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Bernstein (1967) suggested that people attempting to learn to perform
a difficult motor task try to ameliorate the degrees-of-freedom problem
through the use of a developmental progression. Early in training, peo-
ple maintain a subset of their control parameters (e.g., joint positions)
at constant settings and attempt to learn to perform the task by varying
the values of the remaining parameters. With practice, people refine and
improve this early-learned control strategy by also varying those parame-
ters that were initially held constant. We evaluated Bernstein’s proposed
developmental progression using six neural network systems and found
that a network whose training included developmental progressions of
both its trajectory and its feedback gains outperformed all other systems.
These progressions, however, yielded performance benefits only on motor
tasks that were relatively difficult to learn. We conclude that development
can indeed aid motor learning.

1 Introduction

Why is learning to control a motor system, either a human body or a robot,
so difficult? Atleast part of the difficulty arises from the degrees-of-freedom
problem. Motor systems often have many degrees of freedom, where the
degrees of freedom in a system are the number of dimensions in which the
system can independently vary (Rosenbaum, 1991). These degrees of free-
dom are often redundant, meaning that the number of degrees of freedom of
the system carrying out some task exceeds the number of degrees of freedom
needed to specify the task to be carried out (Jordan & Rosenbaum, 1989).
Importantly, redundancy can occur at many different levels of sensorimo-
tor representation (Saltzman, 1979). For example, consider the problem of
touching the tip of your nose. The location of your nose has three degrees
of freedom (its x, y, and z position in Cartesian coordinates), but the joints
of your arm have seven degrees of freedom (the shoulder has three degrees
of freedom, and the elbow and wrist each have two). Consequently, there
are many different settings of your arm’s joint positions that allow you to
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touch your nose. As a second example, consider the problem of controlling
your muscle forces in order to apply a specified torque at a joint. Because the
joint torque has one degree of freedom and the muscle forces have multiple
degrees of freedom, there are many different settings of your muscle forces
that all result in the same joint torque. In general, the larger the number of
degrees of freedom in a system and the more redundant these degrees of
freedom, the more difficult it is to control the system so that it behaves in a
desired manner (Jordan & Rosenbaum, 1989).

Bernstein (1967), who first identified the degrees-of-freedom problem,
suggested that people attempting to learn to perform a difficult motor task
try to ameliorate the degrees-of-freedom problem through the use of a de-
velopmental progression. Early in training, people maintain a subset of
their control parameters (e.g., joint positions) at constant settings and at-
tempt to learn to perform the task by varying the values of the remaining
parameters. With practice, people refine and improve their early-learned
control strategy by also varying those parameters that were initially held
constant. In other words, novice performers tend to lock a subset of their
jointin constant positions. As they gain more experience, they then let these
joints move more freely. Experimental evidence in support of this hypoth-
esis comes from several sources (though the hypothesis and the empirical
data are topics of recent debate; see Newell and Vaillancourt, 2001) .

Arutyunyan, Gurfinkel, and Mirskii (1968) analyzed the motion and sta-
bility of people learning to shoot hand-held pistols. Novice shooters tended
to hold their wrists and elbows rigid. As they became more practiced, they
tended to unlock their wrists and elbows, and their firing accuracy im-
proved. It was found that unlocking the wrist and elbow allowed the arm
to compensate for motion in the hand, and vice versa. Counterintuitively,
variability in the position of the gun barrel was reduced toward the end
of training even though more motion occurred in the arm and hand than
before. A similar developmental trend was found by McDonald, van Em-
merik, and Newell (1989) in a study of people practicing a dart-throwing
task. Vereijken, van Emmerik, Whiting, and Newell (1992) studied people
practicing slalom-like ski movements on a ski apparatus. During the early
stages of learning, the joint angles of these people’s lower limbs and torso
displayed little movement, as measured by the standard deviations and
ranges of angular motions. In addition, joint couplings were high, as evi-
denced by the large cross-correlations between joint angles. With practice,
however, angular movement significantly increased in all joint angles of
the lower limbs and torso, and the cross-correlations decreased. Berthier,
Clifton, McCall, and Robin (1999) studied reaching movements in infants
at the age at which they first successfully moved their hands to targets
presented in their work space (median age of 11 weeks when first tested).
Kinematic analyses revealed that infants tended not to show elbow flexion
or extension during reaches. Instead, their hands moved toward the target
locations due to shoulder and torso rotations.
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Taken as a whole, this collection of results suggests that infants and
adults simplify the problem of learning to perform a difficult motor task
through the use of a developmental progression. If so, early in training,
people maintain a subset of their control parameters (e.g., joint positions)
at constant settings and attempt to learn to perform the task by varying the
values of the remaining parameters. With practice, they refine and improve
this early-learned control strategy by also varying those parameters that
were initially held constant. Presumably, this developmental progression is
sensible because in early stages of training, it is significantly easier to learn
to perform a difficult motor task, albeit in an approximate way, by using
a smaller number of control parameters than it is to learn to perform the
task using the full set of parameters. Once a person has learned to make
an approximate but easily learned motor movement, this knowledge serves
as a useful foundation for learning to make a more complex and accurate
movement with additional practice.

This article reports the results of a number of simulations in which ar-
tificial neural networks were trained to move a robot arm along a refer-
ence trajectory by producing appropriate feedforward torques. Some net-
works were trained in a manner consistent with the developmental pro-
gression suggested by Bernstein (1967), whereas the training of other net-
works did not include a developmental progression. The results indicate
that the use of the developmental progression results in significantly better
motor performance at the end of training. This developmental progression,
however, yielded performance benefits only on motor tasks that were rela-
tively difficult to learn. We conclude that development can indeed aid motor
learning.

From a computational perspective, the research that most closely resem-
bles the work reported here is that of Sanger (1994), who also trained neural
networks to control robot arms using developmental progressions. In one
study, the gains of a feedback controller, which was used in conjunction with
a neural network to control the robot arm, were initialized to large values
at the start of training and then were gradually reduced during the course
of training. In another study, a network was trained to move a robot arm
along a reference trajectory at a relatively slow speed at the start of training.
During the course of training, the speed at which the arm was required to
traverse the trajectory was gradually increased. In both cases, Sanger found
that networks trained with a developmental progression outperformed net-
works that were not. An important difference between our work and that of
Sanger is that we are concerned with the specific developmental progression
proposed by Bernstein (1967).

2 Data Sets and Training Procedures

We simulated a three-joint robot arm with highly nonlinear dynamics. This
arm was identical to the arm simulated by Kawato, Furukawa, and
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Table 1: Values of the Physical Parameters of the Robot Arm.

Parameter First Link Second Link Third Link
Li(m) 04 04 0.4
Sr(m) — 0.15 0.15
My (kg) 15.0 7.0 3.0

L (kg - m?) — 0.589 0.251
Ly (kg - m?) — 0.584 0.253
I, (kg - m?) 0.017 0.00673 0.0034
be(kg - m/s) 20.0 15.0 5.0

Note: Ly, Sk, Mk, Ixx, Iy, Ixz, and by are the length, the position of
the center of mass, the mass, the three inertial moments, and the
viscosity coefficient for the kth link, respectively.

Suzuki (1987) with the exception that our arm did not include a payload.
Our simulations used the Matlab Robotics Toolkit (Corke, 1996). The values
of the physical parameters of the arm are shown in Table 1.

Results using two reference trajectories are reported in this article. Each
reference trajectory was acomplexmotion in three-dimensional space whose
duration was 4 seconds. Each trajectory was computed using the Matlab
Robotics Toolbox. In short, there were five moments in time when all joint
velocities and accelerations were zero. The joint positions at these moments,
referred to as landmark positions, were specified, and the Toolbox computed
trajectory values for the joint positions, velocities, and accelerations at all
moments in time by fitting a smooth polynomial between these landmark
positions. The reference trajectories are shown in Figure 1.

The use of a reference trajectory that specifies the desired joint positions,
velocities, and accelerations at each moment in time does not eliminate the
degrees-of-freedom problem because this problem typically occurs at many
levels of sensorimotor representation (Saltzman, 1979). As indicated above,
a person given a reference trajectory at the level of joint variables must still
cope with the redundancy arising from the fact that the desired joint values
can be achieved using many different settings of the person’s muscle forces.
Analogously, a neural network given a reference trajectory at the level of
joint variables must still cope with the redundancy arising from the fact that
the desired joint values can be achieved using many different settings of the
network’s hidden unit activations or connection weights. Although Bern-
stein (1967) was primarily concerned with redundancy at the level of joints,
our focus is on evaluating the implications of his proposed developmental
progression for aspects of motor learning. We do not consider the use of
this progression for solving the degrees-of-freedom problem at the level of
joints.
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Figure 1: The two reference trajectories. The horizontal axis of each graph rep-
resents time; the vertical axis gives the reference joint positions for the shoulder
(solid line), elbow (dashed line), and wrist (dotted line).

Neural networks were trained to serve as feedforward controllers for
the robot arm. As illustrated in Figure 2, the training procedure involved
training an adaptive feedforward controller, implemented as a neural net-
work, to control the arm in conjunction with a fixed feedback controller. The
feedback controller aided in generating training data that the feedforward
controller used to learn a model of the arm’s inverse dynamics. The feedback
controller that we used was nearly identical to the one simulated by Kawato
et al. (1987). It was a proportional-derivative (PD) controller whose propor-
tional feedback gains were 517.2, 746.0, and 191.4 and whose derivative
gains were 16.2, 37.2, and 8.4. The training method is known in the motor
control literature as feedback error learning (Jordan & Wolpert, 2000).

Let the state of the arm at time ¢ be represented in joint space by a po-
sition vector #(t) and a velocity vector 4(t). In order to achieve a desired
acceleration 6 (t), an appropriate torque 7(t) must be applied to the arm.
The relationship between acceleration and torque is the inverse dynamics
of the arm and is written

() = fLOm, 6, 6(t). (2.1)

The goal of the learning procedure was to train a feedforward controller to
model this relationship.

The feedforward controller was trained on-line in the following manner.
Torques were applied to the robot arm at a rate of 100 Hz, meaning that
discrete time steps occurred at 10 msec intervals. At each time step, the
control signal was obtained by summing the outputs of the feedforward
and feedback controllers (see the top portion of Figure 2). The inputs to the
feedforward controller were the desired joint positions, velocities, and accel-
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Figure 2: In feedback error learning, an adaptive feedforward controller and a
fixed feedback controller are used to control the robot arm. To train the feed-
forward controller, the actual joint variables are provided as inputs. The target
output for the controller is the torque applied to the arm.

erations for the current time step, as specified by the reference trajectory. The
inputs to the feedback controller were the desired and actual joint positions
and velocities. The sum of the feedforward and feedback control signals is a
torque vector that was applied to the arm. The resulting joint accelerations
were observed. The feedforward controller then received the actual joint po-
sitions, velocities, and accelerations as inputs, and it computed new outputs
(see the bottom portion of Figure 2). An error was computed between this
output and the actual torques applied to the arm, and the error was used to
modify the weights in the controller using the backpropagation algorithm.
In this manner, the feedforward controller received samples of the inverse
dynamic mapping and learned a model of this mapping by minimizing its
prediction error. Early in training, the feedback controller dominated, and
the arm followed the desired trajectory imprecisely. As the feedforward
controller improved at modeling the arm’s inverse dynamics, it began to
generate torques that allowed the arm to follow the desired trajectory more
faithfully.
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Six neural networks were trained to serve as feedforward controllers.
Two networks did not use a developmental progression and thus are re-
ferred to as control networks. The remaining four networks are referred
to as experimental networks because they used a developmental progres-
sion. Each network had nine input units corresponding to the positions,
velocities, and accelerations of the three joints and three output units cor-
responding to the feedforward torques at each joint. Unless specified oth-
erwise, each network also had a layer of 25 hidden units (this number was
chosen because the performance of the first control network described be-
low on the first reference trajectory did not significantly improve when
more hidden units were added to this network). The initial weight values
for a unit of a network were randomly sampled from a uniform distribu-
tion whose mean was zero and whose standard deviation was equal to
the inverse of the square root of the fan-in of the unit (i.e., the number of
connections received by the unit; see LeCun, Bottou, Orr, & Miiller, 1998).
For the purposes of simulation, the joint positions, velocities, and accelera-
tions as well as the joint torques were linearly scaled so that the activations
of the input and output units were nearly always between —1 and 1. The
hidden units used a hyperbolic tangent activation function, whereas the
output units used a linear activation function. The networks were trained
to minimize their sum of squared errors. A learning rate of 0.00005 was
used because this value resulted in the best performance for the first con-
trol network described below on the first reference trajectory. Networks
were trained for 1000 epochs, where each epoch is one attempt at control-
ling the arm to traverse the reference trajectory. We found that the perfor-
mances of all networks converged at 1000 epochs, but the networks tended
not to overfit the training data as measured by their generalization per-
formances on a novel reference trajectory (this trajectory was identical to
the first reference trajectory except that the robot arm was required to per-
form this sequence at a 20% faster rate). The six neural networks were as
follows:

1. Nondevelopmental network (network ND). This was a conventional
neural network. Its training did not include a developmental progression.

2. Modular nondevelopmental network (network ND-M). This system
was actually three networks—one for each feedforward joint torque. Each
network had 9 input units, corresponding to the positions, velocities, and
accelerations of the three joints; 25 hidden units; and 1 output unit. The
activation of the output unit of network i was a feedforward torque for
joint i. A motivation for this three-network system is as follows. A possible
advantage of the developmental progression proposed by Bernstein (1967)
is that it roughly uncouples the dynamic interactions among the joints by
training different joints at different moments in time. We thought it would
be interesting, therefore, to evaluate a modular system that did not use a
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developmental progression but that did use uncoupled neural networks
that independently learned to control the joints.

3. Network with development of its trajectory (network D-T). This net-
work was trained in stages. At all times, the joint closest to the base of the
robot arm (i.e., the arm’s “shoulder”) was trained to follow the position,
velocity, and acceleration values specified by the reference trajectory. The
other two joints (the arm’s “elbow” and “wrist”), however, were trained to
maintain constant values of their positions during early stages of training.
During later stages of training, they were trained to follow the values spec-
ified by the reference trajectory more closely. In other words, the network
was trained to freeze a subset of its joints (its elbow and wrist) toward the
beginning of training and then to vary these joints more freely toward later
training periods.

This was implemented as follows. Let 6;* () be the desired value of either
the elbow’s or the wrist’s position at time ¢, where the subscript i indexes
either the elbow or wristjoint. Also, let 6; rcf(#) be the value of the position of
joint i at time ¢ specified by the reference trajectory. For the elbow and wrist
joints only, the desired value was a linearly scaled version of the reference
value:

91-*(1') = Qi,ref(o) +kx [Qi,ref(t) - Qi,ref(o)]v (2~2)

where k is a gain parameter whose value varied from zero to one during the
course of training. In other words, the desired value at time t was a linear
function of how much the reference value at time t deviated from its initial
value at time t = 0. The value of k at each epoch of training was given by a
logistic function:

1

MO = e we)

(2.3)

where e denotes the current epoch, the threshold parameter p© was set
to 250 epochs, and the slope parameter o was set to 12.3. The desired values
for joint i’s velocity and acceleration at each point in time were computed
from the desired position values via differentiation.

4. Network with development of its feedback gains (network D-G). This
system combines aspects of the ideas of Bernstein (1967) regarding motor
learning with the idea of using large feedback gains during early stages
of training and then gradually decreasing their values during the course
of training. At all times, the feedback gains for the shoulder joint were set
to the values given above. However, the feedback gains for the elbow and
wrist joints were set to very large values (four times the values given above)
during early training stages and then gradually decreased to the values
given above.

This was implemented as follows. Let g¥ be a vector whose elements are
the feedback gains corresponding to either the elbow or wrist. The subscript i
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indexes either the elbow or wristjoint. Let g; norm be a vector whose elements
are the normal feedback gains for joint i, meaning the values of the gains
given above. For the elbow and wrist joints only, the feedback gains were
scaled versions of their normal values,

g;k =kx gi,norm7 (2.4)

where kis a gain parameter whose value varied from four to one during the
course of training. The value of k at each epoch of training was given by the
equation

3
~ T+exp(—(e— /o)’

k(e) = 4 2.5)

where e denotes the current epoch, the threshold parameter ;1 was set
to 250 epochs, and the slope parameter o was set to 12.3.

5. Network with development of its trajectory and of its feedback gains
(network D-TG). This system combined the trajectory development of net-
work D-T with the feedback gain development of network D-G. We pre-
dicted that this system would show the best performance. Early in training,
the desired values of the elbow’s and wrist’s positions were set to constant
values. Indeed, these joint variables were nearly frozen at these constant val-
ues due to the high feedback gains on these joints. Importantly, this greatly
simplified the learning problem for the network during early training stages
because it was only the joint variables corresponding to the shoulder that
showed significant variation during this time period. We reasoned that the
knowledge gained during these early training stages would provide a use-
ful foundation for further learning at later training stages when the desired
joint values for all joints are closer to those specified by the reference trajec-
tory and when the feedback gains are closer to their normal values.

Among all the networks we simulated, network D-TG is the one most
broadly consistent with the ideas of Bernstein (1967). Note that this network
uses two types of developmental progressions: identical to network D-T, it
uses a progression of its trajectory, and identical to network D-G, it uses
a progression of its feedback gains. By comparing the performance of this
network with those of networks D-T and D-G, we can evaluate the relative
benefits of each of these progressions.

6. Network with reverse development of its trajectory and of its feed-
back gains (network RD-TG). This network was identical to network D-TG
except that the developmental progression proceeded in the opposite order.
Early in training, the desired values of the shoulder’s positions were set to
constant values, and the feedback gains for the shoulder were set to large
values. As training progressed, the desired values of the shoulder’s posi-
tions were set closer to those of the reference trajectory, and the feedback
gains for the shoulder were set closer to their normal values. In contrast,
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Figure 3: Simulation results using the first reference trajectory.

the elbow and wrist joints did not undergo a developmental progression.
At all times, the desired values of their positions, velocities, and accelera-
tions were determined by the reference trajectory, and the feedback gains
for these joints were set to their normal values. A motivation for this system
is to evaluate the extent to which the order of the developmental progres-
sion, from either shoulder to elbow and wrist or from elbow and wrist to
shoulder, influences a system’s performance.

3 Simulation Results

The simulation results using the first and second reference trajectories are
shown in Figures 3 and 4, respectively. The horizontal axis of each graph
gives the network. The vertical axis gives the root mean squared error
(RMSE) at the end of training based on the difference at each point in time
between ajoint’s actual position (in radians) and its desired position as spec-
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Figure 4: Simulation results using the second reference trajectory.

ified by the reference trajectory. The upper-left graph in each figure is for
joint 1 (shoulder), the upper-right graph is for joint 2 (elbow), and the lower
graph is for joint 3 (wrist). The error bars give the standard errors of the
means based on 20 simulations of each network. Our primary interest is in
whether the developmental networks outperformed the nondevelopmental
network ND. Statistical tests (two-tailed ¢-tests with 38 degrees of freedom)
were conducted to evaluate whether each network’s performances were
significantly different from network ND’s performances. Bars in Figures 3
and 4 that have one star above them indicate that a network’s performance
is significantly different at the p < 0.05 level; two stars indicate that a net-
work’s performance is significantly different at the p < 0.01 level.
Consistent with our prediction, network D-TG showed the best perfor-
mance in the sense that it had the smallest errors. On both the first and
second reference trajectories, this network had significantly smaller errors
than network ND for all joints. Network D-T also showed relatively good
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performance. On the first trajectory, it had significantly smaller errors than
network ND for all three joints; it had significantly smaller errors for two
of three joints on the second trajectory. These results are important because
they demonstrate that a system that uses a developmental progression can
outperform one that does not.

In contrast, developmental networks D-G and RD-TG did not show su-
perior performances. This result is important because it demonstrates that
not all developmental progressions result in performance benefits. To the
contrary, only progressions whose characteristics are well matched to the
nature of the task should be expected to yield superior performance. It is
interesting to note that even though a developmental progression of the
feedback gains by itself did not lead to performance benefits, as evidenced
by the poor performance of network D-G, it did lead to enhanced perfor-
mance when used in combination with a developmental progression of the
trajectory, as evidenced by the superior performance of network D-TG rel-
ative to network D-T. It is also interesting to note that a developmental
progression that proceeds from the shoulder to the elbow and wrist yields
performance benefits relative to a progression that proceeds in the opposite
order, as evidenced by the superior performance of network D-TG relative
to network RD-TG.

We have shown the performances of the six networks on two sample
reference trajectories. Overall, the pattern of performances suggests the use-
fulness of the progression proposed by Bernstein (1967). It is important to
consider the generality of these results by asking whether the same pattern
of results is found using other reference trajectories. Although the results are
not presented here, we have evaluated the networks’ performances using a
wide variety of trajectories. Our findings can be summarized as follows. If a
reference trajectory was relatively easy to learn, meaning for our purposes
that the nondevelopmental network ND was able to learn to control the
robot arm to follow the trajectory with relatively small error, then the use
of the developmental progressions considered here tended not to result in
performance benefits. Fortunately, they also did not result in performance
decrements (meaning they did not have an important impact on final per-
formances). In contrast, if a reference trajectory was relatively difficult to
learn, meaning for our purposes that network ND learned to control the arm
to follow the trajectory with relatively large error, then the developmental
progressions used by networks D-TG and D-T tended to yield performance
benefits as reported above.

Because the robot arm had highly nonlinear dynamics, it is unreasonable
to expect an adaptive feedforward controller trained with one reference
trajectory to generalize well to novel trajectories. Nonetheless, we report
the results of such a generalization test here. The novel trajectory used the
same sequence of joint positions as the first reference trajectory, though the
robot arm was required to perform this sequence at a 20% faster rate.

The results are shown in Figure 5. Network D-TG, the system whose
developmental progression is closest to the progression proposed by Bern-
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Figure 5: The joint position errors when tested on the generalization trajectory.

stein (1967), outperformed all other networks when we consider generaliza-
tion errors for the elbow and wrist joints. However, it performed relatively
poorly when we consider generalization errors for the shoulder joint. A
possible explanation for this result is to note that the set of desired values
for the elbow and wrist varies widely during the course of training due to
the developmental progression, whereas the set of desired values for the
shoulder remains fixed. Based on this result, we speculate that the develop-
mental progression proposed by Bernstein may help leaners to perform their
target motor task accurately, but it will not necessarily result in important
performance improvements on other tasks.

4 Summary

In summary, Bernstein (1967) suggested that people attempting to learn
to perform a difficult motor task try to ameliorate the degrees-of-freedom
problem through the use of a developmental progression. Early in training,
people maintain a subset of their control parameters (e.g., joint positions)
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at constant settings and attempt to learn to perform the task by varying
the values of the remaining parameters. With practice, they refine and im-
prove this early-learned control strategy by also varying the parameters
that were initially held constant. We evaluated Bernstein’s proposed pro-
gression using six neural network systems: (1) network ND did not use a
developmental progression in its training; (2) network ND-M did not use
a developmental progression, though it used separate networks to learn to
produce the appropriate feed forward torques for the different joints; (3) net-
work D-T used a developmental progression of its trajectory; (4) network
D-G used a developmental progression of its feedback gains; (5) network
D-TG used developmental progressions of both its trajectory and its feed-
back gains; and (6) network RD-TG used developmental progressions of
both its trajectory and its feedback gains, though these progressions pro-
ceeded from the elbow and wrist joints to the shoulder joint, which is the
opposite order from the progressions used by other networks. We found
that network D-TG outperformed all other systems. This developmental
network, however, yielded performance benefits only on motor tasks that
were relatively difficult to learn. We conclude that development can indeed
aid motor learning.
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