, hV4), as well as between early visual cortex and face-
and dorsal scene-selective regions (TOS, FFA). However, we see a striking shift in
the quality of the representation as we move between hV4 and LOC. Here, within-
category distance pairs lie below the diagonal, while between-category distance pairs
sit above the diagonal, which indicates that the feature space of LOC shrinks relative
distances within categories and expands relative distances between categories, com-
pared to the feature space of V1. A weak category warping effect is also observed
between early visual cortex and PPA, which may be due to this region’s predilection
for processing and representing contextual effects [85].
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Supplementary Fig. C.6. Typicality Distance Histograms for Natural / Ani-
mals Superordinate Category Subset of Experiment 2. Graphs show z-scored
Pearson correlation distance histograms for within-highly-typical-subordinates dis-
tances (blue) and within-less-typical-subordinates distances (red) for early visual (V1,
V2, hV4), object-selective (LOC), scene-selective (PPA, TOS), face-selective (FFA)
regions. In early visual regions, face- and scene-selective regions, typicality does not
significantly modulate the representation of real-world objects. By contrast, we ob-
served a trend for typical and less typical subordinates to be more strongly separable
in LOC (top right), which suggests a qualitative change in the structure of the fea-
ture space may arise between hV4 and LOC, which is not mirrored in other stimulus
selective regions of occipito-temporal cortex.
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Supplementary Fig. C.7. Typicality Distance Histograms for Man-Made /
Vehicles Superordinate Category Subset of Experiment 2. Graphs show z-
scored Pearson correlation distance histograms for within-highly-typical-subordinates
distances (blue) and within-less-typical-subordinates distances (red) for early visual
(V1, V2, hV4), object-selective (LOC), scene-selective (PPA, TOS), face-selective
(FFA) regions. In contrast to the natural superordinate category, here we observed
that typicality indeed modulated the representation of object categories beginning in
intermediate visual regions (V2, hV4), strongest in object-selective regions (LOC),
and to a lesser degree in the most anterior scene-selective region (PPA). By contrast,
dorsal scene-selective regions and face-selective cortex were not affected by typicality
(TOS, FFA), perhaps due to the lack of explicit face information in the man-made
stimuli.
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Supplementary Fig. C.8. Typicality Warping for Natural / Animals Superor-
dinate Category Subset of Experiment 2. (Top, Middle) Graphs show how rep-
resentations of distances corresponding to subordinate category pairs of high (purple)
and low (yellow) typicality change as we move up the ventral visual stream. Repre-
sentations are relatively stable between early visual regions (V1, V2, hV4), as well as
between early visual cortex and scene- and face-selective regions (PPA, TOS, FFA).
However, we see a trend for the representation to shift as we move between hV4 and
LOC. Here, high typicality subordinate category pairs exhibit a tendency to lie below
the diagonal, which indicates that the feature space of LOC shrinks relative distances
between typical exemplars within a category compared to the feature space of V1.
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Supplementary Fig. C.9. Typicality Warping for Man-Made / Vehicles Su-
perordinate Category Subset of Experiment 2. (Top, Middle) Graphs show
how representations of distances corresponding to subordinate category pairs of high
(purple) and low (yellow) typicality change as we move up the ventral visual stream.
Representations are relatively stable between early visual regions (V1, V2, hV4), as
well as between early visual cortex and scene- and face-selective regions (PPA, TOS,
FFA). However, we see a trend for the representation to shift as we move between
hV4 and LOC. Here, high typicality subordinate category pairs exhibit a tendency to
lie below the diagonal, which indicates that the feature space of LOC shrinks relative
distances between typical exemplars within a category compared to the feature space
of V1.
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Supplementary Fig. C.10. Category Distance Histograms for ”Dog” and
”Car” Subset of Experiment 2. Graphs show z-scored Pearson correlation dis-
tance histograms for within-category distances (blue) and between-category distances
(red) for early visual (V1, V2, hV4), object-selective (LOC), scene-selective (PPA,
TOS), face-selective (FFA) regions. The natural basic categories ”dog” and ”car” are
reasonably separable in virtually all brain regions, with the highest distinction arising
in LOC (top right, grey). The natural basic categories are reasonably separable in
virtually all brain regions (with the exception of V1), with the highest distinction
arising in LOC (top right). This suggests that a sharp qualitative change in the
structure of the feature space arises between hV4 and LOC, which may be mirrored
in other stimulus selective regions of occipito-temporal cortex.
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Supplementary Fig. C.11. Category Warping for ”Dog” and ”Car” Subset
of Experiment 2. (Top, Middle) Graphs show how representations of distances
corresponding to subordinate category pairs change as we move up the ventral visual
stream. Representations are relatively stable between early visual regions (V1, V2,
hV4), as well as between early visual cortex and dorsal scene- and face-selective re-
gions (TOS, FFA). However, we see a striking shift in the quality of the representation
as we move between hV4 and LOC. Here, within-category distance pairs lie below
the diagonal, while between-category distance pairs sit above the diagonal, which
indicates that the feature space of LOC shrinks relative distances within categories
and expands relative distances between categories, compared to the feature space
of V1. This effect is also observed in the ventral scene-selective region PPA, which
may be due to this region’s predilection for processing and representing contextual
effects [85].
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Supplementary Fig. C.12. Typicality Distance Histograms for ”Dog” and
”Car” Subset of Experiment 2. Graphs show z-scored Pearson correlation dis-
tance histograms for within-highly-typical-subordinates distances (blue) and within-
less-typical-subordinates distances (red) for early visual (V1, V2, hV4), object-
selective (LOC), scene-selective (PPA, TOS), face-selective (FFA) regions. In early
visual regions and scene-selective regions, typicality does not significantly modulate
the representation of real-world objects. By contrast, we observed a trend for typical
and less typical subordinates to be more strongly separable in LOC (top right), which
suggests a qualitative change in the structure of the feature space may arise between
hV4 and LOC, and to a lesser degree in face-selective cortex (FFA).
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Supplementary Fig. C.13. Typicality Warping for ”Dog” and ”Car” Subset of
Experiment 2. (Top, Middle) Graphs show how representations of distances corre-
sponding to subordinate category pairs of high (purple) and low (yellow) typicality
change as we move up the ventral visual stream. We observe that typicality modulates
the representation of object categories across the ventral visual stream, with discrete
step changes between V1 - V2 and hV4 - LOC. Here, high typicality subordinate
category pairs exhibit a tendency to lie below the diagonal, which indicates that the
feature space of LOC shrinks relative distances between typical exemplars within a
category compared to the feature space of V1. This trend is also mirrored between
early visual cortex and face-selective regions (FFA), perhaps due to the presence of
face stimuli in our ”dog” basic category.
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