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We consider the hypothesis that systems learning aspects of visual per-
ception may bene�t from the use of suitably designed developmental
progressions during training. Four models were trained to estimate mo-
tion velocities in sequences of visual images. Three of the models were
developmental models in the sense that the nature of their visual in-
put changed during the course of training. These models received a rel-
atively impoverished visual input early in training, and the quality of
this input improved as training progressed. One model used a coarse-
to-multiscale developmental progression (it received coarse-scale motion
features early in training and �ner-scale features were added to its input
as training progressed), another model used a �ne-to-multiscale progres-
sion, and the third model used a random progression. The �nal model
was nondevelopmental in the sense that the nature of its input remained
the same throughout the training period. The simulation results show
that the coarse-to-multiscale model performed best. Hypotheses are of-
fered to account for this model’s superior performance, and simulation
results evaluating these hypotheses are reported. We conclude that suit-
ably designed developmental sequences canbe useful to systems learning
to estimate motion velocities. The idea that visual development can aid
visual learning is a viable hypothesis in need of further study.

1 Introduction

With relatively few exceptions, relationships between development and
learning have largely been ignored by the neural computation community.
This is surprising because development may be nature’s way of biasing
biological learning systems so that they achieve better performance, and
may represent an effective means for engineers to bias machine learning
systems. It is well known in the machine learning literature that learning
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systems are inherently faced with the bias-variance dilemma (Geman, Bi-
enenstock, & Doursat, 1995). Systems with little or no bias tend to inter-
polate in unpredictable ways and thus have highly variable generalization
performance. Systems with larger bias, in contrast, tend to show better gen-
eralization performance when exposed to those training sets that they can
adequately learn. We speculate that development may be an effective means
of adding suitable bias to a system, thereby enhancing the generalization
performance of that system.

In previous work, we studied the effects of different types of develop-
mental sequences on the performances of systems trained to estimate the
binocular disparities present in pairs of visual images (Dominguez & Ja-
cobs, in press-a, in press-b). The systems consisted of three components.
The �rst component was a pair of right-eye and left-eye images. For ex-
ample, the images may have depicted a light or dark object against a gray
background. The second component was a set of binocular energy �lters,
which are widely used to model the binocular sensitivities of simple and
complex cells in primary visual cortex of primates (Ohzawa, DeAngelis, &
Freeman, 1990). Based on local patches of the right-eye and left-eye images,
each �lter acted as a disparity feature detector at a coarse, medium, or �ne
scale depending on whether the �lter was tuned to a low, medium, or high
spatial frequency, respectively. The third component was an arti�cial neural
network. The outputs of the binocular energy �lters were the inputs to this
network. The network was trained to estimate the disparity of the object,
which was de�ned as the amount that the object was shifted between the
right-eye and left-eye images.

A nondevelopmental system was compared to three developmental sys-
tems. The network of the nondevelopmental system received the outputs
of all binocular energy �lters throughout the entire training period. The
networks of the developmental systems, in contrast, were trained in three
stages. The network of the coarse-to-multiscale system received the outputs
of binocular energy �lters tuned to a low spatial frequency during the �rst
training stage. It received the outputs of �lters tuned to low and medium
spatial frequencies during the second training stage, and it received the
outputs of all �lters during the third training stage. The network of the �ne-
to-multiscale system was trained in an analogous way, though its �lters
were added in the opposite order: it received the outputs of �lters tuned to
a high frequency during the �rst training stage, and the outputs of lower-
frequency �lters were added during subsequent stages. The network of the
random developmental model was also trained in stages, though its inputs
were chosen at random at each stage and thus were not organized by spatial
frequency content.

The results show that the coarse-to-multiscale and �ne-to-multiscale sys-
tems consistently outperformed the nondevelopmental and random devel-
opmental systems. The fact that they outperformed the nondevelopmental
system is important because this demonstrates that models that undergo
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a developmental maturation can acquire a more advanced perceptual abil-
ity than one that does not. The fact that they outperformed the random
developmental system is important because this demonstrates that not all
developmental sequences can be expected to provide performance bene�ts.
To the contrary, only sequences whose characteristics are matched to the
task should lead to superior performance. In conjunction with other results
(not described here), these �ndings suggest that the most successful sys-
tems at learning to detect binocular disparities are those that are exposed
to visual inputs at a single scale early in training and for which the reso-
lution of their inputs progresses in an orderly fashion from one scale to a
neighboring scale during the course of training.

At a more general level, these results suggest that the idea that visual
development aids visual learning is a viable hypothesis in need of further
study. This article studies this hypothesis in the context of visual motion ve-
locity estimation. There are enough similarities between the tasks of binocu-
lar disparity estimation and motion velocity estimation that it is reasonable
to believe that a developmental approach that is useful for the former task
may also be advantageous for the latter task. However, the differences be-
tween the two tasks mean that this belief needs to be checked. Indeed, our
simulations show that the two tasks do not yield the same pattern of re-
sults. Although a developmental approach to the velocity estimation task is
shown to be bene�cial, it is not the case that all developmental progressions
that lead to performance advantages on the disparity estimation task also
lead to advantages on the velocity estimation task. In particular, a coarse-
to-multiscale developmental system outperformed nondevelopmental and
random developmental systems on the velocity estimation task, but a �ne-
to-multiscale system did not. We hypothesize that the performance advan-
tage of the coarse-to-multiscale system relative to the �ne-to-multiscale sys-
tem is due to the fact that the coarse-to-multiscale system learned to make
greater use of motion energy �lters tuned to a low spatial frequency. Anal-
yses suggest that coarse-scale motion features are more informative for the
velocity estimation task than �ne-scale features.

2 Developmental and Nondevelopmental Systems

The structure of the developmental and nondevelopmental systems is illus-
trated in Figure 1. The input to each system was a sequence of 88 retinal
images where each image was a one-dimensional array 40 pixels in length.
This sequence depicted an object moving at a constant velocity in front of a
stationary background. The retinal array was treated as if it were shaped like
a circle in the sense that the left-most and right-most pixels were regarded
as neighbors. This wraparound of the left and right edges was done to avoid
edge artifacts. Although a one-dimensional retina is a simpli�cation, its use
is justi�ed by the need to keep the simulation times within reason. The
sequence of retinal images was �ltered using motion energy �lters.
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Figure 1: The developmental and nondevelopmental systems shared a common
structure. The input to the systems was a sequence of retinal images, �ltered by
motion energy �lters. The set of �lters can be partitioned into subsets tuned
to low, medium, and high spatial frequencies. The outputs of the �lters were
the inputs to an arti�cial neural network that was trained to estimate the object
velocity depicted in the image sequence.

Based on neurophysiological results, Adelson and Bergen (1985) pro-
posed motion energy �lters as a way of modeling the motion sensitivi-
ties of simple and complex cells in primary visual cortex. A sequence of
one-dimensional images can be represented using a two-dimensional ar-
ray where one dimension encodes space and the other dimension encodes
time. In this case, motion energy �lters are two-dimensional �lters that ex-
tract motion information in local patches of the spatiotemporal space.

The receptive �eld pro�le of a simple cell can be described mathemat-
ically as a Gabor function, which is a sinusoid multiplied by a gaussian
envelope. A quadrature pair of such functions with even and odd phases
tuned to leftward (¡) and rightward (C) directions of motion is given by
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where x and t are the spatial and temporal distances to the center of the
gaussian, ¾ 2

x and ¾ 2
t are the spatial and temporal variances of the gaussian,
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and !x and !t are the spatial and temporal frequencies of the sinusoids.
The ratio !t=!x determines the orientation of a Gabor function in the spa-
tiotemporal space, which in turn determines the velocity sensitivity of the
function.

The activity of a simple cell is given by the square of the convolution of
the cell’s receptive �eld pro�le with the spatiotemporal pattern, denoted f .
For example, . f ¤ gC

e /2 is the activity of a simple cell with even phase that is
sensitive to rightward motion. The activities of simple cells with even and
odd phases are summed in order to form the activity of a complex cell. This
sum is known as a motion energy. Thus, leftward and rightward motion
energies are given by

E¡ D . f ¤ g¡
e /2 C . f ¤ g¡

o /2 (2.3)

EC D . f ¤ gC
e /2 C . f ¤ gC

o /2: (2.4)

Because a complex cell’s activity is based on the combined properties of
simple cells with even and odd phases, this activity is phase insensitive,
meaning that this value is relatively insensitive to the exact position of a
motion within the complex cell’s receptive �eld.

In our simulations, we used a subset of the possible receptive-�eld lo-
cations in the two-dimensional (40 pixels £ 88 time frames) spatiotemporal
space. This subset formed a 20 £ 4 uniform grid located in the middle of
the space such that receptive �elds were centered on odd-numbered pixels
and odd-numbered time frames. An advantage of this choice of locations
was that edge artifacts were avoided because all receptive �elds fell entirely
within the spatiotemporal space.

Fifteen complex cells corresponding to three spatial frequencies and �ve
temporal frequencies were centered at each receptive-�eld location. All cells
were tuned to rightward motion because we restricted our data sets to in-
clude only objects that were moving to the right. The parameter values of
these cells are shown in Table 1. The spatial and temporal frequencies were
each separated by an octave. Importantly, temporal frequencies were chosen
so that the set of cells at each spatial frequency had the same pattern of ve-
locity tunings. Speci�cally, the sets tuned to low, medium, and high spatial
frequencies had velocity tunings of 0.25, 0.5, 1.0, 2.0, and 4.0 pixels per time
frame. This was achieved by correlating the spatial and temporal frequency
tunings of the cells: low-spatial-frequency cells were tuned to a compara-
tively low range of temporal frequencies, and high-spatial-frequency cells
were tuned to a high range of temporal frequencies.1 A cell’s spatial and

1 Recent neuroscienti�c studies indicate that the preferred velocity of velocity-tuned
neurons in area MT of primates is largely independent of spatial frequency (Perrone &
Thiele, 2001). Simoncelli and Heeger (2001) speculated that a velocity-tuned MT neuron
pools the outputs of a set of V1 cells whose spatial and temporal frequency tunings are
positively correlated.
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Table 1: Parameter Values for the Complex Cells at Each Receptive-Field Loca-
tion.

Spatial Frequency Temporal Frequency Velocity
(cycles per pixel) (cycles per time frame) (pixels per time frame)

0.0625 0.015625 0.25
0.03125 0.5
0.0625 1.0
0.125 2.0
0.25 4.0

0.125 0.03125 0.25
0.0625 0.5
0.125 1.0
0.25 2.0
0.5 4.0

0.25 0.0625 0.25
0.125 0.5
0.25 1.0
0.5 2.0
1.0 4.0

Spatial Frequency (cycles per pixel) Spatial Standard Deviation (¾x)

0.0625 4.0
0.125 2.0
0.25 1.0

Temporal Frequency (cycles per time frame) Temporal Standard Deviation (¾t)

0.015625 16.0
0.03125 8.0
0.0625 4.0
0.125 2.0
0.25 1.0
0.5 0.5
1.0 0.25

Note: The temporal frequencies were chosen so that the samevelocity tunings
existed at each spatial frequency.

temporal standard deviations were set to be inversely proportional to its
spatial and temporal frequencies, respectively.

The outputs of the complexcells within each spatial frequency band were
normalized using a softmax nonlinearity,

OE.!xi; !tj / D eE.!xi ;!tj /=¿

P
k eE.!xi ;!tk /=¿

(2.5)
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where !xi and !tj are the spatial and temporal frequencies to which a com-
plex cell was tuned, E.!xi ; !tj/ was the initial output of the complex cell,
OE.!xi ; !tj / was the normalized output, ¿ is a scaling parameter (its value
was set to 0.001), and !tk ; k D 1; : : : ; 5; indexed the �ve temporal frequen-
cies corresponding to spatial frequency !xi . As a result of this normalization,
complex cells tended to respond to relative contrast in the image sequence
rather than absolute contrast (Heeger, 1992; Nowlan & Sejnowski, 1994).

The normalized outputs of the complex cells were the inputs to an arti-
�cial neural network. The network had 1200 input units (the complex cells
had 80 receptive-�eld locations, and there were 15 cells at each location).
The network’s hidden layer contained 18 hidden units, which were orga-
nized into three groups of 6 units each. The connectivity of the hidden units
was set so that each group had a limited receptive �eld and neighboring
groups had overlapping receptive �elds. A group of hidden units received
inputs from 32 receptive-�eld locations at the complex cell level, and the
receptive �elds of neighboring groups overlapped by 8 receptive-�eld loca-
tions. The hidden units used a logistic activation function. The output layer
consisted of a single linear unit; this unit’s output was an estimate of the
object velocity depicted in the sequence of retinal images.

The weights of an arti�cial neural network were initialized to small, ran-
dom values and were adjusted during the course of training to minimize a
sum of squared error cost function using a conjugate gradient optimization
procedure (Press, Teukolsky, Vetterling, & Flannery, 1992). Advantages of
this procedure are that it tends to converge quickly and has no free param-
eters (e.g., no learning rate or momentum parameters). Weight sharing was
implemented at the hidden unit level so that corresponding units within
each group of hidden units had the same incoming and outgoing weight
values and so that a hidden unit had the same set of weight values from each
receptive-�eld location at the complex unit level. This provided the network
with a degree of translation invariance and dramatically decreased the num-
ber of modi�able weight values in the network. It therefore decreased the
number of data items and the amount of time needed to train the network.

Models were trained and tested using separate sets of training and test
data items. Each set contained 250 randomly generated items. Training was
terminated after 100 iterations through the training set. The results reported
are based on the data items from the test set.

Three developmental systems and one nondevelopmental system were
simulated. The coarse-to-multiscale system (model C2M) was trained us-
ing a coarse-to-multiscale developmental sequence implemented as follows.
The training period was divided into three stages. During the �rst stage, the
neural network portion of the model received only the outputs of complex
cells tuned to the low spatial frequency (the outputs of other complex cells
were set to zero). During the second stage, the network received the outputs
of complex cells tuned to low and medium spatial frequencies; it received
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the outputs of all complex cells during the third stage. The training of the
�ne-to-multiscale system (model F2M) was identical to that of model C2M
except that its training used a �ne-to-multiscale developmental sequence.
During the �rst stage of training, its network received the outputs of com-
plex cells tuned to the high spatial frequency. This network received the out-
puts of complex cells tuned to high and medium spatial frequencies during
the second stage and received the outputs of all complex cells during the
third stage. The training of the random developmental system (model RD)
also used a developmental sequence, though this sequence was generated
randomly and thus was not based on the spatial frequency tunings of the
complex cells. The collection of complex cells was randomly partitioned
into three equal-sized subsets, with the constraint that each subset included
one-third of the cells at each receptive-�eld location. During the �rst stage
of training, the neural network portion of the model received the outputs of
the complex cells only in the �rst subset. It received the outputs of the cells
in the �rst and second subsets during the second stage of training and the
outputs of all complex cells during the third stage. In contrast, the training
period of the nondevelopmental system (model ND) was not divided into
separate stages; its neural network received the outputs of all complex cells
throughout the entire training period.

3 Data Sets and Simulation Results

The performances of the four models were evaluated on two data sets. In all
cases, the images were gray scale with luminance values between 0 and 1,
and motion velocities were rightward with magnitudes between 0 and 4
pixels per time frame. Fifteen simulations of each model on each data set
were conducted.

In the solid object data set, images consisted of a moving light or dark ob-
ject in front of a stationary gray background. The object’s gray-scale values
were randomly chosen to be in the range from 0.0 to 0.1 or from 0.9 and 1.0,
whereas the gray-scale value of the background was always 0.5. The size of
the object was randomly chosen to be an integer between 6 and 12 pixels,
its initial location was a randomly chosen pixel on the retina, and its ve-
locity was randomly chosen to be a real value between 0 and 4 pixels per
time frame. Because the velocity was real-valued, the boundaries between
an object’s internal gray-scale values, or the boundaries between the ends
of an object and the background, could fall at a real-valued location within
a retinal pixel. In these (common) cases, the luminance value of a pixel was
appropriately linearly interpolated. Given a sequence of images, the task of
a model was to estimate the object’s velocity. The top portion of Figure 2
gives an example of 10 frames of an image sequence from the solid object
data set.

The bar graph in Figure 3 illustrates the results. The horizontal axis of
each graph gives the model,and the vertical axis gives the rootmean squared
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Solid object data item

Noisy object data item

Figure 2: (Top) Ten frames of an image sequence from the solid object data set.
(Bottom) Ten frames of an image sequence from the noisy object data set.

error (RMSE) on the data items from the test set at the end of training (the
error bars give the standard error of the mean). The labels for the develop-
mental models C2M, F2M, and RD include a number. Recall that the training
of these models was divided into three training stages (or developmental
stages). The number in the label gives the length of developmental stages 1
and 2 (the length of developmental stage 3 can be calculated using the fact
that the entire training period lasted 100 iterations). For example, the label
C2M-5 corresponds to a version of model C2M in which the �rst stage was 5
iterations, the second stage was 5 iterations, and the third stage was 90 it-
erations. In regard to model RD, we simulated four versions of this model
(RD-5, RD-10, RD-20, and RD-30). Only the version that performed best is
included in the graph.

Model C2M signi�cantly outperformed all other models. Its best-
performing version was C2M-20, which had an 11.5% smaller generaliza-
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Figure 3: The RMSE on the test set data items for model ND, the best-performing
version of model RD, and different versions of models C2M and F2M after
training on the solid object data set. The error bars give the standard error of the
mean.

tion error than model ND (the difference between the mean performances of
these models is statistically signi�cant; t D 2:50; p < 0:02 using a two-tailed
t-test with 28 degrees of freedom). In addition, C2M-20 had a 9.6% smaller
error than the best version of model F2M (t D 3:57; p < 0:01) and a 7.2%
smaller error than the best version of model RD (t D 2:30; p < 0:05).

The images in the second data set, referred to as the noisy object data
set, were meant to resemble random-dot kinematograms frequently used in
behavioral experiments. Images contained a noisy object that was moving
to the right and a noisy background that was stationary. The gray-scale
values of the object pixels and the background pixels were set to random
numbers between 0 and 1. The size of the object was randomly chosen to
be an integer between 6 and 12 pixels, its initial location was a randomly
chosen pixel on the retina, and its velocity was randomly chosen to be an
integer between 0 and 4 pixels per time frame. As before, the task was to
map an image sequence to an estimate of an object velocity. The bottom
portion of Figure 2 gives an example of 10 frames of an image sequence
from the noisy object data set.

The results are shown in Figure 4. Model C2M once again outperformed
the other models. Relative to model ND, all versions of model C2M showed
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Figure 4: The RMSE on the test set data items for model ND, the best-performing
version of model RD, and different versions of models C2M and F2M after
training on the noisy object data set. The error bars give the standard error of
the mean.

superior performance (ND vs. C2M-5: t D 2:69; p < 0:02; ND vs. C2M-10:
t D 2:78; p < 0:01; ND vs. C2M-20: t D 3:03; p < 0:01; ND vs. C2M-30:
t D 4:14; p < 0:001). The best-performing version of model C2M was C2M-
30. On average, it had an 8.9% smaller generalization error than model ND
(t D 4:14; p < 0:001), a 6.1% smaller error than the best version of model
F2M (t D 2:95; p < 0:01), and a 4.3% smaller error than the best version of
model RD (t D 2:10; p < 0:05).

Taken as a whole, the simulation results are interesting for a number of
reasons. Most important for our purposes, the fact that model C2M out-
performed model ND demonstrates that a model that undergoes a devel-
opmental maturation can acquire a more advanced perceptual ability than
one that does not. The fact that model F2M performed similarly to or worse
than model ND, and worse than model C2M, is important because this
demonstrates that not all developmental sequences provide performance
bene�ts. It is tempting to hypothesize that only sequences whose character-
istics are matched to the task should lead to superior performance. How-
ever, the �nding that the best version of model RD outperformed model
ND is inconsistent with this hypothesis because it is dif�cult to understand
why a random developmental progression would be well matched to a ve-
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Figure 5: Performances of several networks after 10 epochs of training. Their
RMSE on the test set data items are shown for the (left) solid object data set and
(right) noisy object data set.

locity estimation task. Future work will need to examine this unexpected
�nding.

To understand these results better, we conducted additional simulations.
Wecompared the performances of several different types of neural networks
on the solid object and noisy object data sets. These networks were not de-
velopmental systems; each received the same set of inputs throughout the
entire training period. Some networks received only the outputs of the low-
spatial-frequency motion energy �lters (labeled “coarse” networks), only
the outputs of medium-frequency �lters (labeled “medium” networks), or
only the outputs of high-frequency �lters (labeled “�ne” networks). Other
networks received the outputs of multiple subsets of �lters; for example,
C,M networks received the outputs of low- and medium-frequency �lters,
and C,M,F networks received the outputs of all �lters (identical to model
ND). The inputs to networks labeled “random” were the outputs of a ran-
domly selected one-third of the motion �lters. Furthermore, we examined
the performances of these networks at a relatively early point in their train-
ing periods (after 10 epochs) and also at the end of training (after 100 epochs).
The results at a relatively early point in training are shown in Figure 5. The
results at the end of training on the solid object and noisy object data sets
are shown in Figures 6 and 7, respectively.

For our purposes, the most important result to emerge from the data
in these �gures is that motion features at different scales are not equally
informative for the task of velocity estimation. To the contrary, coarse mo-
tion features (i.e., the outputs of low-spatial-frequency motion energy �l-
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Figure 6: The RMSE of several networks after 100 epochs of training on the solid
object data set.

ters) are more informative than medium-scale motion features, which in
turn are more informative than �ne motion features. Evidence for this in-
cludes the facts that the coarse network outperformed the medium net-
work, and the medium network outperformed the �ne network. In ad-
dition, the C,M network performed better than the M,F network. These
performance rankings were found using both solid object and noisy object
data sets and were found at an early point in training and at the end of
training.

Based on these results, we can speculate as to why model C2M showed
the best performance and why model F2M showed comparatively poor per-
formance. Because the only inputs to model C2M at the start of training were
the outputs of the coarse motion energy �lters and because these outputs
were the only set that it received at all stages of training, it is likely that
this model made extensive use of these signals. The analyses suggest that
the coarse motion signals are the most informative for the velocity estima-
tion task. Model C2M’s extensive use of these highly informative signals
presumably allowed it to achieve a high level of performance. In contrast,
model F2M is likely to have made greater use of the outputs of �ne mo-
tion energy �lters because these outputs were its only inputs at the start of
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Figure 7: The RMSE of several networks after 100 epochs of training on the
noisy object data set.

training and the only set that it received at all stages of training. The anal-
yses suggest that the �ne motion signals are the least informative for the
velocity estimation task. Model F2M’s extensive use of these least informa-
tive signals presumably is responsible for this model’s comparatively poor
performance.

In earlier work, we found that the most successful systems at learning a
binocular disparity estimation task were those that (1) received inputs at a
single-frequency scale early in training and (2) for which the resolution of
their inputs progressed in an orderly fashion from one scale to a neighboring
scale during the course of training (Dominguez & Jacobs, in press-a, in press-
b). Condition 1 allowed a system to combine and compare input features
at an early training stage without the need to compensate for the fact that
these features could be at different spatial scales. If condition 2 was satis�ed,
when a system received inputs at a new spatial scale, it was close to a scale
with which the system was already familiar.

To test the importance on the velocity estimation task for the resolution
of a system’s inputs to progress in an orderly fashion from one scale to a
neighboring scale, we compared the performances of �ve systems. Three of
the systems—ND, C2M-20, and F2M-20—were described above; the other
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Figure 8: The RMSE of several systems on the test set data items for the (left)
solid object data set and (right) noisy object data set.

two systems are new. The neural network of model C-CF-CMF-20 received
coarse motion features during the �rst developmental stage; coarse and �ne
motion features during the second developmental stage; coarse, medium,
and �ne features during the third stage. The neural network of model F-
CF-CMF-20 received �ne motion features in the �rst stage; coarse and �ne
features in the second stage; and coarse, medium, and �ne features during
the �nal developmental stage. Because the inputs to systems C-CF-CMF-20
and F-CF-CMF-20 did not proceed from one scale to a neighboring scale,
we predicted that these systems would perform poorly.

The results on the solid object and noisy object data sets are shown in
Figure 8. On the solid object data set, C2M-20 outperformed C-CF-CMF-20,
and F2M-20 outperformed F-CF-CMF-20. On the basis of these data, we
conclude that it is important for a system’s inputs to proceed from one scale
to a neighboring scale. On the noisy object data set, the results are different.
The performances of C2M-20 and C-CF-CMF-20 are similar, and F2M-20
performed worse than F-CF-CMF-20. We do not believe that these results
are necessarily inconsistent with the hypothesis that we are considering.
Instead, the results may indicate that on this task, it is more important for a
system to receive the outputs of the low-spatial-frequency motion �lters as
early in training as possible than it is for a system to receive inputs whose
resolution changes in an orderlymanner. Overall, we believe that our results
imply that it is moderately, but not highly, important for a developmental
system learning to estimate motion velocities to receive inputs whose reso-
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lution progresses in an orderly fashion from one scale to a neighboring scale
during training.2

We have presented analyses suggesting that coarser-scale motion fea-
tures are more informative than �ner-scale features on the velocity esti-
mation task. Several factors may help explain this �nding. As Weiss and
Adelson (1998) discussed, motion signals tend to be less ambiguous when
the stimulus is viewed for a long duration and more ambiguous when the
stimulus is viewed for a short duration. Their reasoning applies to the ac-
tivities of motion energy �lters with receptive �elds in the spatiotemporal
domain. Coarse-scale �lters tend to have larger receptive �elds than those
of �ne-scale �lters. Consequently, there is less ambiguity in the activities of
coarse-scale �lters relative to the activities of �ne-scale �lters. In addition,
coarse-scale �lters have large, overlapping receptive �elds and thus form
a high-resolution coarse code of the spatiotemporal space (Milner, 1974;
Hinton, 1981; Ballard, 1986). This code could provide a network with accu-
rate information as to the location of the moving object at each moment in
time. For example, the activities of these �lters may have coded with high
accuracy the fact that the moving object was at location A at time tA and
location B at time tB. If so, a network could have easily learned to estimate
the object velocity accurately by calculating .B ¡ A/=.tB ¡ tA/. In contrast,
�ne-scale �lters have smaller, less overlapping receptive �elds, which form
a lower-resolution coarse code.3

An interesting prediction follows from this line of reasoning about the
advantages of �lters with large, overlapping receptive �elds. In general, �l-
ters with larger receptive �elds tend to be tuned to slow velocities, whereas

2 Dominguez and Jacobs (in press-a, in press-b) found that this was a highly important
factor for a developmental system learning to estimate binocular disparities, whereas we
�nd on a motion velocity estimation task that it is only a moderately important factor.
Unfortunately, it is dif�cult to compare our current and prior �ndings in a detailed way, for
anumber of reasons.First, whereas the disparity estimation task involved two images (left-
eye and right-eye images), the motion estimation task involved a sequence of 88 images.
Second, differences between binocular energy �lters and motion energy �lters make the
two sets of simulations dif�cult to compare. For instance, binocular energy �lters make
extensive use of the relative phases of �lters, whereas motion energy �lters do not. As a
second example, the binocular energy �lters that we used earlier were one-dimensional
(we were interested only in horizontal disparities, not vertical disparities), whereas the
motion energy �lters used here were two-dimensional.

3 Analyses by Hinton (1981) and Ballard (1986) provide an understanding of the rela-
tionship between receptive-�eld size and resolution in the case of binary units that each
become active when a stimulus falls within its receptive �eld. If D is the diameter of a unit’s
receptive �eld, k is the dimensionality of the space to be represented, and N is the desired
number of just noticeable differences in each dimension (i.e., the desired resolution), then
the required number of units is Nk=Dk¡1 . For a �xed number of units, a high-resolution
code (that is, one with a large N) requires units with large receptive �elds (�elds with a
large D), whereas a low-resolution code can be achieved with units with small receptive
�elds.
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Figure 9: The RMSE of several systems on the test set data items from the solid
object data set with slow (s) or fast (f) object velocities.

�lters with smaller receptive �elds tend to be tuned to fast velocities. Con-
sequently, we predict that all models should be better at estimating slow
velocities than fast velocities. However, we expect that this tendency will
be comparatively strong for model C2M, because the receptive �elds of low-
spatial-frequency �lters tuned to slow velocities are much bigger than those
of low-frequency �lters tuned to fast velocities. In contrast, we expect that
this tendency will be weak for model F2M, because the receptive �elds of
high-frequency �lters tuned to slow velocities are only mildly bigger than
those of high-frequency �lters tuned to fast velocities.

To test this prediction, we evaluated the accuracy of seven systems at
estimating slow (0.0–1.333 pixels per frame) and fast (2.667–4.0 pixels per
frame) object velocities after training on the solid object data set. The results
are shown in Figure 9. The horizontal axis gives both the system and the
object velocity (s = slow, f = fast); the vertical axis gives the RMSE. All sys-
tems are generally good at estimating both slow and fast object velocities in
the sense that they all show subpixel accuracy. Most important for our cur-
rent purposes, models ND, RD, and C2M were more accurate at estimating
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slow velocities than at estimating fast velocities. This trend was strongest
for model C2M, in agreement with the predicted outcome. Also in agree-
ment with our prediction is the fact that model F2M showed roughly equal
accuracy at estimating slow and fast velocities.

4 Conclusion

We have compared four models on a visual motion velocity estimation
task. Three of the models were developmental in the sense that the nature
of their visual input changed during the course of training. Model C2M
used a coarse-to-multiscale developmental progression, meaning that it re-
ceived coarse-scale motion features early in training and �ner-scale features
were added to its input as training progressed, model F2M used a �ne-to-
multiscale progression, and model RD used a random progression. The �nal
model, model ND, was nondevelopmental in the sense that the nature of
its input remained the same throughout the training period. The simula-
tion results show that model C2M performed best, and model F2M often
performed worst.

The fact that model C2M outperformed model ND is important because
this demonstrates that a model that undergoes a developmental maturation
can acquire a more advanced perceptual ability than one that does not. The
fact that model F2M performed similar to or worse than model ND, and
worse than model C2M, is important because this demonstrates that not
all developmental sequences provide performance bene�ts. It is tempting
to hypothesize that only sequences whose characteristics are matched to
the task should lead to superior performance. However, the �nding that
the best version of model RD outperformed model ND is inconsistent with
this hypothesis because it is dif�cult to understand why a random develop-
mental progression would be well matched to a velocity estimation task. In
general, we conclude that the idea that visual development can aid visual
learning is a viable hypothesis in need of further study.

Model C2M’s superior performance is interesting because its develop-
mental progression resembles that of human infants. The spatial acuity of
newborns is roughly one-�fteenth to one-thirtieth that of adults with nor-
mal eyesight. In other words, newborns are sensitive only to low spatial
frequencies; they cannot see �ne details. Acuity improves approximately
linearly from these low levels at birth to near adult levels by about eight
months of age (Norcia & Tyler, 1985). Our simulation results suggest that
this developmental sequence may provide important functional bene�ts for
the acquisition of motion velocity estimation.

Model C2M’s superior performance is also interesting because this �nd-
ing is broadly consistent with a theory of child development known as the
“less is more” hypothesis (Newport, 1990). According to this view, cogni-
tive, perceptual, and motor limitations early in infancy (such as being able
to perceive visually only low spatial frequencies) are helpful, perhaps nec-
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essary, stages in development. Limited mental abilities re�ect simple neural
representations, which are useful stepping-stones or building blocks for the
subsequent development of more complex representations (Turkewitz &
Kenney, 1982).

Consistent with the “less is more” hypothesis, our view of perceptual
development is that early developmental periods set the stage for later pe-
riods in the sense that early periods bias the performance of a biological
system during these later periods. Although machine learning researchers
rarely use the term development when referring to their learning algorithms,
many researchers have pursued a “stage-setting” strategy—for example:

² Systems that perform clustering frequently are trained in two stages.
During the �rst stage, the K-means algorithm is used to locate the
cluster centers approximately. These centers are then used to initialize
the mean vectors of a mixture of normal distributions, which is trained
using an expectation-maximization (EM) algorithm during a second
training period (Bishop, 1995).

² Bayesian systems are frequently trained in two stages. In the �rst stage,
point estimates of a system’s parameters are obtained using a maxi-
mum likelihood estimation algorithm such as the EM algorithm. These
point estimates are then used to initialize a Markov chain Monte Carlo
(MCMC) sampler such as a Gibbs sampler. The initialization of MCMC
samplers in this manner can lead to dramatic speed-ups in their con-
vergence (Peng, Jacobs, & Tanner, 1996).

² Jordan (1994) proposed that probabilistic decision trees (also known
as hierarchical mixtures of experts; Jordan & Jacobs, 1994) be trained
in two stages. In the �rst stage, a deterministic decision tree is trained
using, for example, the CART or C4.5 algorithms. The resulting tree
is then used to initialize both the shape and the parameters of a prob-
abilistic decision tree, which is trained using the EM algorithm in a
second training stage.

² Neural networks are sometimes trained in two stages. During the �rst
stage, a genetic algorithm is used to identify a good network structure
and a good set of initial weights. The backpropagation algorithm is
then used to modify these initial weights in a second stage of training
(Belew, McInerney, & Schraudolph, 1991).

These examples highlight the fact that machine learning researchers are
exploring multistaged strategies for biasing their learning systems so as
to enhance their performances. We believe that a developmental approach
based on biological principles as presented here represents a promising, but
understudied, method for suitably biasing learning systems.
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