DISCOVERING VOXEL-LEVEL FUNCTIONAL CONNECTIVITY BETWEEN CORTICAL REGIONS

Computer Science Department, Stanford University

Beckman Institute and Psychology Department, University of Illinois at Urbana-Champaign

Connectivity

02

Zhang et al. 2008 Kim et al. 2010 Roy et al. 2009 Margulies et al. 2007 Margulies et al. 2009 Heinzle & Haynes 2011 Connectivity

COAL Fine Crained Connectivity

GOAL: Fine-Grained Connectivity

Voxel-level Maps Symmetrical Few Data Points Needed

Subregion Connectivity

Precuneus Amygdala Thalamus Lateral occipital complex LOC Zhang et al. 2008 Kim et al. 2010 Roy et al. 2009 Margulies et al. 2007 Margulies et al. 2009 Heinzle & Haynes 2011

Previous Work

03

CCA

no voxel-level connectivity

cannot identify novel subregions

treats areas asymmetrically

no continuous maps

post-hoc clustering often needed # voxels <
timepoints</pre>

cannot identify multiple correlated correspondences

Kim et al. 2010 Margulies et al. 2007 Margulies et al. 2009 Haak et al. 2011 Cohen et al. 2007

Rogers et al. 2007

Deleus & Van Hulle 2011

Previous Work

Our Method: Jointly Learn Continuous Maps over 2 Areas Multiple Solutions, Even If Correlated

Traditional	CCRF / FF	CCA
no voxel-level connectivity	treats areas asymmetrically	# voxels < # timepoints
cannot identify novel subregions	no continuous maps	cannot identify multiple correlated correspondences
	post-hoc clustering often needed	

Kim et al. 2010 Margulies et al. 2007 Margulies et al. 2009 Haak et al. 2011 Cohen et al. 2007

Rogers et al. 2007

Deleus & Van Hulle 2011

 $||a^{1^T}A^1 - a^{2^T}A^2||_2^2$ Traditional minimize a^{1}, a^{2}, w $a^{1} = \frac{w}{N_{A^{1}}} \cdot \mathbb{1}, \ a^{2} = \frac{1}{N_{A^{2}}} \cdot \mathbb{1}$ constant map subject to $||a^{1^T}A^1 - a^{2^T}A^2||_2^2$ CCRF / FF minimize a^{1},a^{2},w $a^{1} = \frac{w}{N_{A1}} \cdot \mathbf{1}, \ a^{2} = \frac{1}{N_{A2}} \cdot \mathbf{1}$ one non-constant subject to connectivity maps $||a^{1^{T}}A^{1} - a^{2^{T}}A^{2}||_{2}^{2}$ **Our Method** minimize a^{1},a^{2},w $a^{1} = \frac{w}{N u^{1}} \cdot 1, \ a^{2} = \frac{1}{N u^{2}} \cdot 1$ two non-constant subject to connectivity maps

Datasets

Meridian and Eccentricity Mapping 256 timepoints

Isolated Objects & Objects in Context 306 timepoints

Expected Connectivity

Expected Connectivity

Solutions Found

Solution Maps Consistent with Retinotopic Organization

Regularization Improves RF Localization

256 Timepoints

Left LOC – Right LOC Connectivity

07

Expected Connectivity

Left LOC – Right LOC Connectivity

Summary

Jointly Learns Continuous Connectivity Maps

08

Can Recover Retinotopic Organization and Anterior-Posterior Differences in LOC

No Specialized Datasets, Fewer Timepoints than Voxels!

Can Recover Correlated Distinct Solutions

Implementation Available at: vision.stanford.edu/resources_links.html

C. BALDASSANO

D.M. BECK

L. FEI-FEI

MCI@STANFORD.EDU CHRISB33@STANFORD.EDU

Acknowledgements: NSF, SGF, NIH