
LETTER Communicated by Zoubin Ghahramani

Factorial Hidden Markov Models and the Generalized
Back�tting Algorithm

Robert A. Jacobs
robbie@bcs.rochester.edu
Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY
14627, U.S.A.

Wenxin Jiang
jiang@orie.cornell.edu
School of Operations Research and Industrial Engineering, Cornell University, Ithaca,
NY 14853, U.S.A.

Martin A. Tanner
tanm@neyman.stats.nwu.edu
Department of Statistics, Northwestern University, Evanston, IL 60208, U.S.A.

Previous researchers developed new learning architectures for sequential
data by extending conventional hidden Markov models through the use of
distributed state representations. Although exact inference and parameter
estimation in these architectures is computationally intractable, Ghahra-
mani and Jordan (1997) showed that approximate inference and parameter
estimation in one such architecture, factorial hidden Markov models (FH-
MMs), is feasible in certain circumstances. However, the learning algo-
rithm proposed by these investigators, based on variational techniques,
is dif�cult to understand and implement and is limited to the study of
real-valued data sets. This chapter proposes an alternative method for ap-
proximate inference and parameter estimation in FHMMs based on the
perspective that FHMMs are a generalization of a well-known class of
statistical models known as generalized additive models (GAMs; Hastie
& Tibshirani, 1990). Using existing statistical techniques for GAMs as a
guide, we have developed the generalized back�tting algorithm. This al-
gorithm computes customized error signals for each hidden Markov chain
of an FHMM and then trains each chain one at a time using conventional
techniques from the hidden Markov models literature. Relative to previ-
ous perspectives on FHMMs, we believe that the viewpoint taken here
has a number of advantages . First, it places FHMMs on �rm statistical
foundations by relating them to a class of models that are well studied in
the statistics community, yet it generalizes this class of models in an inter-
esting way. Second, it leads to an understanding of how FHMMs can be
applied to many different types of time-series data, including Bernoulli

Neural Computation 14, 2415–2437 (2002) c° 2002 Massachusetts Institute of Technology

2416 Robert A. Jacobs, Wenxin Jiang, and Martin A. Tanner

and multinomial data, not just data that are real valued. Finally, it leads
to an effective learning procedure for FHMMs that is easier to under-
stand and easier to implement than existing learning procedures. Simu-
lation results suggest that FHMMs trained with the generalized back�t-
ting algorithm are a practical and powerful tool for analyzing sequential
data.

1 Introduction

Researchers in the neural computation community often �nd it useful to
distinguish between single-cause and multiple-cause generative models. In
single-cause models, each data item is generated by an individual source.
Mixture models are a good example of single-cause models because individ-
ual data items are generated by sampling from a single mixture component.
In multiple-cause models, in contrast, each data item is generated by com-
bining the in�uences of multiple sources. Factor models are an important
example of multiple-cause models. Individual data items in this case are
generated by linearly combining the values of a set of latent variables and
then adding gaussian noise to this sum.

Recently the distinction between single-cause and multiple-cause mod-
els has become important when studying sequential data such as time-series
data. A conventional method for summarizing sequential data is to use hid-
den Markov models (HMMs), which are a generalization of mixture models.
In addition to several mixture components, they include a state variable that
indicates the mixture component active at the current time step and a set
of transition probabilities that indicates the likelihood that each component
will become active given the previously active component. Consider the
time-series data set Y D fy(t)gT

tD1 where y(t) is a scalar and T is the duration
of the series.1 The assumed generative model is that at each time step, a
new active component is selected according to the transition probabilities,
and an output of the model is sampled from the selected component. This
is illustrated in Figure 1(A). The vector q in this �gure is the model’s state
variable, and y is its output variable. The elements of q are equal to zero
except for the element corresponding to the active mixture component; this
element is set to one. Initially (at t D 1), the active mixture component is
sampled from a multinomial distribution, and the output y(1) is sampled
from the chosen component. Subsequently (for t > 1), a new active compo-
nent is sampled from a multinomial distribution whose parameters depend
on the previous active component; then the output y(t) is generated by the
new active mixture component. This process continues for the duration of
the time series.

1 Without loss of generality, we limit our discussion to one-dimensional data. The
extension to multidimensional data is straightforward.

FHMMs and Generalized Back�tting 2417

q (t­ 1)
q

(t) q
(t+1)

y (t­ 1) y (t)
y (t+1)

q (t­ 1)
1 q

(t)
1 q

(t+1)
1

q (t­ 1)
2 q

(t)
2 q

(t+1)
2

q (t­ 1)
3 q

(t)
3

q
(t+1)
3

y (t­ 1) y (t) y (t+1)

A

B

Figure 1: (A) A graphical representation of a hidden Markov model. (B) A
graphical representation of a factorial hidden Markov model with three hid-
den Markov chains.

2418 Robert A. Jacobs, Wenxin Jiang, and Martin A. Tanner

HMMs have several attractive features. They can model data that violate
the stationarity assumptions characteristic of many other time-series mod-
els. In addition, there exists an expectation-maximization (EM) algorithm,
known as the Baum-Welch algorithm, for �nding maximum likelihood es-
timates of the parameter values of an HMM (Baum, Petrie, Soules, & Weiss,
1970; Rabiner & Juang, 1993). This algorithm is easy to understand and
easy to implement. Unfortunately, HMMs have disadvantages too, and re-
searchers continue to look for better models. An important disadvantage
of HMMs is that they are instances of single-cause models and thus are
inef�cient from a representational viewpoint. The history of a time series
up to time step t is represented by the active mixture component at time
t indicated by the multinomial state variable q (t) . As Williams and Hinton
(1991) pointed out, the multinomial assumption makes HMMs representa-
tionally inef�cient. Due to this assumption, HMMs need 2N possible values
for the state variable (i.e., 2N mixture components) to represent N bits of
information about the history of a time series.

To remedy the representational inef�ciency of HMMs, Williams and Hin-
ton (1991) proposed generalizing HMMs through the use of distributed state
representations. Ghahramani and Jordan (1997) studied a special case of this
generalization, which they referred to as factorial hidden Markov models
(FHMMs), and considered the use of FHMMs for summarizing real-valued
time-series data. The most important feature of FHMMs is that they con-
sist of multiple hidden Markov chains (see Figure 1B). Each of the chains
contains a number of components along with a multinomial state variable
that indicates the component that is active at the current time step and a
set of transition probabilities that gives the likelihood that each component
will become active given the previously active component. Chains are in-
dependent of each other; they do not interact when generating data. The
output of the model at each time step is, however, dependent on the val-
ues of the state variables of all the chains. Hence, FHMMs are instances of
multiple-cause generative models. Real-valued time-series data are gener-
ated as follows. At each time step, each chain determines its active com-
ponent by sampling from a multinomial distribution whose parameters
depend on the previous active component. Then an output contribution
is made by each chain that is dependent on the chain’s currently active
component. The sum of the contributions of all the chains is the mean of
a gaussian distribution, and a sample from this distribution is the output
of the entire model. In contrast to conventional HMMs, FHMMs are ef-
�cient from a representational viewpoint. If each chain has two compo-
nents, meaning that each chain’s state variable is binary, then an FHMM
needs N state variables (i.e., N hidden Markov chains with a total of 2N
components) to represent N bits of information about the history of a time
series.

Factorial hidden Markov models are a special case of dynamic Bayesian
networks (DBNs). These networks are directed graphical models of stochas-

FHMMs and Generalized Back�tting 2419

tic processes that generalize HMMs by representing the hidden state in
terms of state variables with possibly complex interdependencies. Due to
these interdependencies, exact maximum likelihood estimation is typically
computationally intractable in DBNs, though the study of learning proce-
dures that perform approximate estimation is an active area of research
(Boyen & Koller, 1999; Dean & Kanazawa, 1988; Murphy & Weiss, 2001).
FHMMs are a special case of DBNs in the sense that they use multiple state
variables, though they do not permit the state variables to interact with each
other.

Although FHMMs are appealing generative models, they are dif�cult to
use for the purposes of statistical inference. In particular, the EM algorithm
for �nding maximum likelihood estimates of an FHMM’s parameter values
is computationally intractable (Ghahramani & Jordan, 1997). The problem
occurs during the E-step of the algorithm when one is attempting to infer the
expected value of each chain’s state variable at each time step given the time-
series data. Although the state variables of the hidden Markov chains are
marginally independent, these variables are conditionally dependent given
the time-series data. Intuitively, the computational intractability stems from
the cooperative nature of the model; the settings of all the state variables
cooperate in determining the mean of the time-series data at each time step.
When inferring the expected value of one chain’s state variable given the
time-series data, it is therefore necessary to sum over all possible values of
the other chains’ state variables. Ghahramani and Jordan developed a pro-
cedure for performing inference in FHMMs through the use of the junction
tree algorithm, a popular algorithm for performing inference in graphical
models. The time complexity of the procedure is O(TMKMC1), where T is the
duration of the time series, M is the number of hidden Markov chains, and K
is the number of components in each chain. This exponential time complex-
ity makes exact inference and maximum likelihood parameter estimation
intractable.

Because exact inference and parameter estimation in FHMMs is intract-
able, Ghahramani and Jordan (1997) studied approximate inference and
parameter estimation. The primary focus of their article was on the use
of variational techniques to approximate the posterior distribution of the
state variables given the time series. In short, the idea is to approximate
this distribution with another distribution that can be computed ef�ciently
and can be shown using Jensen’s inequality to provide a basis for a lower
bound on the log-likelihood of the time series data. The parameters of the
approximating distribution are found by minimizing the Kullback-Leibler
distance between this distribution and the true posterior distribution (Jor-
dan, Ghahramani, Jaakkola, and Saul, 1998). The resulting approximating
distribution can be used to obtain an ef�cient parameter estimation algo-
rithm. Ghahramani and Jordan showed that an FHMM trained using the
variational approximation captured statistical structure in a time-series data
set that a conventional HMM did not.

2420 Robert A. Jacobs, Wenxin Jiang, and Martin A. Tanner

In this article, we propose an alternative method for approximate in-
ference and parameter estimation in FHMMs that we call the generalized
back�tting algorithm. This method is based on the perspective that FHMMs
are a generalization of a well-known class of statistical models known as
generalized additive models (GAMs; see Hastie & Tibshirani, 1990). GAMs
are a method for mapping covariate or input variables to response or output
variables and can be used in any setting in which generalized linear models
are applicable, such as linear, logistic, or log-linear regression, the analysis
of multinomial data, or the analysis of censored survival data. Consider a
data set in which covariate variables x1, x2, and x3 are mapped to response
variable y: fx(n)

1 , x(n)
2 , x(n)

3 ! y(n)gN
nD1 where n indexes individual data items.

When regarded as a generative model, GAMs assume that each data item is
generated by �rst summing contributions made on the basis of individual
covariate variables and then mapping this sum to a conditional mean of the
response using a function h:

E[y(n) |x(n)
1 , x(n)

2 , x(n)
3] D h[f1 (x(n)

1) C f2 (x(n)
2) C f3 (x(n)

3)], (1.1)

where f1 (x(n)
1), f2 (x(n)

2), and f3 (x(n)
3) are the contributions made on the basis

of the individual covariates, and h is an appropriately selected monotonic
and differentiable function. The response y(n) is then sampled from an ap-
propriate distribution with the given conditional mean.

When used for statistical inference, GAMs are appealing because they are
simple. Rather than consider the relationship between all covariate variables
and a response variable, GAMs attempt to circumvent the “curse of dimen-
sionality” by iteratively considering each individual covariate variable one
at a time. This training procedure for GAMs is known as the back�tting algo-
rithm. When the parameters of a GAM are estimated, a mapping is learned
from each covariate variable to a residual error, where the error is based on
the value of the response variable and the sum of the contributions based
on the remaining covariate variables. Consider the case where the response
is real valued, and we are interested in updating the parameters of f1, the
function giving the contribution based on covariate x1. Then the residual
error e(n)

1 on data item n that corresponds to x(n)
1 is

e (n)
1 D y(n) ¡ [f2 (x(n)

2) C f3 (x(n)
3)]. (1.2)

The parameters of f1 are updated so that f1 (x(n)
1) more closely approximates

e(n)
1 for each data item. The back�tting algorithm cycles through updates of

the functions f1, f2, and f3 until convergence.
The parameter estimation method for FHMMs proposed in this article

takes advantage of the fact that FHMMs are additive models; at each time
step, each hidden Markov chain makes an output contribution based on
the value of its state variable, and the sum of these contributions is used to

FHMMs and Generalized Back�tting 2421

determine the conditional mean of the time-series data. As a result, lessons
learned from the study of GAMs can be applied to FHMMs. The method
treats learning in FHMMs and GAMs as similar in the sense that it uses
an iterative procedure that considers each chain’s state variable one at a
time. More precisely, it considers the mapping at each time step between
each chain’s state variable and a residual error where the error is based
on the current value of the time-series data and the sum of the contribu-
tions based on the remaining chains’ state variables. However, learning in
FHMMs is also different from learning in GAMs. Whereas each stage of
learning in GAMs considers the known value of a covariate variable, each
stage of learning in FHMMs considers the unknown value of a hidden state
variable. Fortunately, however, because each chain’s state variable is con-
sidered separately, the expected value of this variable can be computed
ef�ciently using standard hidden Markov model techniques. The end re-
sult is a learning algorithm that closely resembles the back�tting algorithm
used to train GAMs. Like the conventional back�tting algorithm, the pro-
posed procedure is simple and effective. Unlike the conventional back�tting
algorithm, however, the proposed procedure does not produce maximum
likelihood parameter estimates. The need to estimate the expected values
of the chains’ state variables means that the procedure is an approximate
method.

The article is organized as follows. Section 2 provides an overview of
GAMs, describes how FHMMs can be viewed as generalizations of them,
and describes the generalized back�tting algorithm. Relative to previous
perspectives on FHMMs, we believe that the viewpoint taken here has a
number of advantages. First, it places FHMMs on a �rm statistical foun-
dation by relating FHMMs to a class of models that is well studied in the
statistics community, yet it generalizes this class of models in an interest-
ing way. Second, it leads to an understanding of how FHMMs can be ap-
plied to many different types of time-series data, including Bernoulli and
multinomial data, not just data that are real valued. Finally, it leads to an
effective learning procedure for FHMMs that is easier to understand and
easier to implement than existing learning procedures. Using this learn-
ing procedure, we believe that FHMMs are now a practical tool for ana-
lyzing sequential data. Section 3 provides some analytical results regard-
ing the application of the generalized back�tting algorithm to FHMMs.
This section clari�es several of the theoretical properties of the algorithm.
Section 4 presents simulation results comparing the performances of FH-
MMs trained with the generalized back�tting algorithm to FHMMs trained
with other learning procedures. The results suggest that FHMMs trained
with any of the candidate algorithms have similar levels of performance
when summarizing real-valued time series and that the new learning pro-
cedure proposed here outperforms alternative algorithms when summa-
rizing multinomial time series. A summary and conclusions are presented
in section 5.

2422 Robert A. Jacobs, Wenxin Jiang, and Martin A. Tanner

2 FHMMs and GAMs

We begin this section by providing a brief overview of GAMs. A thorough
treatment can be found in Hastie and Tibshirani (1990).

GAMs are closely related to generalized linear models (GLIMs) and can
be understood by comparing them with GLIMs (McCullagh & Nelder, 1989).
From a generative perspective, GLIMs generate data items using a three-
stage process. First, a linear combination of the covariate variables, denoted
g, is formed,

g D
MX

mD1

xmbm, (2.1)

where x1, . . . , xM is a set of covariates and b1, . . . , bM is a set of coef�cients.
Next, a monotonic and differentiable function, denoted h, maps the linear
combination g to the expected value of the response variable y given the
values of the covariates:

E (y | x1, . . . , xM) D h(g). (2.2)

Finally, the value of the response y is sampled from an output distribution.
The choices of the distribution and the function h depend on the nature of
the response variable. If, for example, the response y is real valued, then it is
common to assume that y has a gaussian distribution and that the function
h is the identity function. As a second example, if the response y is binary,
then it is assumed that y has a Bernoulli distribution and that the function
h is the logistic function. In general, the distribution of the response is a
member of the exponential family of distributions. If h is chosen so that g

equals the natural parameter of the distribution, then h¡1 is known as the
canonical link function for the distribution.

For the purposes of statistical inference, estimates of the values of the co-
ef�cients b1, . . . , bM are typically obtained using the iteratively reweighted
least-squares (IRLS) algorithm. This algorithm is an instance of a Newton-
Raphson algorithm, and if h is chosen so that its inverse is a canonical link
function, then the algorithm is also a special case of the Fisher scoring proce-
dure. In short, the linearized response z(n) for the nth data item is computed
as the �rst-order Taylor’s series approximation to h¡1 (y(n)) about the cur-
rent estimate E(y(n) | x(n)

1 , . . . , x(n)
M). New estimates of the coef�cients are

formed by weighted linear regression of the linearized responses for all
data items onto the covariate variables with weights that are proportional
to the variances of the linearized responses (see McCullagh & Nelder, 1989,
for details). This process is repeated until the parameter estimates converge.
The IRLS algorithm is attractive because no special optimization software
is required, just a function that computes weighted least-squares estimates.

FHMMs and Generalized Back�tting 2423

Consider the case when the response variable y is real valued with a
gaussian distribution and the function h is the identity function. Then the
linear combination g D

P
m xmbm is the conditional mean of a gaussian dis-

tribution given values for the covariates. When the IRLS algorithm is used
to estimate the values of the coef�cients, the linearized response z is equal
to the actual response y and the weights are equal to one. That is, the IRLS
algorithm reduces to conventional linear regression. As a second example,
consider the case when the response y is binary with a Bernoulli distribution
and the function h is the logistic function. In this case, the linearized response
(i.e., the �rst-order Taylor’s series approximation described above) is

z D g C
y ¡ h(g)

h(g) (1 ¡ h(g))
, (2.3)

and the weights (i.e., the variances of the linearized responses) are

w D h(g)(1 ¡ h(g)). (2.4)

Intuitively, a weight is small when the variance is small because the response
y is close to its expected value h D E[y] in this case and, thus, the residual
y ¡ h is small. In contrast, a weight is large when the variance is large.
The IRLS algorithm performs a weighted least-squares regression of the
linearized responses onto the covariates. This regression must be iterated
because new estimates of the coef�cients lead to new linearized responses
and weights.

GAMs differ from generalized linear models in that an additive com-
bination replaces the linear combination. From a generative perspective,
GAMs generate data items using a three-stage process. First, an additive
combination based on the covariates, denoted g, is formed:

g D
MX

mD1

fm (xm), (2.5)

where the fms are arbitrary univariate functions, one for each covariate.
Next, a monotonic and differentiable function h maps the additive combi-
nation g to the expected value of the response variable y given the values
of the covariates:

E(y | x1, . . . , xM) D h(g). (2.6)

Finally, the value of the response y is sampled from an output distribution.
As in the case of GLIMs, the choices of the distribution and the function h
depend on the nature of the response variable.

When statistical inference is performed, the parameters of the fms need to
be estimated. The IRLS algorithm for GAMs is essentially unchanged from

2424 Robert A. Jacobs, Wenxin Jiang, and Martin A. Tanner

its form for GLIMs with the exception that a weighted additive regression
is used instead of a weighted linear regression. First, linearized responses
z and weights w are computed for all data items. Then the parameters of
the fms are updated by performing a weighted additive regression of the
linearized responses onto the covariates. The back�tting algorithm is used
to perform this weighted additive regression.

When applied to GAMs, the IRLS algorithm de�nes the linearized re-
sponse z and the weight w in the same way as when the algorithm is ap-
plied to GLIMs. For example, if the response variable is real valued with a
gaussian distribution and the function h is the identity function, then the
linearized response z equals the actual response y and the weights equal
one. If the response variable is binary with a Bernoulli distribution and the
function h is the logistic function, then the linearized response and weight
are given by equations 2.3 and 2.4, respectively. The back�tting algorithm it-
eratively considers each individual covariate variable one at a time in order
to perform the weighted additive regression. It �rst forms a residual error
equal to the difference between the value of the linearized response and the
sum of the contributions based on the remaining covariate variables. The
residual error corresponding to the mth covariate on the nth data item is

e (n)
m D z(n) ¡

X

i 6Dm

fi (x
(n)
i). (2.7)

Next, the parameters of fm are updated so that the contribution based on the
mth covariate approximates the error e(n)

m for each data item in proportion to
theweight for that data item. This process is repeated for all of the covariates,
possibly multiple times.

An important point of this article is that factorial hidden Markov models
can be regarded as a generalization of GAMs.From a generative perspective,
the three-stage process by which FHMMs generate data is similar to the
process by which GAMs generate data. First, at each time step, each hidden
Markov chain makes an output contribution based on the value of its hidden
state variable, and an additive combination of these contributions is formed.
The contribution of chain m, denoted fm (qm), is given by fm (qm) D ¹0

mqm,
where ¹m is a K-dimensional vector of parameters (¹0

m is the transpose
of ¹m). The additive combination of the output contributions from all M
chains, denoted g, is

g D
MX

mD1

fm (qm). (2.8)

Next, a monotonic and differentiable function h maps the additive combi-
nation g to the expected value of the response variable y given the values
of the state variables:

E (y | q1, . . . , qM) D h(g). (2.9)

FHMMs and Generalized Back�tting 2425

Finally, the value of y is sampled from an output distribution. As in the
case of GLIMs and GAMs, the choices of the distribution and the function
h depend on the nature of the response variable. Note that both GAMs and
FHMMs map a set of variables—covariate variables x1, . . . , xM in the case
of GAMs and hidden state variables q1, . . . , qM in the case of FHMMs—to a
response variable. Both of these classes of models also perform this mapping
using an additive combination, not a linear combination, and then map this
combination to a response using the inverse of a canonical link function.

When performing statistical inference using FHMMs, it is important to
keep in mind that GAMs and FHMMs have both similarities and differences.
The most signi�cant difference is that GAMs consider the known values of
covariate variables, whereas FHMMs consider the unknown values of hid-
den state variables. The similarities between the two classes of models mean
that the parameter estimation algorithm for GAMs can be a useful guide to
parameter estimation in FHMMs. The differences mean that the estimation
algorithm for GAMs cannot be applied to FHMMs in its exact form, but
some modi�cations will be required. Because the values of the hidden state
variables are unknown, the algorithm for parameter estimation in FHMMs
will require estimates of the expected values of these state variables. Fortu-
nately, estimates of these expected values can be computed ef�ciently using
standard techniques from the hidden Markov models literature.

The values of the free parameters of FHMMs need to be estimated during
statistical inference. The IRLS algorithm for FHMMs is similar to its form for
GAMs. In particular, a modi�ed version of the back�tting algorithm is used
to perform weighted additive regressions. We refer to this modi�ed version
as the generalized back�tting algorithm. The algorithm �rst de�nes the
linearized responses and the weights. Once again, if the response variable
is real valued with a gaussian distribution and the function h is the identity
function, then the linearized response z equals the actual response y, and
the weights equal one. If the response variable is binary with a Bernoulli
distribution and the function h is the logistic function, then the linearized
response and weight are given by equations 2.3 and 2.4. The algorithm
then iteratively considers each individual state variable one at a time (or,
equivalently, each individual hidden Markov chain one at at time). For each
state variable, it forms a residual error equal to the difference between the
value of the linearized response and the sum of the contributions based
on the expected values of the remaining state variables. The residual error
corresponding to the mth Markov chain at time t is

e(t)
m D z(t) ¡

X

i 6Dm

fi (E[q (t)
i]), (2.10)

where E[q (t)
i] is the expected value of the hidden state variable for chain i

and fi (E[q (t)
i]) is the expected contribution of chain i. Next, the parameters

of the mth Markov chain are updated so that the contribution based on the

2426 Robert A. Jacobs, Wenxin Jiang, and Martin A. Tanner

mth state variable approximates the error e(t)
m for all time steps in proportion

to the weight for that time step. This process is repeated for all of the Markov
chains, possibly multiple times.

In order to understand learning in FHMMs better, it is worth pointing
out an important feature of the IRLS algorithm that leads to an interesting
viewpoint regarding FHMMs and multicomponent or modular architec-
tures. This viewpoint follows from the fact that the set of residual errors
fe (t)

m gT
tD1 is itself a time-series data set. Because this is a real-valued time se-

ries, it can be modeled by a standard hidden Markov model with gaussian
responses. In other words, FHMMs can be regarded as instances of mul-
ticomponent or modular architectures where the modules are the hidden
Markov chains. Our analysis indicates that these chains should be imple-
mented as HMMs with gaussian responses. From a generative perspective,
the output of an FHMM as a whole at time t is formed by �rst summing
the expected outputs of each of the individual HMM modules, mapping
this sum to an expected value of an output distribution using an inverse
canonical link function (i.e., the function h), and then sampling from this
distribution in order to generate the target time-series data item y(t) .

From the perspective of statistical inference, the fact that each HMM
module’s set of residual errors is itself a time-series data set is good news.
The individual HMM modules can be quickly and effectively trained us-
ing conventional parameter estimation algorithms from the literature on
hidden Markov models, such as the Baum-Welch algorithm. As a result,
FHMMs as a whole can be ef�ciently trained. This viewpoint highlights
the strengths of the back�tting approach to training additive models. When
considering learning in any modular architecture, it is important to con-
sider how error signals can be calculated that are customized for each of the
architecture’s individual modules. In the case of FHMMs, the generalized
back�tting equation solves this problem (see equation 2.10). The time-series
data fe(t)

m gT
tD1 are residual errors that are speci�cally tailored for HMM mod-

ule m. HMM module m is then trained using the Baum-Welch algorithm
to summarize the time series fe(t)

m gT
tD1, and this process is repeated for all

modules.
The pseudocode in Figure 2 outlines the IRLS procedure applied to FH-

MMs. When implementing this procedure, we have found that it is rela-
tively easy to go from a computer program for simulating conventional
HMM models to a program for simulating FHMM models. The majority
of the code for FHMMs is a subroutine that implements the Baum-Welch
algorithm in individual HMM modules.

To complete the speci�cation of the IRLS procedure, two more issues need
to be dealt with. First, training data for HMMs typically do not include
weights fw (t)gT

tD1 on the responses, and so we need to describe how the
Baum-Welch algorithm can be modi�ed so that its updates of an HMM’s
parameters take into account these weights. To do this, we introduce some

FHMMs and Generalized Back�tting 2427

repeat until convergence do
for hidden Markov chain m D 1 to m D M do

compute linearized responses fz(t)gT
tD1 and weights fw(t)gT

tD1

compute time series fe (t)
m gT

tD1
Baum-Welch algorithm: train chain m to summarize

time series fe(t)
m gT

tD1 using weights fw(t)gT
tD1

end
end

Figure 2: Pseudocode outlining the IRLS procedure applied to FHMMs

notation. Let q(t)
mi denote the ith element of state vector q (t)

m . Let c
(t)
mi denote

the probability that component i of the mth HMM module is active at time t
given the residual error time series:c (t)

mi D p(q(t)
mi D 1|fe(t)

m gT
tD1). Finally, letj

(t)
mij

denote the probability that component i of HMM module m is active at time
t and that component j is active at time t C 1 given the residual error time
series: j

(t)
mij D p(q(t)

mi D 1, q(tC1)
mj D 1|fe (t)

m gT
tD1). At each iteration of the Baum-

Welch algorithm, the transition probability that component j will become
active at time t C 1 given that component i is active at time t is given by

p(q (tC1)
mj D 1 | q(t)

mi D 1) D

T¡1X

tD1

j
(t)
mij w (t)

T¡1X

tD1

c
(t)
mi w(t)

. (2.11)

The update equations for the mean and variance associated with the ith
component of the mth HMM module, denoted m mi and s2

mi, respectively,
are:

m mi D

TX

tD1

c
(t)
mi w (t) e (t)

m

TX

tD1

c
(t)
mi w (t)

(2.12)

s2
mi D

TX

tD1
c

(t)
mi w (t) (e(t)

m ¡ m mi)2

TX

tD1

c
(t)
mi w (t)

. (2.13)

If w(t) D 1 for all time steps, then equations 2.11 through 2.13 are identical
to the standard Baum-Welch update equations.

2428 Robert A. Jacobs, Wenxin Jiang, and Martin A. Tanner

We also need to describe how to compute the expected values of each hid-
den Markov chain’s state variable at each time step (i.e., the set fE[q (t)

m]gT
tD1

for chains m D 1, . . . , M; these values are used in equation 2.10). We have
studied two different methods for computing these values. Empirical re-
sults suggest that the methods lead to similar levels of performance. The
�rst method is to set the ith element of the vector E[q (t)

m] equal to c
(t)
mi , the

probability that the ith component of chain m is active at time t given the
residual error time series:

E[q(t)
mi] D c

(t)
mi . (2.14)

We refer to the generalized back�tting algorithm where the expected values
of the state variables are computed in this manner as the GBF-c algorithm.
The second method uses the Viterbi algorithm, another common technique
in the HMM literature, to compute the single “best” state sequence given
the time-series data for each hidden Markov chain. For chain m, this state
sequence is de�ned as the sequence fq (t)

m gT
tD1 that maximizes the probability

of the sequence given the residual error time series. The expected values
fE[q (t)

m]gT
tD1 are simply set to this sequence:

fE[q (t)
m]gT

tD1 D arg max
fq (t)

m gT
tD1

p(fq (t)
m gT

tD1 | fe (t)
m gT

tD1). (2.15)

The generalized back�tting algorithm where the expected values of the
state variables are computed using the Viterbi algorithm is referred to as
the GBF-V algorithm.

3 Some Analytical Results

This section considers some theoretical properties of FHMMs trained with
the generalized back�tting algorithm GBF-c . For simplicity, we consider the
case where the observed time series Y D fy(t)gT

tD1 is real valued, and thus
its expected value is a linear function of the contributions of the individual
hidden Markov chains. In the case of a nonlinear model, a linearization
transform from y to z (e.g., see equation 2.3) leads to approximately the
same conclusions.

Suppose that the observed data are generated by an FHMM with M
independent Markov chains determining the data as described above. Let
y(t)

m D fm (q (t)
m) D ¹0

mq
(t)
m denote the output contribution of chain m at time t.

The output of the FHMM as a whole is

y(t) | fq (t)
m gM

mD1 » N

Á
MX

mD1

fm (q (t)
m), s2

!
. (3.1)

FHMMs and Generalized Back�tting 2429

When statistical inference is performed, the parameters µ1, . . . , µM need
to be estimated where µm is the set of parameters associated with chain
m, including its mean and variance parameters, its component transition
probabilities, and possibly its initial component probabilities. For chain m,
the GBF-c algorithm uses the residual error,

e(t),new
m D y(t) ¡

X

i 6Dm

E[¹0
iq

(t)
i | fe (t),old

i gT
tD1]

µDµ
old , (3.2)

and then �ts the time series fe(t),new
m gT

tD1 using a single-chain HMM and the
Baum-Welch procedure.

Let fy(t)
m gT

tD1 be any time series generated by a single-chain HMM with
parameters µm. What will be the estimated mean and variance of this time
series? Is the residual error time series fe(t)

m gT
tD1 modeled correctly in mean

and variance? In other words, is E(e(t)
m) D E(y(t)

m)? Is var(e(t)
m) D var(y(t)

m)? We
demonstrate that the means of the residuals are modeled correctly.

Proposition 1. E(e(t)
m) D E(y(t)

m).

Proof.

E(e (t)
m) D E(y(t)) ¡

X

i 6Dm

E
³

E
µ
¹0

iq
(t)
i |

n
e(t),old
i

oT

tD1

¶

µDµ old

´
(3.3)

D E(y(t)) ¡
X

i 6Dm

E
±
¹0

iq
(t)
i

²
(3.4)

D
MX

iD1

E(¹0
iq

(t)
i) ¡

X

i 6Dm

E(¹0
iq

(t)
i) (3.5)

D E(¹0
mq (t)

m) (3.6)

D E(y(t)
m). (3.7)

This shows that the means are equal.

Proposition 1 does not imply that the distribution of e (t)
m is modeled correctly.

To the contrary, we believe that in general, var(e (t)
m) 6D var(y(t)

m). However,
we cannot write an analytic expression for var(e(t)

m) (expressed in terms of
y(t) and q (t)

i s), and so we cannot prove this conjecture.
We now consider a more careful speci�cation of what the generalized

back�tting algorithm is estimating. Let Pfy(t)
m g[f Qy(t)

m g|µm] denote the likelihood

2430 Robert A. Jacobs, Wenxin Jiang, and Martin A. Tanner

of observed data f Qy(t)
m gT

tD1 for a single-chain HMM time series:

Pfy(t)
m g[f Qy(t)

m g|µm] D
X

fq (t)
m gT

tD1

pq (1)
m

Pq (1)
m ,q (2)

m
¢ ¢ ¢ Pq (T¡1)

m ,q (T)
m

(2p s2)¡T/2

£ exp

"
¡ 1

2s2

TX

tD1

±
Qy(t)
m ¡ ¹0

mq (t)
m

²2
#

, (3.8)

where
P

fq (t)
m gT

tD1
denotes a sum over all possible state sequences, pq (1)

m
is the

initial (t D 1) probability for state variable q
(1)
m , and Pq (t¡1)

m ,q(t)
m

is the transition

probability of moving from state q (t¡1)
m at time t ¡ 1 to state q (t)

m at time t.
Although seemingly complicated, this equation has the standard form for
an HMM likelihood function.

Proposition 2. The limiting point of the GBF-c algorithm satis�es the following
�xed-point equation: 0 D rµm Pfy(t)

m g[fe
(t)
m g | µm], m D 1, . . . , M.

Proof. Using the fact that the Baum-Welch procedure �nds maximum like-
lihood parameter estimates, this is obvious since at each step of the algo-
rithm, the new estimate µnew

m maximizes the single-chain HMM likelihood
and therefore satis�es 0 D rµnew

m
Pfy(t)

m g[fe
(t),new
m g | µnew

m] where the residuals

fe (t),new
m g are computed using parameter values and residual errors of other

chains from the “old” step.

Several points are worth noting:

� It is easy to extend proposition 2 to the case where there is more than
one independent time series since the overall likelihood can be formed
by taking products of the likelihoods for the individual series.

� The set of �xed-point equations may not correspond to maximizing
any scalar objective function (integrability conditions would need to
be satis�ed, but this is dif�cult to check analytically). This lack of an
objective function is perhaps the most important drawback of the gen-
eralized back�tting algorithm relative to other approximate maximum
likelihood algorithms such as the variational algorithm. Fortunately,
however, we �nd that the generalized back�tting algorithm always
converges in practice and that it tends to increase monotonically the
likelihood of the data at each iteration.

� Using the fact E(e(t)
m) D E(y(t)

m) from proposition 1, we conjecture that
if the limit point of the algorithm is used to form an estimator of the
mean of the time-series data at each time step, denoted Om (t) , then this

estimator will be consistent (i.e., Om (t) P! E (y(t))). Let µ1
N be a limit

FHMMs and Generalized Back�tting 2431

point of the algorithm when N independent time series are used. Then
Om (t) D E[

PM
mD1 ¹0

mq
(t)
m | µ D µ1

N]. In other words, although µ1
N is not

a maximum likelihood estimator (it may not maximize any objective
function, and it is obtained by modeling the variance of e(t)

m incorrectly),
it will produce a consistent estimator of the mean function for the
observed data. Unfortunately, we cannot prove this conjecture for the
general case, though it can be proved for the case of K D 2 (each hidden
Markov chain has two components) and T D 1 (time series with length
1), in which case iteratively �tting HMM models for each chain is
equivalent to �tting mixtures of gaussian distributions iteratively.

Finally, and as an aside, it may be worth noting that there could be
important similarities between the generalized back�tting algorithm and
the variational approximation proposed by Ghahramani and Jordan (1997).
Interestingly, both learning procedures make use of the same set of error
residuals fe(t)

m gT
tD1, m D 1, . . . , M (see equations 9b and 12b of Ghahramani

& Jordan, 1997). In addition, both procedures ignore correlations among
state variables (similar to mean-�eld methods). It is dif�cult, however, to
make concrete statements about the similarities and differences of the pro-
cedures because the �xed-point equations for the variational approximation
involve auxiliary parameters of an approximating distribution that are not
part of the original factorial hidden Markov model.

4 Simulation Results

This section reports simulation results using three arti�cial data sets; the
observations in the �rst data set are real valued, and the observations in
the remaining datasets are multinomial. When attempting to predict how
well the generalized back�tting algorithm will work on these data sets, it
is important to keep in mind that although the algorithm is new, its con-
stituent parts are not. Methods such as the IRLS procedure, the back�tting
procedure, and the Baum-Welch procedure have all been successfully used
in scores of applications over a period of many years. Consequently, we pre-
dict that FHMMs trained with the generalized back�tting algorithm should
show good performance.

4.1 Real-Valued Data Sets. When studying real-valued data sets, sev-
eral algorithms exist for estimating the parameter values of an FHMM.
Ghahramani and Jordan (1997) found that an EM algorithm worked best
and that an approximate EM algorithm in which Gibbs sampling is used
during the E-step and an approximate algorithm based on variational tech-
niques each worked nearly as well.

We conducted a set of simulations based on a related set of simulations
conducted by Ghahramani and Jordan (1997). Training and test data were
real valued and generated by an FHMM. We compared the training and test

2432 Robert A. Jacobs, Wenxin Jiang, and Martin A. Tanner

set log-likelihoods of �ve models:

� HMM: An HMM trained using the Baum-Welch algorithm

� Exact: An FHMM trained using an exact EM algorithm

� SVA: An FHMM trained using the structured variational approxima-
tion of Ghahramani and Jordan

� GBF-c : An FHMM trained using the GBF-c algorithm

� GBF-V: An FHMM trained using the GBF-V algorithm

The FHMM that generated the data had M hidden Markov chains, each
containing K components. All of its parameter values, except for the covari-
ance matrices associated with the hidden Markov chains and the output
covariance matrix, were sampled from a uniform [0, 1] distribution and, if
needed, appropriately normalized to satisfy the sum-to-one constraint of
probability distributions. The covariance matrices were set to a multiple of
the identity matrix, C D 0.01I. The training and test sets consisted of 20
sequences of length 20, where the observable vector at each time step was
a four-dimensional vector. For each randomly sampled set of parameters, a
training and test set were generated, and each model was run once. Fifteen
sets of parameters, and thus 15 training and test sets, were generated for
each of four problem sizes: fM D 3, K D 2g, fM D 3, K D 3g, fM D 5, K D 2g,
and fM D 5, K D 3g.

The FHMMs trained to summarize the data consisted of M hidden
Markov chains with K states each, whereas the HMMs had KM states. Their
parameter values were randomly initialized, except for the covariance ma-
trices, which were set and �xed to 0.01I. Learning algorithms were run for
100 iterations (in the case of FHMMs trained with either of the generalized
back�tting algorithms,a cycle is de�ned as �ve iterations of the Baum-Welch
algorithm for each hidden Markov chain, and the algorithm was run for 20
cycles). At the end of training, the log-likelihoods on the training and test
sets were computed for all models using the exact algorithm.

The mean (§ standard error of the mean) log-likelihood of each model
on each of the four problem sizes is shown in Table 1. Also included in this
table is the log-likelihood of the training and test sets under the true model
that generated the data. Taken as a whole, the simulation results are highly
compatible with the results reported by Ghahramani and Jordan.

Model HMM tended to suffer from over�tting; its test set log-likelihood
is signi�cantly worse than its training set log-likelihood. This is evident for
the smallest problem size and is extreme for the largest problem size. Among
the models using FHMMs, model Exact tended to perform best. This result is
unsurprising because it performs exact inference and maximum likelihood
parameter estimation. Among the approximate models, models SVA, GBF-
c , and GBF-V showed similar levels of performance.

FHMMs and Generalized Back�tting 2433

Table 1: Mean (§ Standard Error of the Mean) Log-Likelihood of Each Model
on the Four Problem Sizes for the Real-Valued Data Set.

M K Model Training Set Test Set

3 2 True 806.9 § 22.6 797.2 § 24.1
HMM 544.0 § 107.2 286.4 § 151.3
Exact 630.2 § 103.0 592.8 § 103.9
SVA 604.3 § 94.0 574.2 § 93.5

GBF-c 644.1 § 90.5 596.5 § 91.5
GBF-V 625.1 § 90.3 582.8 § 91.0

3 3 True 318.9 § 14.0 319.0 § 20.0
HMM 356.4 § 34.3 ¡1170.8 § 110.7
Exact ¡73.5 § 83.4 ¡175.0 § 97.1
SVA ¡421.0 § 78.5 ¡525.6 § 92.1

GBF-c ¡373.0 § 57.4 ¡518.5 § 69.9
GBF-V ¡424.9 § 56.4 ¡555.5 § 75.9

5 2 True 332.7 § 30.8 336.8 § 31.7
HMM 172.0 § 120.7 ¡1861.9 § 233.8
Exact 218.3 § 73.4 148.0 § 91.0
SVA ¡447.5 § 166.1 ¡519.1 § 174.5

GBF-c ¡666.6 § 206.1 ¡756.8 § 208.2
GBF-V ¡722.6 § 180.2 ¡812.1 § 176.9

5 3 True ¡335.9 § 24.8 ¡327.7 § 28.2
HMM 205.9 § 104.7 ¡9262.4 § 606.4
Exact ¡973.5 § 95.3 ¡1267.0 § 120.9
SVA ¡1425.7 § 115.8 ¡1656.0 § 138.5

GBF-c ¡1358.4 § 122.5 ¡1554.9 § 128.9
GBF-V ¡1407.2 § 125.4 ¡1595.1 § 135.0

4.2 Multinomial Data Sets. The variational techniques of Ghahramani
and Jordan (1997) are speci�cally designed for real-valued time series and
do not extend in an obvious way to other types of data. These investigators
offered some speculative suggestions as to how their techniques might be
extended, but ultimately left this as an open research question. In contrast,
the generalized back�tting algorithm can be regarded as general purpose,
because it is easily applied to any sequential data set in which the distri-
bution of the response variable is a member of the exponential family of
distributions. We demonstrate this by considering multinomial time series.

Training and test data were generated by an FHMM as described above.
We compared the training and test set log-likelihoods of two models: HMM,
an HMM trained using the Baum-Welch algorithm, and GBF-c , an FHMM
trained using the GBF-c algorithm. The FHMM that generated the data
had M hidden Markov chains, each containing K components. All of its
parameter values were sampled from a uniform [0, 1] distribution and,
if needed, appropriately normalized to satisfy the sum-to-one constraint of
probabilitydistributions.The training and test sets consisted of 20 sequences
of length 20. For the �rst multinomial data set, the response variable could

2434 Robert A. Jacobs, Wenxin Jiang, and Martin A. Tanner

take one of four possible values at each time step; that is, the response
variable was a four-dimensional vector with one component equal to one
and the remaining three components set to zero.The response variable could
take one of eight possible values at each time step in the second multinomial
data set. For each randomly sampled set of parameters, a training and test
set were generated, and each model was run once. Fifteen sets of parameters,
and thus 15 training and test sets, were generated for each of four problem
sizes: fM D 3, K D 2g, fM D 3, K D 3g, fM D 5, K D 2g, and fM D 5, K D 3g.

Model HMM contained KM states, whereas model GBF-c was an FHMM
with M hidden Markov chains with K states each. Their parameter values
were randomly initialized, except for the covariance matrices of model GBF-
c , whichwere set and �xed to the identitymatrix. In the case of model HMM,
the Baum-Welch algorithm was run for 100 iterations. Model GBF-c was run
for 100 cycles, where each cycle consisted of one iteration of the Baum-Welch
algorithm for each hidden Markov chain. At the end of training, the exact
log-likelihoods on the training and test sets were computed for all models.

The mean (§ standard error of the mean) log-likelihood of each model
on each of the four problem sizes is shown in Table 2 for the data set with
an alphabet size of four and in Table 3 for the data set with an alphabet size
of eight. Also included in these tables are the log-likelihoods of the training
and test sets under the true model that generated the data. On the data
set with an alphabet size of four, models HMM and GBF-c showed similar
levels of performance on the test sets. In contrast, on the data set with an
alphabet size of eight, model HMM tended to over�t the training data, and
thus model GBF-c achieved a signi�cantly better level of performance on
the test sets. This result suggests that FHMMs scale better than HMMs as
the alphabet size of the data set increases.

Table 2: Mean (§ Standard Error of the Mean) Log-Likelihood of Each Model
on the Four Problem Sizes for the Multinomial Data Set whose Alphabet Size
Was Four.

M K Model Training Set Test Set

3 2 True ¡531.4 § 4.6 ¡530.1 § 4.1
HMM ¡510.9 § 5.1 ¡548.2 § 3.3
GBF-c ¡547.2 § 8.4 ¡554.8 § 11.1

3 3 True ¡543.4 § 2.7 ¡544.6 § 2.4
HMM ¡526.5 § 3.6 ¡558.3 § 3.8
GBF-c ¡548.9 § 2.4 ¡561.9 § 3.4

5 2 True ¡528.7 § 6.0 ¡529.0 § 5.7
HMM ¡497.3 § 10.6 ¡566.2 § 13.7
GBF-c ¡534.1 § 6.7 ¡543.3 § 6.5

5 3 True ¡534.9 § 6.3 ¡531.1 § 7.5
HMM ¡514.9 § 11.5 ¡554.9 § 15.5
GBF-c ¡542.8 § 4.5 ¡549.1 § 6.6

FHMMs and Generalized Back�tting 2435

Table 3: Mean (§ Standard Error of the Mean) Log-Likelihood of Each Model
on the Four Problem Sizes for the Multinomial Data Set Whose Alphabet Size
Was Eight.

M K Model Training Set Test Set

3 2 True ¡805.9 § 5.2 ¡809.0 § 3.2
HMM ¡740.8 § 5.1 ¡925.0 § 9.7
GBF-c ¡880.0 § 10.9 ¡880.6 § 8.6

3 3 True ¡817.5 § 2.0 ¡818.3 § 2.1
HMM ¡612.6 § 2.3 ¡1655.2 § 43.9
GBF-c ¡842.8 § 7.5 ¡867.4 § 9.8

5 2 True ¡796.4 § 5.4 ¡799.0 § 4.9
HMM ¡566.8 § 5.2 ¡1803.7 § 40.9
GBF-c ¡845.0 § 16.4 ¡865.7 § 21.2

5 3 True ¡799.5 § 4.2 ¡796.9 § 4.6
HMM ¡310.4 § 26.9 ¡2972.0 § 174.2
GBF-c ¡805.7 § 3.3 ¡821.1 § 5.7

Considering all simulations results as a whole, we conclude, as do Ghah-
ramani and Jordan (1997), that FHMMs represent a potentially important
advance in the modeling of sequential data. Due to their use of distributed
representations, FHMMs with a relatively small number of parameters can
have a large representational capacity. Consequently, FHMMs can often
learn structure in data sets that conventional HMMs cannot. In addition, we
conclude that the generalized back�tting algorithm is an effective method
for training FHMMs that is applicable to a wide variety of data types. As
emphasized above, the constituent parts of the algorithm are familiar tech-
niques in the neural computation, machine learning, and statistics commu-
nities, and so the ef�cacy of the algorithm is unsurprising.

5 Summary and Conclusion

Previous researchers developed new learning architectures for sequential
data by extending conventional hidden Markov models through the use
of distributed state representations (Williams & Hinton, 1991; Ghahramani
& Jordan, 1997). An advantage of these architectures is that they are ef�-
cient from a representational viewpoint. A disadvantage is that exact in-
ference and parameter estimation in these architectures is computationally
intractable. Ghahramani and Jordan (1997) showed, however, that approxi-
mate inference and parameter estimation in one such architecture, FHMMs,
is feasible in certain circumstances. Unfortunately, the learning algorithm
proposed by these investigators, based on variational techniques, is dif�-
cult to understand and implement and is limited to the study of real-valued
data sets.

2436 Robert A. Jacobs, Wenxin Jiang, and Martin A. Tanner

This article has proposed an alternative method for approximate infer-
ence and parameter estimation in FHMMs based on the perspective that
FHMMs are a generalization of a well-known class of statistical models
known as GAMs (Hastie & Tibshirani, 1990). Using existing statistical tech-
niques for GAMs as a guide, we have developed the generalized back�tting
algorithm. This algorithm computes customized error signals for each hid-
den Markov chain of an FHMM and then trains each chain one at a time
using conventional techniques from the hidden Markov models literature.
Relative to previous perspectives on FHMMs, we believe that the viewpoint
taken here has a number of advantages. First, it places FHMMs on �rm sta-
tistical foundations by relating FHMMs to a class of models well studied
in the statistics community, yet it generalizes this class of models in an in-
teresting way. Second, it leads to an understanding of how FHMMs can be
applied to many different types of time-series data, including Bernoulli and
multinomial data, not just real-valued data. Finally, it leads to an effective
learning procedure for FHMMs that is easier to understand and easier to im-
plement than existing learning procedures. Simulation results suggest that
FHMMs trained with the generalized back�tting algorithm are a practical
and powerful tool for analyzing sequential data.

Although the study of sequential data has always been important, it
has recently received renewed attention due to interest from relatively new
scienti�c �elds such as computational �nance and bioinformatics. These
�elds make extensive use of conventional hidden Markov models due to
their ease of use and attractive computational properties. We conjecture,
however, that many problems that are currently approached through the
use of HMMs may be better studied through the use of FHMMs trained
with the generalized back�tting algorithm. The application of FHMMs and
the generalized back�tting algorithm to real-world problems in the area of
bioinformatics is our current focus of research.

Acknowledgments

We are grateful to Z. Ghahramani for making software available on his web
site that was useful in this project and to the anonymous reviewers for their
helpful comments on this manuscript. This work was supported by NIH
research grant R01-EY13149 and NSF grant DMS-0102636.

References

Baum, L., Petrie, T., Soules, G., & Weiss, N. (1970). A maximization technique oc-
curring in the statistical analysis of probabilistic functions of Markov chains.
Annals of Mathematical Statistics, 41, 164–171.

Boyen, X., & Koller, D. (1999). Approximate learning of dynamic models. In
M. S. Kearns, S. A. Solla, & D. A. Cohn (Eds.), Advances in neural information
processing systems, 11. Cambridge, MA: MIT Press.

FHMMs and Generalized Back�tting 2437

Dean, T., & Kanazawa, K. (1988). Probabilistic temporal reasoning. In Proceedings
of the Seventh National Conference on Arti�cial Intelligence. St. Paul, MN: AAAI
Press.

Ghahramani, Z., & Jordan, M. I. (1997). Factorial hidden Markov models. Ma-
chine Learning, 29, 245–273.

Hastie, T. J., & Tibshirani, R. J. (1990). Generalized additive models. London: Chap-
man and Hall.

Jordan, M. I., Ghahramani, Z., Jaakkola, T. S., & Saul, L. (1998). An introduction
to variational methods for graphical models. In M. I. Jordan (Ed.), Learning
in graphical models. Cambridge, MA: MIT Press.

McCullagh, P., & Nelder, J. (1989). Generalized linear models. London: Chapman
and Hall.

Murphy, K., & Weiss, Y. (2001). The factored frontier algorithm for approximate
inference in DBNs. In Proceedings of the Sevententh Conference on Uncertainty
in Arti�cial Intelligence. San Francisco: Morgan Kaufmann.

Rabiner, L., & Juang, B.-H. (1993). Fundamentals of speech recognition. Englewood
Cliffs, NJ: Prentice Hall.

Williams, C. K. I., & Hinton, G. E. (1991). Mean �eld networks that learn to dis-
criminate temporally distorted strings. In D. Touretzky, J. Elman, & G. Hinton
(Eds.), Connectionist models: Proceedings of the 1990 Summer School. San Fran-
cisco: Morgan Kaufmann.

Received October 2, 2001; accepted April 17, 2002.

http://ernesto.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0885-6125^28^2929L.245[aid=215237]
http://ernesto.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0885-6125^28^2929L.245[aid=215237]

