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Visual environments are often rich in information
sources. For example, we now know of nearly a dozen
different cues to visual depth [1]. This wealth of
information poses an interesting problem for 
human observers: how do observers know whether
each visual cue is providing reliable or unreliable
information in the current visual context?
Determining the relative reliabilities of available
visual cues might be difficult for a variety of 
reasons. Importantly, all visual cues are ambiguous. 
A visual depth cue, for instance, might be consistent
with a range of depth values, sometimes a small
range and sometimes a large range (see Box 1). 
In addition, cue reliabilities can be context sensitive.
Stereo cues to depth tend to be reliable when 
viewing nearby objects but unreliable when viewing
distant objects [1,2]. Furthermore, cues in an
environment can provide conflicting information.
When watching a movie projected on a flat screen,
stereo and motion parallax cues indicate that all
objects depicted in the movie are at the same depth
from the viewer whereas perspective, texture,
shading, and other cues indicate that some objects 
are nearer than others.

In the past, vision scientists often used prisms to
alter the characteristics of sensory cues to study 
the principles underlying observers’assessments 
of cue reliabilities [3]. However, prisms do not give
investigators good control of the visual environment.
Recently, advances in computer graphics and virtual
reality technologies have provided researchers with
new tools for controlling the statistical properties of
visual cues in a precise manner. These tools have
allowed scientists to address a wider range of
questions in a more detailed fashion than was
previously possible.

Several recent studies have examined strategies
human observers use to assess the relative reliabilities
of available cues in a visual environment [2,4–28].
Nearly all of these studies address one or more of the
following important questions:

• What criteria do human observers use to distinguish
reliable visual cues from unreliable cues?

• How do observers evaluate these criteria so that
they can estimate cue reliabilities?

• What do observers do with their estimated cue
reliabilities after these estimates have been
computed?

Issues regarding visual cue reliabilities have
frequently been studied in the context of visual depth
perception, and many of the studies reviewed here
have examined the perception of the depth extension
of objects. It is hoped that conclusions drawn about
this case are applicable to other instances of depth
perception, such as perception of distance from a
viewer to an object or perception of the depth
separation between two objects, and to the perception
of other properties of visual scenes.

Cue reliabilities and cue ambiguities

A commonly assumed framework for how an observer
might go about judging the depth of a visual object
defined by multiple cues is the following two-stage
process. First, depth estimates based on individual
cues are derived. Second, a weighted combination of
these estimates is calculated and used as the
observer’s composite depth percept; the cue weights
are based on the relative reliabilities of the cues in the
current visual context [7,12]. For example, consider
an observer judging the depth of an object defined by
motion and texture cues. During stage one, the
observer calculates depth estimates based on each
individual cue. Let dM(m) denote the observer’s
depth-from-motion estimate, and let dT(t) denote the
observer’s depth-from-texture estimate. During stage
two, the observer combines these estimates into a
unified depth percept, denoted d(m,t), using, for
instance, a linear cue combination rule:

d(m,t) = wMdM(m) + wTdT(t)                [Eqn 1]

where the linear coefficients for the motion and texture
cues, denoted wM and wT, are chosen based on the
estimated reliabilities of these cues. This article
discusses linear cue combination rules for depth
because they are commonplace in the vision science
literature, they have received a considerable degree of
empirical support across a wide variety of experimental
conditions [4,5,12,16], and they are both easy to
understand and sufficient for illustrating many of our
main points. (As an aside, the reader should understand
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that results inconsistent with a linear rule have also
appeared in the literature [6,21,25], that information
from multiple cues cannot always be directly averaged
because these cues provide different types of
information [see the discussion of cue promotion in
Landy et al. [12]], and that alternative models of how
observers combine information from multiple cues
have been proposed [6,17,21,29].)

An important hypothesis concerning visual cue
reliabilities is that the estimated reliability of a 
cue should be related to the ambiguity of the cue, 
such that highly ambiguous cues are regarded as
unreliable and less ambiguous cues are regarded 
as reliable. This idea is nicely illustrated by a
mathematical model known as a Kalman filter, which
is an instance of a maximum likelihood estimator.
According to one version of a Kalman filter, a cue is
reliable if the distribution of inferences based on that
cue has a relatively small variance; otherwise the cue
is regarded as unreliable. In addition, more reliable
cues are assigned a larger weight in a linear cue
combination rule, and less reliable cues are assigned
a smaller weight (see Box 1 and Fig. 1). Continuing
with our example from above, let d denote a possible
depth of a visual object, and let m and t denote the
values of the motion and texture cues. In addition, let
d*m denote the optimal estimate of visual depth based
solely on the motion cue [this is the depth d that
maximizes the probability of a depth value given the
motion cue, P(d|m)], let d*t denote the optimal depth
estimate based solely on the texture cue [the depth d
that maximizes P(d|t)], and let d* denote the optimal
depth estimate based on both motion and texture cues
[the depth d that maximizes P(d|m,t)]. Given certain

mathematical assumptions, Yuille and Bülthoff [29]
used Bayes’ rule to show the following result:

d* = wmd*m + wtd*t [Eqn 2]

where

[Eqn 3]

and σ2
m and σ2

t are the variances of the distributions
P(d|m) and P(d|t) respectively. This version of the
Kalman filter (Eqns 2 and 3) has several appealing
properties. First, the optimal estimate of depth based
on both motion and texture cues is a linear combination
of the optimal estimates based on the individual cues.
Second, the linear coefficients, the weights wm and wt,
are non-negative and sum to one. Finally, the weight on
a cue, such as the motion weight wm, is large when the
cue is relatively reliable (the variance σ2

m is smaller
than the variance σ2

t ), and small when the cue is
relatively unreliable (σ2

m is larger than σ2
t ).

Equations 2 and 3 specify the statistically optimal
cue combination rule given certain mathematical
assumptions. They do not, however, tell us how
human observers combine information from multiple
visual cues. Do human observers use optimal cue
combination strategies? Several researchers have
addressed this question and found that the optimal
cue combination rule predicts qualitatively
[11,12,16,26] and quantitatively [19,27] observers’
responses in a wide variety of circumstances.

The images that fall on our retinas are two-
dimensional, yet we perceive the visual world
in three dimensions. When thinking about this
remarkable accomplishment, we should
consider why it is that deriving three-
dimensional perceptions from two-
dimensional images might be a difficult
computational problem for the brain to solve.
This question is commonly answered with
reference to the ‘inverse optics problem’: given
a two-dimensional image, the observer needs
to determine the three-dimensional scene from
which the image is a projection. This is a
difficult problem because every two-
dimensional image is consistent with an
infinite number of three-dimensional scenes.

Another way of approaching the inverse
optics problem is to consider cue ambiguity.
Every visual cue is ambiguous. There are many
reasons underlying this ambiguity, including
physical factors, such as atmospheric or optical
blurring, and biological factors, such as noise
inherent to human nervous systems.
Therefore, there is no ‘correct’ interpretation of
a cue. Consider an observer viewing a coffee-
cup. The visual environment provides many
cues to the shape and depth of this cup. Now
consider one particular cue, such as a shading

cue, to the depth of the coffee-cup (this depth
might be defined, for instance, as the distance
from the point on the cup closest to the
observer to the point furthest away). The

horizontal axis of the graph in Fig. I gives
possible values of the depth, and the vertical
axis gives the conditional probability of a depth
conditioned on the value of the cue. This
probability distribution is not a delta function;
that is, the cue is not consistent with one, and
only one, depth value. Rather, the cue is
consistent, to a lesser or greater degree, with a
range of depth values. If the variance of the
probability distribution is relatively small, 
then the observer might believe that the 
cue is reliable because it specifies the cup’s
depth as lying within a narrow range.
Consequently, the observer should make
extensive use of the information provided 
by this cue. If, however, the variance is
relatively large, then the observer might
believe that the cue is unreliable because it is
consistent with many possible depths. In this
case, the observer might ignore the
information provided by this cue, or at least
discount the information provided by this 
cue relative to the information provided by
other, more reliable, cues. An observer that
follows the logic outlined here would be acting
in accordance with a mathematical model
known as a Kalman filter, as discussed in 
the text.

Box 1. Visual cues are ambiguous
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Fig. I. The visual environment typically provides many
cues to the depth of an object. Consider one particular
cue. The horizontal axis of this graph gives possible
values of the object depth, and the vertical axis gives
the conditional probability of each possible depth
conditioned on the value of the cue. Note that the cue
is ambiguous with respect to object depth because it is
consistent, to a lesser or greater degree, with many
possible depths.
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Observers seem to judge the reliability of a cue as
being inversely proportional to the variance of the
distribution of inferences based on that cue. It is not
known, however, how observers estimate this
variance. A possibility that might be applicable to
many visual environments is that observers evaluate
a cue at different points in time. To investigate this
possibility, Triesch et al. [28] conducted an
experiment in which the consistency of cues was
manipulated over time. For example, on a particular
trial the color of an object might have changed rapidly,
meaning that color is a poor predictor for an object’s
identity. By contrast, an object’s shape either might
not have changed or it changed infrequently, meaning
that shape is a better predictor of identity in this
situation. They found that observers tended to assign
a large weight to information provided by a cue that
did not change its value in the recent past, and assign
small weights to cues that recently changed their
values. Moreover, their judgments of cue variances
seemed to require the temporal integration of
information over a 1-second time window.

A second possibility, discussed by Ernst and 
Banks [27], is that a neural representation of a scene
property might encode the ambiguity of a sensory cue.
For example, consider an observer viewing an object
defined by a stereo cue. Presumably, the activities of
neurons in the observer’s visual cortex form a neural

population code that represents an estimate of the
object’s depth and also the uncertainty in this estimate.
If the population code is shaped like a normal
distribution, such that the mean and variance of this
distribution represent the depth estimate and the
uncertainty in this estimate, respectively, then the
nervous system could implement a Kalman filter in a
direct manner. The product of two normal-shaped
population codes, based on two sensory cues such as
stereo and texture cues to depth, is also a normal-
shaped population code. The mean and variance of this
new code represent the optimal depth estimate based
on both cues and the uncertainty in this estimate.

Cue reliabilities and cue correlations

A second important hypothesis regarding observers’
assessments of cue reliabilities is that these assessments
are based on cue correlations. That is, a cue is
regarded as reliable if the inferences based on 
that cue are consistent with the inferences based on
other cues in the environment. Otherwise, the cue is
regarded as unreliable. This hypothesis assumes that
consistency among cues is unlikely to occur by
accident. Instead, it is more probable that this
consistency arises because the values of different cues
are determined by the same underlying property of
the environment. Using cue correlations, there are at
least two ways that observers can adapt their visual
perceptions so as to make them more veridical.
Observers can adapt their cue combination strategies
by increasing the cue weights associated with reliable
cues and decreasing the weights associated with
unreliable cues. In addition, observers can adapt their
interpretations of individual unreliable cues so that
these interpretations are more consistent with those
based on reliable cues. This might occur, for example,
if texture indicates a value of an object’s depth and is
judged to be an unreliable cue, whereas motion
indicates a different depth value and is regarded as a
reliable cue. An observer in this circumstance can
adapt his or her depth-from-texture estimates 
so that they are more consistent with his or her
depth-from-motion estimates.

This view is perhaps most closely associated with
the theorizing of Hans Wallach [30]. He believed 
that in every perceptual domain, such as depth or
shape perception, there is one primary source of
information, usable innately and not modifiable by
experience. Other cues are acquired later, through
correlation with the innate process. For example,
Wallach considered the phenomenon of induced
motion, an illusion in which a small stationary object
is perceived as moving when it is surrounded by a
larger moving object (e.g. when a large cloud passes in
front of the moon, it often seems as if the moon is
moving through the cloud). He conjectured that this
illusion can be accounted for as follows. Suppose that
image displacement is the primary cue to visual
motion. Observers have learned about other cues to
visual motion because these cues are correlated with
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Fig. 1. Consider a Kalman filter estimating the depth of an object based
on two cues, labeled A and B. The horizontal axis of each graph in this
figure represents possible depth values, and the vertical axis represents
the probability of a depth value. In each graph is shown the probability
of depth given cue A, the probability of depth given cue B, and the
filter’s optimal depth estimate given both cues. The optimal depth
estimate based on both cues is a weighted average of the means of the
distributions based on single cues. If the distribution of depth given one
cue is equal to the distribution given the other cue, then the weights
used in the average are equal and the optimal estimate is halfway
between the two means (top graph). If, however, the depth distribution
given cue A has a smaller variance than the distribution given cue B,
then the mean based on cue A is assigned a larger weight than the
mean based on cue B and the optimal estimate is closer to the mean
based on cue A (bottom graph).
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image displacement. In particular, configurational
change, the changing configuration in the vicinity of a
moving object caused by the object’s changing position
relative to other image contents, tends to start and
stop simultaneously with image displacement and
perceived motion. Observers have learned, therefore,
that it too can be regarded as a cue to visual motion.
Consequently, the configurational change that occurs
when a large cloud passes in front of the stationary
moon leads observers to misperceive the moon as
moving through the cloud.

It is worth noting that the use of cue correlations to
estimate the reliabilities of visual cues is not limited 
to correlations among visual cues. Instead observers
might correlate visual cues with those occurring in
other sensory modalities. It has often been speculated
that people learn to visually perceive the world by
comparing their visual percepts with percepts
obtained during motor interactions with the
environment [for example, observers can correlate
visual and haptic (touch) percepts of the depth of 
their coffee-cup when they view and grasp their
coffee-cup]. Historically, this idea might have been
proposed first by Bishop George Berkeley [31].
Berkeley speculated that visual perception of 
depth results from associations between visual 
cues and sensations of touch and motor movement. 
A frequently cited quote from his book is that ‘touch
educates vision.’Piaget [32] used similar ideas to
explain how children learn to interpret and attach
meaning to retinal images based on their motor
interactions with physical objects.

The question of whether or not observers assess
the reliabilities of visual cues based on consistencies
between visual and haptic percepts has been
addressed in a direct and detailed manner in recent
studies [22,24]. For example, Atkins et al. [24] used a
virtual reality environment that allowed observers to

view and grasp elliptical cylinders. Visually, the
cylinders were defined by texture and motion cues
(the texture cue is illustrated in Fig. 2). A haptic
percept of the depth of a cylinder was obtained when
an observer grasped the cylinder along the depth axis
with his or her thumb and index fingers (see Fig. 3).
On each trial, observers viewed and grasped a
cylinder, and judged whether their visual and haptic
percepts of the cylinder’s depth were the same or
different (no feedback was given to observers
regarding the correctness of their judgments). In the
texture-relevant experimental condition, the haptic
and visual texture cues indicated the same cylinder
depth, whereas the visual motion cue indicated a
cylinder depth that was uncorrelated with the depth
indicated by the haptic cue. Observers tended to
adapt their visual cue combination strategies by
increasing the weight assigned to the visual 
texture cue and decreasing the weight assigned to 
the motion cue. This result suggests that observers
(unconsciously) noticed that the haptic and texture
cues were correlated whereas the haptic and motion
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Fig. 2. Two examples of elliptical cylinders (i.e. cylinders whose
horizontal cross-sections are ellipses) defined by a texture cue. 
The cylinder on the right should appear to extend in depth more 
than the cylinder on the left.
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Fig. 3. Top panel: the experimental apparatus used by Atkins et al. [24]
consisted of virtual reality goggles and two PHANToM™ 3D Touch
interfaces that were attached by two fingerholders to an observer’s thumb
and index fingers. This apparatus allowed observers to interact physically
with virtual objects viewed via the goggles in a natural way using a wide
range of movements (e.g. grasping, moving, or throwing objects). The
3D Touch interfaces generated force fields that created haptic sensations
(e.g. weight, hardness, friction) appropriate to the motor interactions with
the object displayed in the goggles. Bottom panel: an observer is
grasping a (virtual) elliptical cylinder. Because of the forces generated by
the 3D Touch interfaces, he cannot close his fingers any further, and so he
feels as if he is grasping the rigid surfaces of the cylinder.
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cues were uncorrelated and, thus, they regarded the
texture cue as reliable and the motion cue as
unreliable. In the motion-relevant condition, 
by contrast, the cylinder depths indicated by 
haptic and motion cues were identical, whereas the
texture cue indicated a cylinder depth that was
uncorrelated with the depth indicated by the 
haptic cue. In this condition, observers tended to
adapt their visual cue combination strategies by
increasing the weight assigned to motion and
decreasing the weight assigned to texture, suggesting
that they regarded motion as relatively more reliable
than texture. Overall, these results suggest that
observers can correlate visual and haptic cues to
assess the relative reliabilities of the visual cues
available in the environment.

This study, among others [20,22], suggests that
observers use cue correlations to determine the
reliabilities of available visual cues, and then adapt
their visual cue combination strategies to emphasize
information provided by reliable cues. An alternative
way in which cue correlations can play a role in 
visual learning is in the adaptation of observers’
interpretations of individual cues. This form of
adaptation is known as cue recalibration; when it
occurs on the basis of cue correlations it is also known
as recalibration by pairing. The study of this form of
visual learning was commonplace in the 1960s and
1970s [33]. Recently, however, cue recalibration has
been examined again.

Adams et al. [23], for example, asked observers to
wear a horizontal magnifier in front of one eye for
several days. Initially observers perceived large
three-dimensional distortions owing to the magnifier,
although the magnitude of these perceived distortions
diminished during the course of the experiment.
Before, during, and after wearing the magnifier,
observers were tested on a set of slant perception
tasks in which they judged the slant of a planar
surface defined by binocular disparity and/or texture
cues. Their judgments with texture-defined surfaces
did not change during the course of the experiment,
indicating that they did not recalibrate their
perceived slant from texture. In addition, when
surfaces were defined by both texture and disparity
cues, observers’ cue weights in a linear cue
combination rule did not change during the
experiment, indicating that changes in perceived
slant were not due to an adaptation of these weights.
It was found, however, that observers’ judgments with
disparity-defined surfaces changed dramatically
during the course of the experiment. In conjunction
with the results from a control experiment, this
finding suggests that observers recalibrated their
interpretation of binocular disparities in response to
the presence of a horizontal magnifier by adapting the
mapping between disparity and perceived slant.

Concluding remarks

Visual environments often contain many cues to
properties of an observed scene. To integrate
information provided by multiple cues in an efficient
manner, observers must assess the degree to 
which each cue provides reliable versus unreliable
information. This article has reviewed two hypotheses
regarding how observers might estimate cue
reliabilities. One hypothesis is that the estimated
reliability of a cue is related to the ambiguity of the
cue, such that highly ambiguous cues are regarded as
unreliable and less ambiguous cues are regarded 
as reliable. This idea underlies the operations of a
mathematical model known as a Kalman filter. 
A second hypothesis is that people use cue correlations
to estimate cue reliabilities. A cue that is correlated
with other cues in the environment is regarded as
reliable, whereas a cue that is uncorrelated with other
cues is regarded as unreliable. Based on these
estimates of cue reliabilities, people adapt their cue
combination rules so as to place more weight on
information derived from reliable cues. They also
recalibrate their interpretations of unreliable cues so
that these interpretations are more consistent with
those based on reliable cues. Consequently, cue
reliabilities are important both for cue combination
and for aspects of visual learning.

• Cue variances and cue correlations are two statistical measures that a visual
system can use to estimate how informative a cue is about the true state of an
environment. What is the mechanism(s) for estimating cue reliabilities? A general
purpose mechanism that computes statistical measures in a large number of
domains and a domain-specific mechanism that is limited to computing
properties of the visual world have been proposed [20]. What are the similarities
and differences between the mechanisms estimating visual cue reliabilities and
related statistical mechanisms operating in other domains?

• Estimating cue reliabilities is likely to be complex owing to context
dependencies. For example, people rely on depth-from-stereo information more
than depth-from-motion information when viewing nearby objects but not when
viewing distant objects [1,2]. What are the exact conditions in which each visual
cue is highly informative versus less informative about the true state of the
environment?

• Wallach [30] speculated that there is one primary source of information in every
perceptual domain that is usable innately and not modifiable by experience, and
that other cues are acquired later through correlation with the innate process. If
so, then how do we identify which perceptual cues are usable innately and which
are learned on the basis of experience? Developmental studies might shed light
on this issue.

• From a neuroscientific perspective, how do correlations among visual cues and
cues from other sensory modalities help observers estimate the reliabilities of
available visual cues? Research is finding evidence for brain regions that are not
specialized for individual sensory domains but instead are multimodal [34].
Could these multimodal regions subserve the correlation of visual cues with cues
from other senses for the purpose of estimating visual cue reliabilities? If so, how?

Questions for future research
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Reading or hearing a sentence such as ‘The little 
old man knocked out the giant wrestler’ demonstrates
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