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Investigators debate the extent to which neural populations use pair-
wise and higher-order statistical dependencies among neural responses
to represent information about a visual stimulus. To study this issue, three
statistical decoders were used to extract the information in the responses
of model neurons about the binocular disparities present in simulated
pairs of left-eye and right-eye images: (1) the full joint probability de-
coder considered all possible statistical relations among neural responses
as potentially important; (2) the dependence tree decoder also consid-
ered all possible relations as potentially important, but it approximated
high-order statistical correlations using a computationally tractable pro-
cedure; and (3) the independent response decoder, which assumed that
neural responses are statistically independent, meaning that all correla-
tions should be zero and thus can be ignored. Simulation results indicate
that high-order correlations among model neuron responses contain sig-
nificant information about binocular disparities and that the amount of
this high-order information increases rapidly as a function of neural pop-
ulation size. Furthermore, the results highlight the potential importance
of the dependence tree decoder to neuroscientists as a powerful but still
practical way of approximating high-order correlations among neural re-
sponses.

1 Introduction

The left and right eyes of human observers are offset from each other,
and, thus, the visual images received by these eyes differ. For example,
an object in the visual environment may project to one location in the
left eye image but project to a different location in the right eye image.
Differences in left eye and right eye images that arise in this manner are
known as binocular disparities. Disparities are important because they are
often among the most reliable cues to the relative depth of a surface or
object in space. Observers with normal stereo vision are typically able to
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make fine depth discriminations because they can resolve differences in
horizontal disparities below 1 arc minute (Andrews, Glennerster, & Parker,
2001). How this is accomplished is a matter of current research.

Neurophysiological and modeling studies have identified binocular sim-
ple and complex cells in primary visual cortex as a likely source of dispar-
ity information, and researchers have developed a computational model
known as a binocular energy filter to characterize the responses of these
cells to visual scenes viewed binocularly (DeAngelis, Ohzawa, & Freeman,
1991; Freeman & Ohzawa, 1990; Ohzawa, DeAngelis, & Freeman, 1990).
Based on analyses of binocular energy filters, Qian (1994), Fleet, Wagner,
and Heeger (1996), and others have argued, however, that the response of an
individual simple or complex cell is ambiguous. In addition to uncertainty
introduced by neural noise, ambiguities arise because a cell’s preferred dis-
parity depends on the distribution of stimulus frequencies, a cell’s tuning
response has multiple false peaks (i.e., the cell gives large responses to dis-
parities that differ from its preferred disparity), and image features in a
cell’s left eye and right eye receptive fields may influence a cell’s response
even when the features do not arise from the same event in the visual world.
These points suggest that in order to overcome the ambiguity of an indi-
vidual neuron’s responses, the neural process responsible for estimating
disparity must pool the responses of a large number of neurons.

Researchers studying neural codes often use statistical techniques to in-
terpret the activities of neural populations (Abbott & Dayan, 1999; Oram,
Földiàk, Perrett, & Sengpiel, 1998; Pouget, Dayan, & Zemel, 2003). A mat-
ter of current debate among these investigators is the relative importance
of considering dependencies, or correlations, among cells in a population
when decoding the information that the cells convey about a stimulus.
Correlations among neural responses have been investigated as a poten-
tially important component of neural codes for over 30 years (Perkel &
Bullock, 1969). Unfortunately, determining the importance of correlations
is not straightforward. For methodological reasons, it is typically feasi-
ble only to experimentally measure pairwise or second-order correlations
among neural responses, meaning that high-order correlations are not mea-
sured. Even if correlations are accurately measured, there is no guarantee
that these correlations contain useful information: correlations can increase,
decrease, or leave unchanged the total information in a neural popula-
tion (Abbott & Dayan, 1999; Nirenberg & Latham, 2003; Seriès, Latham, &
Pouget, 2004). To evaluate the importance of correlations, researchers have
often compared the outputs of statistically efficient neural decoders, based
on maximum likelihood or Bayesian statistical theory, that make different
assumptions regarding correlations. Neural decoders are not models of neu-
ral mechanisms, but rather statistical procedures that help determine how
much information neural responses contain about a stimulus by expressing
this information as a probability distribution (Abbott & Dayan, 1999; Oram
et al., 1998; Pouget et al., 2003). Statistically efficient neural decoders are
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useful because they provide an upper bound on the amount of information
about a stimulus contained in the activity of a neural ensemble. Researchers
can evaluate the importance of correlations by comparing the value of this
bound when it is computed by a neural decoder that makes use of correla-
tions with the value of this bound when it is computed by a decoder that
does not. Alternatively, researchers can compare the performances of neural
decoders that use or do not use correlations on a stimulus-relevant task.

Several recent studies have suggested that correlations among neurons
play only a minor role in encoding stimulus information (e.g., Averbeck
& Lee, 2003; Golledge et al., 2003; Nirenberg, Carcieri, Jacobs, & Latham,
2001; Panzeri, Schultz, Treves, & Rolls, 1999; Rolls, Franco, Aggelopoulos, &
Reece, 2003), and that the independent responses of neurons carry more than
90% of the total information available in the population response (Averbeck
& Lee, 2004). An important limitation of these studies is that they consid-
ered only pairwise or second-order correlations among neural responses
and thus ignored high-order correlations either by assuming multivariate
gaussian noise distributions (e.g., Averbeck & Lee, 2003) or by using a short-
time scale approximation to the joint distribution of responses and stimuli
(e.g., Panzeri et al., 1999; Rolls et al., 2003). These studies therefore did not
fairly evaluate the information contained in the response of a neural pop-
ulation when correlations are considered versus when they are ignored. In
a population of n neurons, there are on the order of nP pth-order statistical
interactions among neural response variables. In other words, computing
high-order correlations is typically not computationally feasible with cur-
rent computers. This does not mean, of course, that the nervous system
does not make use of high-order correlations or that researchers who fail to
consider high-order correlations are justified in concluding that nearly all
the information in a neural code is carried by the independent responses
of the neurons comprising the population. What is needed is a computa-
tionally tractable method for estimating high-order statistics, even if this is
done in only an approximate way.

This letter addresses these issues through the use of computer simula-
tions of model neurons, known as binocular energy filters, whose binocular
sensitivities resemble those of simple and complex cells in primary visual
cortex. The responses of the model neurons to binocular views of visual
scenes of frontoparallel surfaces were computed. These responses were
then decoded in order to measure how much information they carry about
the binocular disparities in the left eye and right eye images. Three neural
decoders were simulated. The first decoder, referred to as the full joint prob-
ability decoder (FJPD), did not make any assumptions regarding statistical
correlations. Because it considered all possible combinations of neural re-
sponses, it is the gold standard to which all other decoders were compared.
The second decoder, known as the dependence tree decoder (DTD), is sim-
ilar to the FJPD in the sense that it regarded all correlations as potentially
important. However, it used a computationally tractable method to estimate
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high-order statistics, albeit in an approximate way (Chow & Liu, 1968; Meilă
& Jordan, 2000). The final decoder, referred to as the independent response
decoder (IRD), assumed that neural responses are statistically independent,
meaning that all correlations should be zero and thus can be ignored. Via
computer simulation, we measured the percentage of information that is
lost in a population of disparity tuned cells when high-order correlations
are approximated and when all correlations are ignored. We also examined
the abilities of the DTD and IRD (and a decoder limited to second-order
correlations) to correctly estimate the disparity of a frontoparallel surface.

The results reveal several interesting findings. First, relative to the
amount of information about disparity calculated by the FJPD, the amounts
of information calculated by the IRD and DTD were proportionally smaller
when more model neurons were used. In other words, the informational
cost of ignoring correlations or of roughly approximating high-order corre-
lations increased as a function of neural population size. This implies that
there is a large amount of information about disparity conveyed by second-
order and high-order correlations among model neuron responses. Second,
the informational cost of ignoring all correlations (as in the IRD) rose as
the number of neural response levels increased. For example, relative to the
amount of information calculated by the FJPD, the amount of information
calculated by the IRD was smaller when neuron responses were discretized
to four levels (2 bits of information about each neural response) than when
they are discretized to eight levels (3 bits of information about a neural
response). This trend was less evident for the DTD. Third, when used to
estimate the disparity in a pair of left eye and right eye images, the DTD
consistently outperformed the IRD, and the magnitude of its performance
advantage increased rapidly as the neural population size increased and
as the number of response levels increased. Because the DTD also outper-
formed a neural decoder based on a multivariate gaussian distribution,
our data again indicate that high-order correlations among model neuron
responses contain significant information about binocular disparities.

These results have important implications for researchers studying neu-
ral codes. They suggest that earlier studies indicating that independent
neural responses carry the vast majority of information conveyed by a
neural population may be flawed because these studies limited their inves-
tigations to second-order correlations and thus did not examine high-order
correlations. Furthermore, these results highlight the potential importance
of the DTD to neuroscientists. This decoder uses a technique developed in
the engineering literature (Chow & Liu, 1968; Meilă & Jordan, 2000), but
seemingly unknown in the neuroscientific literature, to approximate high-
order statistics. Significantly, it does so in a way that is computationally
tractable—the calculation of the approximation requires only knowledge
about pairs of neurons. This fact, in the context of the results summarized
above, suggests that the DTD can replace the IRD as a better, but still prac-
tical, approximation to the information contained in a neural population.



664 M. Michel and R. Jacobs

2 Simulated Images

The simulated images were created in a manner similar to the method used
by Lippert & Wagner (2002), with the difference that the texture elements
used by those authors were random black and white dots, whereas the
elements that we used were white noise (luminances were real-valued as in
Tsai & Victor, 2003). Each image depicted a one-dimensional frontoparallel
surface on which were painted dots whose luminance values were chosen
from a uniform distribution to take values between 0 (dark) and 1 (light). A
virtual observer who maintained fixation at a constant depth and horizontal
position in the scene viewed the surface as its depth was varied between
15 possible depth values relative to the fixation point. One of these depth
values was the depth of the fixation plane; of the remaining depths, 7 were
located farther than the fixation point from the observer, and 7 were located
nearer the observer.

Each image of a scene extended over 5 degrees of visual angle and was
divided into 186 pixels per degree. Because each pixel’s luminance value
was chosen randomly from a uniform distribution, an image contained
approximately equal power at all frequencies between 0 cycles per degree
and 93 cycles per degree (the Nyquist frequency). For each stereo pair, the
left image was generated first; then the right image was created by shifting
the left image to the right by a particular number of pixels (this was done
with periodic borders; e.g., pixel values that shifted past the right border
were assigned to pixels near the left border). This shift varied between –7
and 7 pixels so that the shift was negative when the surface was nearer
the observer, zero when the surface was located at the fixation plane, and
positive when the surface was located beyond fixation.

3 Model Neurons

Model neurons were instances of binocular energy filters, which are com-
putational models developed by Ohzawa et al. (1990). We used binocular
energy filters because they provide a good approximation to the binocu-
lar sensitivities of simple and complex cells in primary visual cortex. The
fidelity of the energy model with respect to the responses of binocular sim-
ple and complex cells has been demonstrated in both cat area 17 (Anzai,
Ohzawa, & Freeman, 1997; Ohzawa et al., 1990; Ohzawa, DeAngelis, & Free-
man, 1997) and in macaque V1 (Cumming & Parker, 1997; Perez, Castro,
Justo, Bermudez, & Gonzalez, 2005; Prince, Pointon, Cumming, & Parker,
2002). Although modifications and extensions to the model have been pro-
posed by different researchers (e.g., Fleet et al., 1996; Qian & Zhu, 1997;
Read & Cumming, 2003; Tsai & Victor, 2003), the basic form of the energy
model remains a widely accepted representation of simple and complex
cell responses to binocular stimuli. A simple cell is modeled as comprising
left eye and right eye receptive subfields. Each subfield is modeled as a
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Gabor function, which is a sinusoid multiplied by a gaussian envelope. We
used the phase-shift version of the binocular energy model, meaning that
the retinal positions of the gaussian envelopes for the left eye and right eye
Gabor functions are identical, though the sinusoidal components differ by
a phase shift. Formally, the left (gl ) and right (gr ) simple cell subfields are
expressed as the following Gabor functions:

gl = 1√
2πσ 2

e (−x2/2σ 2) sin(2πωx + φ) (3.1)

gr = 1√
2πσ 2

e (−x2/2σ 2) sin(2πωx + φ + δφ), (3.2)

where x is the distance to the center of the gaussian, the variance σ 2 spec-
ifies the width of the gaussian envelope, ω represents the frequency of the
sinusoid, φ represents the base phase of the sinusoid, and δφ represents
the phase shift between the sinusoids in the right and left subfields. The
response of a simple cell is formed in two stages: first, the convolution of
the left eye image with the left subunit Gabor is added to the convolution
of the right eye image with the right subunit Gabor; next, this sum is rec-
tified. The response of a complex cell is the sum of the squared outputs of
two simple cells whose parameter values are identical except that one has
a base phase of 0 and the other has a base phase of π/2.1

In our simulations, the gaussian envelopes for all neurons were centered
at the same point in the visual scene. The parameter values that we used
in our simulations were randomly sampled from the same distributions
used by Lippert and Wagner (2002); these investigators picked distribu-
tions based on neurophysiological data regarding spatial frequency selec-
tivities of neurons in macaque visual cortex. Preferred spatial frequencies
were drawn from a log-normal distribution whose underlying normal dis-
tribution had a mean of 1.6 cycles per degree and a standard deviation of
0.7 cycle per degree. The range of these preferred frequencies was clipped
at a ceiling value of 20 cycles per degree and a floor value of 0.4 cycle per
degree. The simple cells’ receptive field sizes were sampled from a normal
distribution with a mean of 0.5 period and a standard deviation of 0.25 pe-
riod, with a floor value of 0.1 period. A cell’s preferred disparity, given by
2πδφ/ω, was sampled from a normal distribution with a mean of 0 degrees
of visual angle and a standard deviation of 0.5 degree.

Figure 1 shows the normalized responses of a typical model complex
cell to three different scenes, each using a different white noise pattern to
cover the frontoparallel surface. Each of the lines in the figure represents the

1 Note that binocular energy filters are deterministic. The probability distributions we
use have nonzero variances because the white noise visual stimuli are stochastic.
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Figure 1: Characteristic responses of an individual model neuron as a func-
tion of the disparity (in degrees of visual angle) of the presented surface. The
three curves show the normalized responses of a single model binocular energy
neuron to each of three sample surfaces presented along a range of disparities
(from −0.2 to 0.2 degree). The vertical dotted line indicates the cell’s preferred
disparity (−0.0417 degree). This figure illustrates the fact that an individual
model neuron’s response depends on many factors and thus is an ambiguous
indicator of stimulus disparity.

responses of the model neuron as the disparity of a surface was varied. The
neuron responded differently to different surfaces, illustrating that a single
neuron’s response is an ambiguous indicator of stimulus disparity. This
finding motivates the importance of decoding the activity of a population
of neurons rather than that of a single neuron (Fleet et al., 1996; Qian, 1994).

4 Neural Decoders

Neural decoders are statistical devices that estimate the distribution of
a stimulus parameter based on neural responses. Three different de-
coders evaluated p(d | �r ), the distribution of disparity, denoted d , given the
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responses of the model complex cells, denoted �r . The decoders differ in their
assumptions about the importance of correlations among neural responses.

4.1 Full Joint Probability Decoder. The FJPD is the simplest of the de-
coders used, but also has the highest storage cost since it requires represent-
ing the full joint distribution of disparity and complex cell responsesp(d, �r ).
This distribution has sbn states, where s is the number of possible binocular
disparities, b is the number of bins or response levels (i.e., each complex
cell response was discretized to one of b values), and n is the number of
complex cells in the population. The conditional distribution of disparity
was calculated as

pfull(d | �r ) = p(d, �r )
p(�r )

, (4.1)

where the joint distribution p(d, �r ) and marginal distribution p(�r ) were
computed directly from the complex cell responses to the visual scenes
(histograms giving the frequencies of each of the possible values of �r and
(d, �r ) were generated and then normalized; see below). The result of equa-
tion 4.1 represents the output of the FJPD.

4.2 Dependence Tree Decoder. The DTD makes use of a data structure
and learning algorithm originally proposed in the engineering literature
(Chow & Liu, 1968; see also Meilă & Jordan, 2000). It can be viewed as an
instance of a graphical model or Bayesian network, a type of model that
is currently popular in the artificial intelligence community (Neapolitan,
2004). The basic idea underlying Bayesian networks is that a joint distri-
bution over a set of random variables can be represented by a graph in
which nodes correspond to variables and directed edges between nodes
correspond to statistical dependencies (e.g., an edge from node x1 to node
x2 means that the distribution of variable x2 depends on the value of vari-
able x1; as a matter of terminology, node x1 is referred to as the parent of x2).
Dependence trees are Bayesian networks that are restricted in the following
ways: (1) the graphical model must be a tree (i.e., ignoring the directions
of edges, there are no loops in the graph, meaning that there is exactly one
path between every pair of nodes); (2) there is one node that is the root of
the tree—this node has no parents; and (3) all other nodes have exactly one
parent. A dependence tree is a graphical representation of the following
factorization of a joint distribution:

p(x1, . . . , xn) =
n∏

i=1

p(xi | pa (i)), (4.2)
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Figure 2: An example of a dependence tree. Each of the nodes r1, . . . , r7

represents a random variable, such as the response of a model neuron.
The edges (depicted as arrows) represent the conditional dependencies be-
tween variables and are labeled with the conditional distribution of a
child variable given its parent p(child|parent). According to this tree, the
joint distribution of these variables is factorized as follows: p(r1, . . . , r7) =
p(r1)p(r3 | r1)p(r6 | r1)p(r7 | r6)p(r4 | r6)p(r5 | r6)p(r2 | r4).

where p(x1, . . . , xn) is the joint distribution of variables x1, . . . , xn and
p(xi | pa (i)) is the conditional distribution of variable xi given the value
of its parent (if xi is the root of the tree, then p(xi | pa (i)) = p(xi )). Figure 2
depicts an example of a dependence tree. Of course, not all joint distri-
butions can be factorized in this way. In this case, the right-hand side of
equation 4.2 gives an approximation to the joint distribution. How can good
approximations be discovered?
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Chow and Liu (1968) developed an algorithm for finding approxima-
tions and proved that this approximation maximizes the likelihood of the
data over all tree distributions. In short, the algorithm has three steps:
(1) compute all pairwise marginal distributions p(xi , xj ) where xi and xj

are a pair of random variables; (2) compute all pairwise mutual informa-
tions Iij; and (3) compute the maximum weight spanning tree using Iij as the
weight for the edge between nodes xi and xj . This spanning tree is the de-
pendence tree.2 Importantly for our purposes, the algorithm has quadratic
time complexity in the number of random variables, linear space complex-
ity in the number of random variables, and quadratic space complexity in
the number of response levels. That is, discovering the dependence tree that
approximates the joint distribution among a set of variables will often be
computationally tractable.

The dependence tree decoder computes a dependence tree to approx-
imate the joint distribution of complex cell responses given a binocular
disparity value.3 This approximation is denoted ptree(�r | d). Using Bayes’
rule, the distribution of disparity given cell responses is given by

ptree(d | �r ) = ptree(�r | d)p(d)
p(�r )

, (4.3)

where p(d), the distribution of disparities, is a uniform distribution (i.e., all
disparities are equally likely), and p(�r ), the distribution of cell responses, is
computed by marginalizing ptree(�r | d) over d . Equation 4.3 is the output of
the DTD.

4.3 Independent Response Decoder. Using Bayes’ rule, we can rewrite
the probability of a disparity d given a response �ras

p(d | �r ) = p(�r | d)p(d)
p(�r )

, (4.4)

where p(d) is the prior distribution of binocular disparities and p(⇀r ) is
a distribution over complex cell responses. Because all disparities were
equally likely, we set p(d) to be a uniform distribution. Consequently,

p(d | ⇀r ) = kp(�r | d), (4.5)

2 The spanning tree is an undirected graph. Our simulations used an equivalent di-
rected graph obtained by choosing an arbitrary node to serve as the root of the tree. The
directionality of all edges follows from this choice (all edges point away from the root).

3 Our data structure can be regarded as a mixture of trees in which there is one mixture
component (i.e., one dependence tree) for each possible disparity value (Meilă & Jordan,
2000).
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where k is a normalization factor equal to p(d)/p(�r ). The distinguishing
feature of the independent response decoder (IRD) is that it assumes that
the complex cell responses are statistically independent given the binocular
disparity. In other words, the conditional joint distribution of cell responses
is equal to the product of the distributions for the individual cells, that
is, p(�r | d) = ∏

i p(r i | d), where r i is the response of the ith complex cell.
Equation 4.5 can therefore be rewritten as

pind(d | �r ) = k
∏

i

p(r i | d). (4.6)

The distribution of disparity as computed by equation 4.6 is the output
of the IRD. The conditional distributions for individual cells p(r i | d) were
approximated in our simulations by normalized histograms based on cell
responses to visual scenes.

4.4 Response Histograms. Normalized relative frequency histograms
were used in our simulations to approximate the distributions of cell re-
sponses. In these histograms, each cell’s response was discretized to one of
b bins or response levels. This discretization was based on a cell’s maximum
observed response value. Our procedure was similar to that used by Lippert
and Wagner (2002), with one important difference. Because the probabil-
ity of a response was a rapidly decreasing function of response magnitude,
Lippert and Wagner created bins representing responses from zero to half of
the maximum observed response value and grouped all responses greater
than half-maximum into the final bin. This was necessary to avoid bins
corresponding to response values that never (or rarely) occurred. To deal
with this same problem, we created histograms whose bin values were a
logarithmic function of cell response.4

5 Simulation Results

Two sets of simulations were conducted. The goal of the first set was to
compute the informational costs of using the approximate distributions
calculated by the IRD, pind (d | �r ), or the DTD, ptree(d | �r ), instead of the
exact distribution calculated by the FJPD, pfull(d | �r ). To quantify these costs,
we used an information-theoretic measure, referred to as �I/I, introduced

4 Specifically, histograms were created as follows. A cell’s responses were first linearly
normalized by dividing each response by that cell’s maximum response across all stimuli.
Next, each normalized response was discretized into one of b bins where boundaries
between bins were logarithmically spaced. To get probabilities of responses given a dis-
parity, bin counts were appropriately normalized and then smoothed using a gaussian
kernel whose standard deviation equaled one-quarter of a bin width. This was done to
avoid probabilities equal to zero.
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by Nirenberg et al. (2001). We chose this measure because, unlike other
measures of information difference such as �Ishuffled (Nirenberg & Latham,
2003; Panzeri et al., 2002) and �Isynergy (Brenner, Strong, Koberle, Bialek, &
de Ruyter van Steveninck, 2000), this measure is sensitive only to depen-
dencies that are relevant for decoding (Nirenberg & Latham, 2003).5 In brief,
�I/I can be characterized as follows. The numerator of this measure is the
Kullback-Leibler distance between the exact distribution and an approxi-
mating distribution. This distance is normalized by the mutual information
between a stimulus property (e.g., the disparity d) and the neural responses
�r based on the exact distribution. A small value of �I/I means that the de-
coding produced by an approximate distribution contains similar amounts
of information about the stimulus property as the decoding produced by
an exact distribution, whereas a large value means that the approximate
decoding contains much less information than the exact decoding.

Simulations were conducted with a variety of neural population sizes
(denoted n) and bins or response levels (denoted b). Neural populations
sizes were kept small because of the computational costs of computing the
exact distribution pfull(d | �r ). Note that the possible values of �r equals bn—
for example, if n = 8 and b = 8, then �r can take 16,777,216 possible values.
Fortunately, in practice, �r took a smaller number of values by a factor of
about 100, allowing us to compute pfull(d | �r ) using fewer presentations
of visual scenes than would otherwise be the case. We used the responses
of model neurons to a collection of 3 × 106 visual scenes in which the fron-
toparallel surface was located at all possible depths (15 possible depths ×
200,000 scenes per depth) to compute each of the probability distributions
pfull(d | �r ), ptree(d | �r ), and pind(d | �r ). This process was repeated six times for
each combination of neural population size n and number of bins b. The rep-
etitions differed in the parameter values (e.g., spatial frequencies, receptive
field sizes) used by the model neurons.

The results are illustrated in Figure 3. The horizontal axis represents
the simulation condition (combination of n and b), and the vertical axis
represents the measure �I/I. Dark bars give the value of this measure for
the IRD, and light bars give the value for the DTD. The error bars indicate
the standard errors of the means based on six repetitions of each condition.

There are at least two interesting trends in the data. First, for both the
IRD and DTD approximations, the information cost grows with the size
of the neural population. In other words, the approximate distributions
provided by these decoders become poorer relative to the exact distri-
bution as the neural population grows in size. A two-way (decoder by
population size) ANOVA across the b = 3 conditions confirmed that this
effect is significant (F (2,35) = 22.15; p < 0.001), with no significant decoder

5 The best way to measure the distance between two distributions for the purposes
of neural decoding is a topic of ongoing scientific discussion (e.g., Nirenberg & Latham,
2003; Schneidman, Bialek, & Berry, 2003).



672 M. Michel and R. Jacobs

0.0

0.1

0.2

0.3

(n=4,b=3) (n=4,b=8) (n=8,b=3) (n=8,b=8) (n=16,b=3)

conditions

∆
I/

I

DTD

IRD

0.0

0.1

0.2

0.3

(n=4,b=3) (n=4,b=8) (n=8,b=3) (n=8,b=8) (n=16,b=3)

conditions

0.0

0.1

0.2

0.3

(n=4,b=3) (n=4,b=8) (n=8,b=3) (n=8,b=8) (n=16,b=3)

conditions

DTD

IRD

DTD

IRD

Figure 3: The informational cost �I/I of using the dependence tree decoder
(DTD; light bars) or the independent response decoder (IRD; dark bars) as a
function of population size (n) and the number of discretized response levels
(b). Error bars represent the standard errors of the means.

by population size interaction. This trend is not surprising given that the
number of possible high-order correlations grows rapidly with the number
of neurons in a population. This result has important implications. Many
studies that have attempted to measure the information lost by assum-
ing independence among neural responses have approximated the exact
joint distribution with a distribution that takes into account only second-
order dependencies (e.g., Abbott & Dayan, 1999; Averbeck & Lee, 2003;
Golledge et al., 2003; Nirenberg et al., 2001; Panzeri et al., 1999; Rolls et al.,
2003; Seriès et al., 2004). Our results suggest that the difference in rele-
vant information between an approximation based on the assumption that
responses are independent and an approximation based on second-order
correlations may greatly underestimate the information difference that in-
vestigators actually care about: the difference between an approximation
based on statistical independence and the exact distribution. If so, this may
account for why previous investigators concluded that most of the use-
ful information is in the independent responses of individual neurons. A
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second trend in our data is an increase in information cost as the number of
discrete response levels increases. This trend is unsurprising as we would
expect the differences between exact and inexact distributions to increase
as the resolution of neuron responses increases. A three-way ANOVA (de-
coder by population size by response levels) confirmed that this trend is
significant (F (1,47) = 9.49; p < 0.01), along with a main effect for decoder
type (F (1,47) = 4.35; p < 0.05) and a decoder by response levels interac-
tion (F (1,47) = 5.05; p < 0.05), which indicate that the effect is significantly
greater and more pronounced, respectively, for the IRD than the DTD. In
summary, the results of the first set of simulations suggest that the cost of
ignoring or approximating statistical dependencies becomes greater with
larger populations and also may tend to increase with more neural response
levels.

A limitation of the first set of simulations is that the excessive computa-
tional cost of calculating the exact distribution pfull(d | �r ) prevented us from
examining large population sizes. Therefore, a second set of simulations
was conducted in which we evaluated the IRD and DTD with large popula-
tions using a performance measure that compared the disparity predicted
by a decoder with the true disparity present in a pair of left eye and right
eye images. The disparity predicted by a decoder was the disparity with the
highest conditional probability (i.e., the disparity that maximized p(d | �r ),
known as the maximum a posteriori estimate).

The distributions pind(d | �r ) and ptree(d | �r ) generated by the IRD and
DTD, respectively, were computed on the basis of 150,000 visual scenes
in which the frontoparallel surface was located at all possible depths (15
possible depths × 10,000 scenes per depth). However, the performances of
the decoders were measured using a different set of scenes. This set con-
sisted of 1400 scenes in which the surface was located at the central seven
depths (possible disparities ranged from −3 to 3 pixels × 200 scenes per
disparity).

The simulation results are illustrated in Figure 4. The horizontal axis
indicates the simulation condition (neural population size n and number
of response levels b), and the vertical axis indicates the root mean squared
(RMS) error of the disparity estimate. Dark bars give the RMS error value for
the IRD, and light bars give the value for the DTD. The error bars indicate
the standard errors of the means based on six repetitions of each condition.
A three-way ANOVA showed significant main effects for population size
(F (2,107) = 9.83; p < 0.0001), for decoder (F (1,107) = 343.55; p < 0.0001),
and for the number of discretized response levels (F (2,107) = 12.71; p <

0.0001), along with significant effects (p < 0.0001) for all two-way interac-
tions. Three primary trends can be gleaned from these combined effects.
First, performance for the DTD improved as the population size increased.
This was also found for the IRD in the b = 5 condition. This trend is unsur-
prising, as we would expect the amount of information to increase with the
size of a neural population. Second, the performance of the DTD became
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Figure 4: Root mean squared (RMS) error (in pixels) for the DTD (light bars) and
IRD (dark bars) as a function of population size (n) and number of discretized
response levels (b). RMS errors were calculated by comparing the maximum a
posteriori estimates of disparity given by the decoders with the true disparities
over 1400 test trials (or novel visual scenes). Error bars indicate the standard
errors of the means.

significantly better than that of the IRD with increases in population size,
suggesting that the proportion of information about disparity contained in
high-order correlations increases with population size compared with the
proportion stored in the independent responses of model neurons. Third,
the performance of the IRD decreased as the number of discretized response
levels increased. In contrast, the performance of the DTD showed the oppo-
site trend—for example, its performance improved slightly from the b = 5
to b = 10 conditions. This trend may seem surprising given that the number
of parameters estimated by the DTD grows quadratically with b while the
number of parameters estimated by the IRD grows only linearly. However,
the DTD is capable of representing much richer distributions than the IRD.
Increasing the number of discretized response levels, like increasing the
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number of neurons in a population, increases the possible complexity of
correlations. To the extent that information about a stimulus is contained
in the possibly high-order response correlations of a neural population,
we should expect that any decoder that takes into account these correla-
tions will perform better than the IRD, which, by definition, discards all
information in these correlations.

Similar to the results of the first set of simulations, the results of the
second set of simulations suggest that much of the information about
disparity is carried by statistical dependencies among model neuron re-
sponses. These results do not, however, indicate whether the information
carried by response dependencies is limited to second-order dependencies
or whether higher-order dependencies also need to be considered. To exam-
ine this issue, we evaluated the performance of a decoder that was limited to
second-order statistics; it approximated the distribution of neural responses
given a disparity, p(�r | d), with a multivariate gaussian distribution whose
mean vector and covariance matrix were estimated using a maximum likeli-
hood procedure. The performance of this decoder is not plotted because the
decoder consistently generated a prediction of disparity equal to 0 pixels
(the frontoparallel surface is at the depth of the fixation point) regardless of
the true disparity in the left eye and right eye images. A decoder that was
forced to use a diagonal covariance matrix produced the same behavior.
The poor performances of these decoders are not surprising given the fact
that the marginal distributions of an individual neuron’s response given a
disparity, p(r i | d), are highly nongaussian. The horizontal axis of the graph
in Figure 5 represents a normalized response of a typical model neuron,
and the vertical axis represents the probability that the neuron will give
each response. The light bars indicate the probability when the disparity in
a pair of images equals the preferred disparity of the neuron, and the dark
bars indicate the probability when the image disparity is different from the
neuron’s preferred disparity. In both cases, the probability distributions are
highly nongaussian; the distributions peak near a response of zero (the neu-
ron most frequently gives a small response) and have relatively long tails
(especially the distribution for when the image and preferred disparities are
equal). This finding is consistent with earlier results, such as those reported
by Lippert and Wagner (2002; see Figure 3).

A possible objection to the simulations discussed so far is that the simu-
lations used a very large number of training stimuli. In contrast, neurosci-
entists use much smaller data sets, and there is no guarantee that the results
that we have found will also be found when using fewer data items. To
address this issue, we conducted new simulations with a relatively small
data set (100 training samples for each disparity). Figure 6 shows the results
for the IRD and the DTD when population sizes were set to 64 neurons, and
the number of response levels was set to either 5, 10, or 20. Again, the DTD
consistently outperformed the IRD, and the trends described above for the
large training set appear to hold for the small training set too.
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Figure 5: Sample response histograms for a typical model neuron. The black
bars indicate the probability of a normalized response to an image pair with
the cell’s preferred disparity, and the white bars indicate the probability of a
response to an image pair with an arbitrarily selected nonpreferred disparity.
Note that cell responses are highly nongaussian; the probability distributions are
skewed with a peak at very low responses and tails at higher response values.
In general, as the selected disparity deviates from the preferred disparity, the
mass of the response distribution becomes increasingly concentrated at zero.

A second possible objection to the simulations discussed above is that
they used white-noise stimuli; frontoparallel surfaces were covered with
dots whose luminance values were independently sampled from a uni-
form distribution ranging from 0 (dark) to 1 (light). We chose these stimuli
for several reasons. White noise stimuli have simple properties that make
them amenable to mathematical analyses. Consequently, they have played
an important role in engineering, neuroscientific, and behavioral studies. In
addition, for our current purposes, we are interested in how binocular dis-
parities can be evaluated in the absence of form information. Furthermore,
white noise stimuli do not contain correlations across spatial frequency
bands, and thus their use should not introduce biases into our evaluations
of the role of high-order correlations when decoding populations of model
neurons. Despite the motivations for the use of white noise stimuli, natural
visual stimuli contain very different properties. Images of natural scenes
usually contain a great deal of form information and contain energy in
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Figure 6: RMS error of the maximum a posteriori disparity estimate provided
by the DTD (light bars) and IRD (dark bars) as a function of the number of
discretized response levels (b) in the small training sample case. These data were
generated using a fixed population size (n = 64), and using only 100 training
samples per disparity rather than the 10,000 training samples per disparity used
to generate the data in Figure 4.

a large range of spatial frequency bands. Because of dependencies in the
energies across frequency bands, we expect that high-order correlations
in model neuron responses to natural stimuli should be important during
neural decoding, as was found when using white noise stimuli. To partially
evaluate this prediction, we repeated some of the preceeding simulations
using more “naturalistic” stimuli.6

6 Ideally, we would have liked to conduct simulations using left eye and right eye
images of natural scenes. Unfortunately, this was not possible for a variety of reasons.
Perhaps most important, there are no available databases, to our knowledge, of large
numbers of left eye and right eye images of natural scenes taken by well-calibrated
camera systems that include ground truth information (e.g., true disparity or depth at
each point in the scene).
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Figure 7: RMS error of the maximum a posteriori disparity estimate provided
by the DTD (white bars) and IRD (gray bars) as a function of the number
of discretized response levels (b), along with the performance of a multivariate
gaussian fitted to the training data (black bar) when the training and test surfaces
were painted with 1/f noise rather than white noise. These data were generated
using a fixed population size (n = 64) and using 10,000 training samples per
disparity.

In these new simulations, we exploited the fact that the amplitude spec-
tra of natural images fall as approximately 1/f (Burton & Moorhead, 1987;
Field, 1987, 1994; Tolhurst, Tadmor, & Tang, 1992), We generated left eye
and right eye images in the manner described above for the white-noise
stimuli, with the exception that each image was a “noise texture” with 1/f
amplitude spectra; the luminance values of the dots on a surface were inde-
pendently sampled from a uniform distribution and then passed through
a 1/f filter (i.e., the luminance values were Fourier transformed, the ampli-
tude at each frequency f was multiplied by 1/f , and the result was inverse
Fourier transformed; in addition, the images resulting from this process
were normalized so that their luminance values fell in the range from 0 to
1). The graph in Figure 7 shows the results for the IRD and the DTD based
on a population of 64 neurons. As was the case with white noise stimuli, the
DTD consistently outperformed the IRD, though the performance of both
decoders was markedly worse with the 1/f -noise stimuli. These results are
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consistent with our earlier conclusions that high-order correlations among
model neuron responses contain significant information about binocular
disparities.

6 Summary

Investigators debate the extent to which neural populations use pairwise
and higher-order statistical dependencies among neural responses to repre-
sent information about a visual stimulus. To study this issue, we used three
statistical decoders to extract the information in the responses of model
neurons about the binocular disparities present in simulated pairs of left
eye and right eye images. The full joint probability decoder (FJPD) consid-
ered all possible statistical relations among neural responses as potentially
important. The dependence tree decoder (DTD) also considered all possible
relations as potentially important, but it approximated high-order statisti-
cal correlations using a computationally tractable procedure. Finally, the
independent response decoder (IRD) assumed that neural responses are
statistically independent, meaning that all correlations should be zero and
thus can be ignored. Two sets of simulations were performed. The first
set examined the informational cost of ignoring all correlations or of ap-
proximating high-order correlations by comparing the IRD and DTD with
the FJPD. The second set compared the performances of the IRD and DTD
on a binocular disparity estimation task when neural population size and
number of response levels were varied.

The results indicate that high-order correlations among model neuron re-
sponses contain significant information about disparity and that the amount
of this high-order information increases rapidly as a function of neural pop-
ulation size. In addition, the DTD consistently outperformed the IRD (and
also a decoder based on a multivariate gaussian distribution) on the dispar-
ity estimation task, and its performance advantage increased with neural
population size and the number of neural response levels. These results
raise the possibility that previous researchers who have ignored pairwise
or high-order statistical dependencies among neuron responses, or who
have examined the importance of statistical dependencies in a way that
limited their evaluation to pairwise dependencies may not be justified in
doing so. Moreover, the results highlight the potential importance of the
dependence tree decoder to neuroscientists as a powerful but still practical
way of approximating high-order correlations among neural responses.

Finally, the strengths and limitations of this work highlight important
areas for future research. For example, future investigations will need to
make use of databases of natural images, such as databases with many
pairs of right eye and left eye images of natural scenes taken by well-
calibrated camera systems, along with ground-truth information about each
scene (e.g., depth or disparity information at every point in a scene). Such
a database for the study of binocular vision in natural scenes does not
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currently exist. In addition, future computational work will need to use
more detailed neural models, such as models of populations of neurons that
communicate via action potentials and models of individual neurons that
include ion kinetics. We expect that the results reported here will generalize
to these more realistic situations, but further work is needed to test this
prediction.
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