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Computational studies of
the development of
functionally
specialized neural

modules

Robert A. Jacobs

lant neurons; and (3) a temporal and spatial moda
functional development in later-developing parts
veloping parts. All three hypotheses hay

It is often assumed in the brain and cognitive sciences that
the brain is a collection of modules that are each specialized
to perform a specific function. Occasionally this assumption
is made explicit and used as the foundation of a theory about
the brain’s underlying structure'?. It is important to note,
however, that even if this assumption provides an accurate
characterization of adult human brains, recent evidence raises
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questions about its accuracy with respect to newborns and
young children**. This evidence suggests that newborns’ neo-
cortices are less structurally differentiated than those of adults
in the sense that neocortical regions are anatomically more
similar in newborns than in adults. In addition, the evidence
suggests that cognitive processes are less localized in new-
borns’ nervous systems than those of adults. Consequently,
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it seers sensible to conclude that some aspects of the modu-
lar organization of the adult brain arise developmentally. If
so, then it is important to know whether the developmental
processes that determine the functional properties of a
neural module operate according to fixed genetic instructions
or whether these process are also experience sensitive.

The roles assigned to nature and nurture in the acqui-
sition of functional specializations have been modified in
recent years. An increasing number of investigators are hy-
pothesizing that experience-dependent processes are more
influential in determining a brain region’s functional prop-
erties than was previously supposed®'®. Some of the sup-
porting evidence comes from studies of cortical localizations
of cognitive functions in human patients. For example,
Neville!" and her colleagues compared the behavior and
event-related brain potentials (ERPs) of hearing adults and
congenitally deaf adults during the performance of visual at-
tentional tasks. They found that ERPs to foveal stimuli were
similar in congenitally deaf and hearing adults; however,
ERPs over superior temporal cortical areas to peripheral
stimuli were two to three times larger in deaf than in hear-
ing subjects. Deaf adults also responded faster than hearing
subjects in tasks requiring detection of movement in pe-
ripheral stimuli, though response times did not differ when
foveal stimuli were used. Neville hypothesized that the por-
tion of the visual system that mediates the processing of
peripheral stimuli may, through a process of compertitive
interactions, take over brain regions in the congenitally deaf
that would normally be auditory cortical fields either in
primary sensory or multimodal cortical areas.

Further evidence of the experience-dependent nature of
the acquisition of functional specializations comes from the
study of developmental neurobiology. For instance, Sur'?
and his colleagues provided visual inputs to the auditory
system of ferrets by inducing retinal afferents to project to
the medial geniculate nucleus (MGN), also referred to as
auditory thalamus. Consequently, visually responsive cells
were recorded in MGN. MGN projects to primary auditory
cortex and visually responsive cells were also found in this
region. These cells tended to have large receptive fields with
roughly one-third of the fields being orientation-selective
and a similar proportion being direction-selective. Similar
to the fields of simple or complex cells in normal visual cor-
tex, the oriented receptive fields had either separate or co-
extensive ON and OFF zones. In addition, many cells were
driven binocularly. According to O’Leary?, these and other
results support the conclusion that ‘primary sensory areas
arise from regions of developing neocortex that are initially
similar or to some extent pluripotent.’

This article reviews three hypotheses about the develop-
ment of functionally specialized neural modules, as well as
computational models that implement these hypotheses.
The empbhasis is on developmental mechanisms, especially
on mechanisms that are largely or exclusively acrivity-
dependent. There is much important research on develop-
mental mechanisms controlling neural features such as cell
fate, laminar and areal patterning, and axonal connectivity
that are not activity-dependent. This research is not re-
viewed here (see, for example, Chenn e 2/."%). Additionally,
the article emphasizes a broad range of mechanisms. Some
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hypothesized mechanisms (e.g. the parcellation processes
described below) have been studied more extensively than
others in the neuroscientific and computational literatures.
This article, however, attempts to give a relatively balanced
presentation of three plausible hypotheses.

The first hypothesis is that a combination of struc-
ture—function correspondences plus the use of competition
between neural modules leads to functional specializ-
ations'*'¢, This conjecture has been instantiated in a family
of neural network architectures referred to as ‘mixtures-of-
experts’ architectures®'”. The second hypothesis combines
the idea of neural selectionism, which speculates that learn-
ing results from a stabilization of some neural connections
and the elimination of other connections®, and a locality
constraint, which states that connections between nearby
neurons are more easily stabilized than those between dis-
tant neurons'®'”. The end result of a selectionist process
that is subject to a locality constraint is that nearby neurons
tend to perform more similar functions than neurons that
are far apart, and that nearby neurons tend to communicate
whereas distant neurons are isolated from each other. Such
a process was studied using a neural network model that
strengthened some connections and pruned other connec-
tions during the course of learning®. The final hypothesis
is that a temporal and spatial modulation of plasticity can
induce higher functional development in later-developing
parts of the nervous system relative to eatlier-developing
parts’. A neural network with temporally and spatially modu-
lated learning rates was used to evaluate this conjecture?'.

Competition between neural modules

Several researchers have speculated that the development of
functionally specialized neural modules is based on a com-
bination of structure—function correspondences plus the
existence of competition between modules'*'S. This theory
contains two important notions. The first notion is that there
are structure—function correspondences in the brain. Because
different brain regions have different structural properties
(e.g. different patterns of connectivity among their neurons),
different regions are best at performing different types of
functions. The second notion is that brain regions compete
for the ability to perform a set of tasks. Regions become func-
tionally specialized due to the competition; that is, different
regions learn to perform different functions. This competi-
tion, however, is biased by the structure~function corres-
pondences; each region tends to win the competition for
those functions for which its structure makes it particularly
well suited.

My colleagues and I have developed a neural nerwork
architecture, known as a mixtures-of-experts (ME) architec-
ture, that implements this hypothesis. The architecture,
which is illustrated in Fig. 1, consists of two types of net-
works: expert networks and a gating network. The expert
nerworks compete to learn the training parterns, where a
training pattern consists of an input along with a desired
output; the gating network mediates this competition.
Whereas the expert networks have an arbitrary connectivity,
the gating network is restricted to have as many output
units as there are expert networks, and the acrivations of
these output units must be nonnegative and sum to one.
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The output of the entire architecture, denoted y, is the
linear combination of the experts’ outputs:

y= zgiyi (1
i=l

where y, denotes the output of the 7 th expert network and g,
is the gating network output corresponding to the 7 th expert.

The learning process of the ME architecture combines
aspects of competitive and associative learning. Mathemati-
cally, the architecture can be characterized as a probability
model known as a conditional mixture density model.
Mathematical descriptions can be found in Jacobs ez al."”
Jordan and Jacobs®? and Peng, Jacobs and Tanner?. Here I
present an intuitive description. The connection strengths
of the expert and gating networks are adjusted simultane-
ously during training. Each expert network’s output is com-
pared with the target output at each time step. The expert
whose output most closely matches the target is called the
winner of the competition; the other experts are called
losers. An expert receives an amount of training infor-
mation that is proportional to its relative performance on
the training pattern. The winning expert receives a lot of in-
formation, and thus learns a lot about the current training
pattern, whereas the losing experts receive little or no infor-
mation, and thus learn little about the current pattern. The
gating network receives information about the relative per-
formances of the experts on the current pattern. It adjusts
its connection strengths so that when the current input (or
a similar input) recurs in the future the activation of its out-
put unit corresponding to the winning expert will be larger
(closer to one) and the activations of its remaining output
units will be smaller (closer to zero).

The learning process has a positive feedback effect that
forces different expert networks to learn different tasks.
This effect relies on the fact that, in general, training pat-
terns from the same task share a common underlying struc-
ture, whereas patterns from different tasks have different
underlying structures. Suppose that at some instant in time,
an expert has won the competition to learn some of the
training patterns from one particular task. The expert will,
therefore, have at least partial ‘knowledge’ of the structure
of the task. Consequently, in the future it will be likely to
win the competition for the remaining patterns from that
task. The expert will thereby become specialized for per-
forming the task. However, as a result of this specialization,
this expert will be likely to perform poorly on patterns from
other tasks — unless some tasks happen to be very similar.
Thus other experts will be likely to win the competition for
the patterns from other tasks. In this way, different experts
win the competition to learn patterns from different tasks,
and the experts become specialized for performing different
tasks.

The ME architecture is sensitive to structure—function
correspondences. Jacobs and Kosslyn?* for example, consid-
ered the hypothesis that different subsystems of the brain
are responsible for making categorical and coordinate visual
judgments. Categorical judgments include classifying the
identify of a stimulus (e.g. object A is a dog); coordinate
judgments include identifying a visual stimulus as a particu-
lar exemplar (e.g. object A is Fido). Much of the information
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Fig. 1. The mixtures-of-experts (ME) architecture. The ME architecture consists of ex-
pert networks and a gating network. The expert networks compete to learn the training

needed to make categorical judgments is irrelevant for mak-
ing coordinate judgments, and vice versa. Categorization,
for example, requires that various exemplars be grouped and
treated as equivalent, whereas the identification of indi-
vidual exemplars requires treating the instances as distinct.
From an information processing viewpoint, it is logical that
the brain might use different subsystems to make the two
types of visual judgments. Jacobs and Kosslyn®* Marsolek?
and Marsolek, Schacter and Nicholas® reviewed experi-
mental evidence from normal human subjects for a double
dissociation between categorical and coordinate judgment
tasks. Laeng found the same double dissociation for cate-
gorical and coordinate spatial relations judgments in a study
using unilateral stroke patients®’.

Kosslyn er al.*® speculated that there might be a struc-
ture~function relationship between receptive field sizes of
neurons and visual judgments. Systems that make categorical
visual judgments should be more efficient if they monitor
visual neurons with small, non-overlapping receptive fields
(it is important to note that populations of such neurons
provide relatively low spatial resolution representations of
visual images; see Fig. 2 for an intuitive explanation),
whereas systems that make coordinate visual judgments

Fig. 2. Receptive-field organization. The three circles at left
represent the receptive fields of three neurons. On the basis of
the activities of these neurons, it is possible to localize a point
of light to one of four possible regions (either outside the re-
ceptive fields of all neurons, or inside the receptive field of one
of the neurons). On the right there are still three receptive
fields but now the receptive fields are larger so that they over-
lap. On the basis of the activities of these neurons, it is possible
to localize a point of light to one of eight possible regions. This
illustrates a situation in which a population of neurons with
large receptive fields provides greater resolution than a popu-
lation with small receptive fields. (Adapted from Ref. 29.)
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In a mixtures-of-experts (ME) architecture, the gating network
plays a vital role in the sense that it determines the extent to
which each expert network’s output contributes to the output of
the architecture as a whole. Note, however, that if one attempts
to find a literal correspondence between the ME architecture
and neural systems, there is no need to speculate about which
specific neural structure might correspond to the gating network.
This is because the ME architecture is equivalent to another ar-
chitecture that contains expert networks but does not contain a
gating network (that is, the two systems are exact notational
variants of each other). The architecture without the gating net-
work contains inhibitory connections among the expert networks
so that each expert can suppress the outputs of the other experts.
The strengths of these inhibitory connections are context de-
pendent because they depend on the value of the current input
pattern. (In the neural network literature, units whose connec-
tion strengths depend on the current input pattern are known as
sigma—pi units.) At the end of training, the expert that was the
winner of the competition in the context of the current input,
or closely similar inputs, strongly suppresses the outputs of the
other experts; experts that were losers of the competition do not
suppress, or only weakly suppress, the other experts’ outputs. The
architecture without the gating network, but with inhibitory
connections among the expert networks, is notable because the
results of some experiments can be interpreted as suggesting
that neural modules may use inhibitory interactions of this sort.

Box 1. ME architectures and inhibitory interactions

G

For instance, Gazzaniga (Ref. a) presented different visual |
inputs simultaneously to each hemisphere of a split-brain patient
(this is a patient who has had the corpus callosum severed; this
structure normally carries signals between the two cerebral
hemispheres). The patient centered his or her gaze on a fixation
point while a word was briefly presented so that half of the

letters fell to one side of the point and half the letters fell to the
other side. For example, if the word was target, then ‘tar’ fell in

the patient’s left visual field and was processed by the right
hemisphere, whereas ‘get” appeared in the right visual field and
was processed by the left hemisphere. The patient was then pre-
sented with four letter strings and asked to point to thee one that
matched the visual input. The patient consistently pointed to
the string that was presented to the right visual field regardless
of which hand the patient used to perform the task. Glass ez a/.
(Ref. b) interpreted these results as indicating that when there is
a conflict between two plausible responses in this task, the left

hemisphere inhibits the outputs of the right hemisphere and as-
sumes motor control of both the left and right hands in making
the response.

i
i

.
.
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should be more efficient if they monitor neurons with large,
overlapping receptive fields (populations of such neurons
provide high resolution representations of visual images).
Jacobs and Kosslyn®® used computer simulations to evaluate
the proposed structure~function relationship. In brief, we
trained neural networks to identify each visual stimulus as a
member of a particular category (‘shape category task’) or to
identify a stimulus as a particular exemplar (‘shape coordi-
nate task’). Networks did not view the visual stimuli di-
rectly; the stimuli were filtered through Gaussian units with
restricted receptive fields. It was found that, indeed, the
category task was learned faster when stimuli were filtered
through units whose receptive fields were relatively small,
whereas the coordinate task was learned faster when the
stimuli were filtered through units whose receptive fields
were large. When using an ME architecture, expert net-
works with small receptive fields tended to win the compe-
tition for the category task, whereas the coordinate task
tended to be won by experts with large receptive fields. This
set of simulations supports the hypothesized set of func-
tional specializations and structure—function relationships
by showing that these specializations and relationships are
computationally efficient.

If competition plays a role in the acquisition of func-
tional specializations in biological systems in the way that is
suggested by the mixtures-of-experts architecture, then at
least two predictions follow. The first is thac there must
exist initial differences between competing neural modules.
For example, modules may initially differ in the informa-
tion carried by the inputs they receive. Modules are, at least
in part, potentially capable of displaying a wide range of
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functional properties. As evidenced in the studies of
Neville"! and Sur e a/'? discussed above, the input to a
module is a powerful bias that helps determine the nature
of the processing that the module ultimately performs.
Simulation results with the ME architecture suggest that
other differences between neural modules may also be im-
portant. Differences in receptive field size, number of pro-
cessing units, and connectivity among the processing units
may all serve to bias the relative learning performances of a
collection of modules, thereby biasing their functional spe-
cializations. A second prediction is that neural modules
should enforce the outcome of a competition through a set
of adaptable inhibitory interactions that allow modules to
suppress the outputs of other modules. This prediction is
discussed more fully in Box 1.

Parcellation processes

Some investigators have hypothesized that functionally spe-
cialized neural modules develop via parcellation, a develop-
mental process that produces regressive events such as the

elimination of synapses and axon collaterals**3!

. Data sug-
gests that humans lose approximately half of their synapses
in cortical areas during the first few years of life*?. The par-
cellation conjecture states that in postnatal development
parcellation results in the elimination of neural connections
such that previously combined information processing
pathways or structures becoming segregated into relatively
isolated modules.

At least two factors might influence the selection of
synapses that are maintained versus those that are eliminared.
First, according to the trophic theory of neural connections,
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Columnar structures in the mammalian visual cortex, such as
ocular-dominance columns or orientation columns, are often hy-
pothesized to develop via a parcellation process. Miller (Ref. a)
provides a review of computational models of the development
of columnar structures in primary visual cortex, along with a
mathematical analysis of these models. Here, we briefly outline
a model of the development of ocular dominance columns due to
Miller, Keller and Stryker (Ref. b). This model contains features
that are commonly also found in other models. The model con-

tains three sets of units. One set corresponds to neurons in the
lateral geniculate nucleus (LGN) whose receptive fields are in
the right eye, one set corresponds to LGN neurons whose re-
ceptive fields are in the left eye, and the final set corresponds to
neurons in primary visual cortex (V1). The model contains four
sets of parameters: {1) An arbor function A(x—a) gives the number
of synapses between an LGN unit at location « and a V1 unit
at location x; (2) A cortical interaction function Z{(x—y) describes
the lateral influences among V1 units at locations xand y. These
influences may occur through synaptic connections or through
the diffusion of modulatory substances; (3) The patterns of ac-
tivity in the afferent LGN units. The correlation functions C*,
C#R C'® and C* describe correlations in activity between affer-

ents serving the same eye (C% and C*¥) or different eyes (C*¥ and
C*); (4) A parameter, denoted decay, that limits the total syn-
aptic strength supported by a V1 unic. This latter parameter is
used in the Hebbian learning rule that adapts the synaptic
strengths associated with the connections between LGN and V1
units. At a coarse level of description, this rule may be written:

Box 2. Parcellation and the development of columnar structure

As = (post X pre) — decay [2]

where As is the change in synaptic strength s during a short time
period, and post and pre are measures of postsynaptic and
presynaptic activities during this period. Hebbian learning rules
of this sort are sensitive to the correlational structure of the af-
ferents in the sense that connections from afferent units with
correlated activities tend to develop correlated synaptic strengths,
whereas connections from afferent units with negatively corre-
lated activities tend to develop synaptic strengths that are
negatively correlated.

Miller e /. have shown that, over 2 wide range of parameter
values, initially binocular V1 units tend to develop monocular
receptive fields, and that nearby units tend to have receptive
fields in the same eye. That is, the model develops ocular
dominance columns that resemble those found in primate V1.
Moreover, the model can also be used to mimic experimental
findings collected under conditions of monocular deprivation
and findings suggesting a critical period for the development of

ocular dominance columns.
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presynaptic neurons compete for a limited supply of mol-
ecules, such as nerve growth factor, that are released by
postsynaptic neurons. Presynaptic terminals that acquire
sufficient amounts of these molecules maintain their
connection to the postsynaptic neuron, whereas those that
do not successfully compete for the molecules tend to lose
their connection®’. Experimental evidence indicates that this
competitive mechanism is capable of modulating the size of
axonal and dendritic arbors as well as the size of neuronal
populations. The distribution of trophic factors may be
seen as a mechanism for implementing neural selectionism,
the idea that learning results from a stabilization of some
neural connections and the elimination of other connec-
tions®. An interesting hypothesis is that the competition for
trophic factors is Hebbian, meaning that the amount of
trophic factor available to a presynaptic cell is increased by
near synchronous activity of presynaptic and postsynaptic
cells**®. Second, the selection of synapses that are main-
tained or eliminated may be biased by a locality constraint
such that connections berween nearby neurons are more likely
to be maintained than those between distant neurons, all else
being equal. Barlow'® and Cowey'? have extensively discussed
the role a locality constraint might play in determining
neural organization.

Jordan and I presented a computational model that ex-
hibits parcellation through the use of a Hebb-like learning
process that is biased by a locality constraint® The learning
process adapted the strengths of the connections of neural
networks so that the networks more closely produced the
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target output pattern for each inpur pattern. In addition,
the learning process was biased such that the strengths of
connections between nearby units were more likely to grow
large in magnitude than those of connections between dis-
tant units. Simulation results showed that at the end of
training nearby units performed more similar functions
than distant units, and that nearby units communicated
with each other whereas distant units were isolated from
each other. Overall, the model provides support for the con-
jecture that funcrionally specialized neural modules can re-
sult from a selectionist learning process which is subject to a
locality constraint.

Although only given a small amount of attention here,
parcellation processes are among the most studied activiry-
dependent developmental processes in the neuroscientific
and computational literatures. One area in which the role of
parcellation processes seems to be particularly well under-
stood is the development of columnar structures in primary
visual cortex (see Box 2).

An open question regarding parcellation processes con-
cerns the possible functional differences between different
types of processes. Consider a neural region that initially has
full connectivity; that is, each neuron is initially connected
to all other neurons. One possibility is that parcellation oc-
curs as postulated by the trophic theory of neural connec-
tions described above. A developmental process based on
Hebbian principles leads to the maintenance of some neural
connections and the retraction of other connections. Alter-

natively, parcellation could occur via a Hebbian learning
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Box 3. Less is more

The notion of a ‘wave of plasticity’ is closely related to a set of ideas
that have received considerable attention recently. Turkewitz and
Kenny (Ref. a) speculated that the limited perceptual abilities of
newborns should not be regarded as deficiencies that newborns

need to overcome during the course of development. Rather,
these limitations should be thought of as part of an adaptive
developmental stage that facilitates the organization of sensory
systems and provides a basis for subseqent perceptual and cog-
nitive development. Newport (Ref. b) proposed a theory, known
as the ‘less is more’ hypothesis, that is consistent with this

framework in order to account for empirical data showing that
people learn a language better if they are exposed to the lan-
' guage early in life versus late in life. The ‘less is more” hypothe-
| sis speculates that the limited memory and attentional abilities
of children are adaptive in the sense that they make it easier for
children to identify the constituent parts that form a language.

Elman (Ref. ) implemented the less-is-more hypothesis in a
© neural network that was trained to process sentences from an ar-
tificial language. This language included linguistic features such

as relative clauses, number agreement, and several types of verb
argument structure. The neural network included recurrent

rule that strengthens some anatomically fixed neural
connections and weakens other connections. Miller* has
shown the equivalence between an axonal sprouting-and-
retraction model and a Hebbian synaptic plasticity model
under certain conditions in the sense that the two models
both maximize a metric that is roughly the sum of the cor-
relations between the activities of synapses on the same and
neighboring cortical cells. Consequently, other metrics or
more detailed models are needed for theoretical distinctions
to be drawn between sprouting-and-retraction models and
Hebbian synaptic strength modification models.

The discussion in this section and in the previous sec-
tion both emphasize the role of neural competition. Neural
competition has been hypothesized to take place at many
different scales in biological nervous systems. For example,
competition takes place on a large scale in the mixtures-of-
experts architecture in which the units of the winning com-
peting module are allowed to learn about a data item,
whereas the units of other modules are prevented from
learning about that item. In contrast, parcellation hypothe-
ses rely on neural competition on a small scale; the stabiliz-
ation or strengthening of some connections between pre-
synaptic neurons and a postsynaptic neuron is frequently
accompanied by the loss or weakening of other connections
to the postsynaptic neuron. Whereas there is much neuro-
scientific evidence suggesting the existence of neural com-
petition at a small scale, the evidence showing neural com-
petition at a large scale is relatively sparse.

‘Wave of plasticity’ hypothesis

Learning theorists have speculated that a good way to
achieve large-scale systems that can solve difficult problems
is to endow these systems with a ‘bootstrapping’ ability; that
is, the systems should be able to use the solutions to simpler
tasks as ‘building blocks’ for more difficult tasks*”%. The

development of biological nervous systems is often charac-
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connections that allowed a subset of units to act as a short-term
or working memory. The working memory capacity of the net-
work could be manipulated by corrupting the activities of these
units with noise. Simulation results suggest that networks with
large working memory capacity cannot learn the underlying ¢
structure of the language. In contrast, networks with a working
memory capacity that is initially small but gradually increases
during the course of training can successfully learn the lan-
guage. Elman concluded that the computational model sup-
ports the less-is-more hypothesis because it suggests that rather
than being a limitation, developmental restrictions on resources
may constitue a necessary prerequisite for mastering certain E

complex domains.
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terized as using a bootstrapping strategy. Greenough, Black
and Wallace’ hypothesized that asynchrony in brain devel-
opment serves the useful function of ‘stage setting’. The de-
velopmental schedule for the maturation of different brain
regions is staggered such that neural systems that develop
relatively early provide a suitable framework for the devel-
opment of later, experience-sensitive systems (see Box 3).
Experimental evidence consistent with this position comes
from Harwerth er 2[%° These investigators performed be-
havioral studies of sensitive periods for visual development
in monkeys. Their results suggest that these sensitive peri-
ods are organized into a hierarchy in which the visual func-
tions requiring information processing in the peripheral
portions of the visual system have shorter sensitive periods
than those requiring more central processing.

Shrager and Johnson®' used the term ‘wave of plasticity’
to refer to the phenomenon that the locus of maximum
neural plasticity seems to begin in the primary sensory and
motor areas and then moves over time towards the sec-
ondary and parietal association areas and finally to the
frontal regions. They investigated the possible consequences
of such a wave by using a modified version of a compu-
tational model developed by Kerszberg, Dehaene and
Changeux®. A distinctive feature of this model is that
synapses compete for a limited amount of trophic factor, as
described above. Synapses that receive less trophic factor at-
rophy over time, whereas synapses that receive more trophic
factor eventually reach stability. A Hebbian association rule
directs the transportation of trophic factor from interneural
space to synapses. Thus the period of plasticity depends
upon the transportation of trophic factor, and may differ
from one part of the network to another in accord with the
activity-dependent diffusion of this factor. A second dis-
tinctive feature of the model by Kerszberg et a/. is that it is
possible to characterize the performance of each unit as a
logic function both before and after training of a nerwork.
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In this way, it is possible to evaluate the simplicity or
complexity of each unit’s processing.

The network simulated by Shrager and Johnson®' con-
sisted of a two-dimensional array of units in which each unit
initially received inputs from two afferent units and from
other units in the array (see Fig. 3). In the simulation most
relevant to our purposes, they manipulated the distribution
of trophic factor so as to produce a wave of plasticity; the
locus of maximum plasticity moved across the array from
left to right over time. The simulation produced a number
of interesting findings. First, more synapses were eliminated
in networks that contained a wave of plasticity than in those
that did not. Synapses in networks containing a wave of
plasticity that were far from the locus of maximum plastic-
ity tended to receive little trophic factor and, thus, were
often eliminated. Second, there was a tendency toward
more complex processing in later-developing parts of the
array. Shrager and Johnson explained this as follows. Let the
set LEFT denote units in earlier-developing parts of the net-
work, and let the set NEXT denote units in later-develop-
ing parts. The units in LEFT, initially more plastic than
those in NEXT, determined their functions on the basis of
the activities of the two afferent units. Over time, as the
wave of plasticity moved to the right, the units in LEFT
became relatively fixed in their function, and the units in
NEXT became more plastic. Note that the units in NEXT,
in addition to receiving the input coming from the afferent
units, also received the activities of the units in LEFT.
Consequently, they tended to develop more complex func-
tions than those in LEFT. Third, networks with slow waves
of plasticity tended to show compact clusters of units with
simple functions or with complex functions, whereas
networks with fast waves of plasticity had a more widely
dispersed collection of units with complex functions.

The ‘wave of plasticity’ hypothesis is difficult to study
experimentally. There are relatively few neuroscientific in-
vestigations that address it directly. Nonetheless, because it
seems reasonable to assume that complex perceptual and
cognitive information processing develops on the basis of
simpler information processing, it may be among the most
promising theories concerning the development of higher
cortical areas.

Conclusion

This article has reviewed three hypotheses about the
activity-dependent development of functionally specialized
neural modules. These hypotheses state that: (1) a combi-
nation of structure~function correspondences and competi-
tion between neural modules leads to functional special-
izations; (2) parcellation is due to a combination of neural
selectionism and a locality constraint, which states that con-
nections between nearby neurons are more easily stabilized
than those between distant neurons; and (3) a temporal and
spatial modulation of plasticity can induce higher func-
tional development in later-developing parts of the nervous
system relative to earlier-developing parts. These hypothe-
ses are not mutually-exclusive; different hypotheses may
prove useful for understanding different neural and cogni-
tive phenomenon. All three hypotheses have been imple-
mented and evaluated in computational models. An impor-
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Fig. 3. 'Wave of plasticity’ network. A schematic illustration of the network simulated by
Shrager and Johnson?', See text for description. (Adapted from Ref. 6.)

tant role of these models is to specify the hypotheses in a
more explicit manner and in greater detail than would
otherwise be the case. In addition, the models are useful for
evaluating the logic of the hypotheses, and for exploring
possible elaborations of the hypotheses.

The hypotheses can be regarded as ‘large scale’ theories
because they concern the changing characteristics of large
portions of the brain over long periods of time. A drawback
of such large-scale theories is that they often cannot be
fully studied and evaluated using current neuroscientific
methodologies. Most techniques for studying brain activity

Outstanding questions

* Neural competition has been conjectured to take place at a large scale
(as in competition between neural modules) and at a small scale (as in
competition between synapses of a postsynaptic neuron). What, if
anything, do these forms of competition have in common?

» What are the functional differences between the situation in which
there is an initial over-production of synaptic connections followed by
the retraction of some synapses based on Hebbian principles and the
situation in which the strengths of anatomically fixed synapses are
modified based on Hebbian principles?

« The nature of the input to a neural region is an important factor in
determining the functional properties of that region. What other factors
interact with activity-dependent developmental processes in order to
influence the functional properties of a neural region?

» To what extent, and in what ways, is the development of central cortical
argas, such as association areas, dependent on the functional progerties
of peripheral cortical areas?

« From a functional viewpoint, why might a neural system that can be
characterized as a collection of relatively independent neural modules be
preferable to a system that cannot be characterized in this way?
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lack the necessary spatial or temporal resolution and are not
suitable for longitudinal studies. In addition, it is relatively
easy to distinguish causal relationships from correlational
relationships between two variables using computer simu-
lation, whereas it is often difficult to make this distinction
in neuroscientific studies. Consequently, computer simu-
lation provides one of the only tools available for evaluating
and refining our large-scale theories of the development of
functionally specialized neural modules.
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