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This article considers the hypothesis that systems learning aspects of
visual perception may bene�t from the use of suitably designed develop-
mental progressions during training. We report the results of simulations
in which four models were trained to detect binocular disparities in pairs
of visual images. Three of the models were developmental models in
the sense that the nature of their visual input changed during the course
of training. These models received a relatively impoverished visual in-
put early in training, and the quality of this input improved as training
progressed. One model used a coarse-scale-to-multiscale developmental
progression, another used a �ne-scale-to-multiscale progression, and the
third used a random progression. The �nal model was nondevelopmental
in the sense that the nature of its input remained the same throughout the
training period. The simulation results show that the two developmental
models whose progressions were organized by spatial frequency content
consistently outperformed the nondevelopmental and random develop-
mental models. We speculate that the superior performance of these two
models is due to two important features of their developmental progres-
sions: (1) these models were exposed to visual inputs at a single scale
early in training, and (2) the spatial scale of their inputs progressed in
an orderly fashion from one scale to a neighboring scale during training.
Simulation results consistent with these speculations are presented. We
conclude that suitably designed developmental sequences can be useful
to systems learning to detect binocular disparities. The idea that visual de-
velopment can aid visual learning is a viable hypothesis in need of study.

1 Introduction

Human infants are born with limited perceptual, motor, and cognitive abil-
ities relative to adults. Within the �eld of developmental psychology, there
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are at least two perspectives regarding these limitations. The older and
more commonplace view is that these limitations are barriers that must be
overcome in order for a child to achieve adult function (Piaget, 1952). That
is, they are de�ciencies or immaturities that serve no positive purpose. A
newer view is that these apparent inadequacies are in fact helpful, perhaps
necessary, stages in development. Limited mental abilities, according to this
theory, re�ect simple neural representations that are useful stepping-stones
or building blocks for the subsequent development of more complex repre-
sentations (Turkewitz & Kenney, 1982).

The idea that early developmental stages are useful or necessary pre-
cursors to more advanced stages is becoming increasingly studied in the
cognitive neurosciences. The development of biological nervous systems
is sometimes characterized as using a bootstrapping strategy. Greenough,
Black, and Wallace (1987) speculated that asynchrony in brain development
serves the useful function of stage setting. The developmental schedule for
the maturation of different brain regions is staggered such that neural sys-
tems that develop relatively early provide a suitable framework for the
development of later experience-sensitive systems.

Harwerth, Smith, Duncan, Crawford, and von Noorden (1986) provided
experimental evidence consistent with this hypothesis by performing be-
havioral studies of sensitive periods for visual development in monkeys.
Their results suggest that these sensitive periods are organized into a hier-
archy in which early visual functions requiring information processing in
the earliest stages of the visual system have shorter sensitive periods than
higher-level functions requiring more central neural processing. A second
example is provided by the work of Shatz (1996). Within the lateral genic-
ulate nucleus (LGN) of adult mammals, retinal ganglion cell axons from
one eye are segregated from those arising from the other eye to form a se-
ries of alternating eye-speci�c layers. These layers are not present initially
in development. Moreover, they form during a period in which vision is
not possible. Shatz argued that the development of eye-speci�c layers is
characterized by at least two important events. First, retinal ganglion cells
spontaneously show waves of activity that sweep across the retina such that
activity at nearby cells is more highly correlated than at distant cells. Second,
LGN cells use a Hebb-style adaptation mechanism that sorts connections
based on local correlations of activity in order to form eye-speci�c layers. If
so, then this is a clear example in which a developmental event at an earlier
visual region (spontaneous waves of activity at the retina) sets the stage for
an event at a later visual region (Hebb-style adaptation at the LGN).

Newport (1990) hypothesized that children use a bootstrapping strategy
when attempting to learn a language. Human languages are componential
systems in which small linguistic components are systematically combined
to form larger linguistic structures. According to Newport’s “less is more”
hypothesis, the limited attentional and memorial abilities of children are
useful when learning a language because they help children segment and
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identify the small components that comprise the language. Elman (1993)
studied an implementation of this general idea and showed that a recurrent
neural network whose memory capacity was initially limited but then grad-
ually increased during the course of training learned aspects of an arti�cial
grammar better than a network whose memory capacity was never limited;
that is, the second network’s memory capacity was always equal to that of
the �rst network at the end of training. Elman claimed that this outcome
supports the idea that starting small is important to the subsequent acqui-
sition of complex mental abilities. Rohde and Plaut (1999), however, were
unable to replicate Elman’s simulation results, so it is dif�cult to know how
to interpret these results.

This article considers the hypothesis that systems learning aspects of
visual perception may bene�t from the use of suitably designed develop-
mental progressions during training. We report the results of simulations
in which four systems were trained to detect binocular disparities in pairs
of visual images. Three of the systems were developmental models in the
sense that the nature of their input changed during the course of train-
ing. These systems received a relatively impoverished visual input early
in training, and the quality of this input improved as training progressed.
The fourth system was a nondevelopmental model; the nature of its input
remained constant during the course of training. The inputs to the sys-
tems were left and right retinal images �ltered with binocular energy �lters
tuned to various spatial frequencies. The training of the �rst system, re-
ferred to as the coarse-scale-to-multiscale model (model C2M), included a
developmental sequence such that the system was exposed only to low-
spatial-frequency information at the start of training, and information at
higher spatial frequencies was added to its input as training progressed.
The training of the second system, referred to as the �ne-scale-to-multiscale
model (model F2M), included an analogous developmental sequence with
spatial frequency information added in the reverse order. This system re-
ceived high-spatial-frequency information at the start of training, and in-
formation at lower spatial frequencies was added as training progressed.
The third system, referred to as the random-developmental model (model
RD), was similar to models C2M and F2M in the sense that its training in-
cluded a developmental sequence. However, whereas the inputs received
by models C2M and F2M at each developmental stage were organized by
spatial frequency content, the inputs received by model RD at each stage
were randomly selected. Finally, the fourth system, referred to as the non-
developmental model (model ND), was not trained using a developmental
sequence; it received information at all spatial frequencies throughout the
training period.

When comparing the three developmental models with the nondevel-
opmental model, there are at least two reasonable predictions that one
could make about the simulation results. One prediction is that the non-
developmental model should outperform the developmental models. The
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nondevelopmental model received all input information throughout all
stages of training, whereas the developmental models were deprived of
portions of the input at certain training stages. If more information is better
than less information, then the nondevelopmental model ought to perform
best. This would be consistent with the traditional view of human infant
development—that perceptual immaturities are barriers to be overcome.

An alternative prediction, consistent with the general approach of the
less-is-more hypothesis, is that the developmental models would show the
better performance. If it is believed that too much information could lead
a learning system in its early stages of training to form poor internal rep-
resentations, then the developmental models ought to have an advantage.
The nondevelopmental model had a greater number of inputs than the de-
velopmental models during the early stages of training and, thus, a greater
number of modi�able weights. Because learning in neural networks is a
search in weight space, the nondevelopmental model needed to perform an
unconstrained search in a high-dimensional weight space. Unconstrained
searches frequently lead to the acquisition of poor representations. In con-
trast, the developmental models initially had fewer inputs and thus fewer
modi�able weights. During early stages of training, their searches in weight
space were comparatively constrained. If the constraints were appropriate,
this should have facilitated the acquisition of useful representations by the
developmental models.

When comparing the performances of the two developmental models
whose stages are based on spatial frequency content (models C2M and
F2M), there are at least three reasonable predictions one could make about
the simulation results. One prediction is that model C2M should perform
best. A motivation for this prediction comes from the �eld of computer vi-
sion. Consider the task of aligning two images of a scene where the images
differ due to a small horizontal offset in their viewpoints. Roughly, this is
known as the stereo correspondence problem. If this were something that
you had never done before, you might try to align �ne details of each image.
For example, you might pick a white dot in one image and repeatedly try
aligning it with white dots in the other image. If the images are highly tex-
tured, such an approach would be inef�cient because there is an intractable
number of potential alignments that might need to be checked before the
two images are properlyaligned (see Figure 1A). If, however, the images are
blurred, the �ne details that were the source of so much confusion would
be removed, leaving a smaller number of larger features in each image. The
problem of �nding a good alignment is now signi�cantly easier because
there is a smaller number of potential alignments (see Figure 1B). After you
have gained skill at aligning blurred images, you would then have a reliable
foundation that you could use to learn to align clearer images. You might
attempt to match the larger image features �rst. Subsequent analysis of �ne
details would seek to remove ambiguities that arise when aligning large
features instead of being a starting point for locating correspondences.
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Figure 1: (A) One image from a stereo pair depicting a textured object and
background. Due to the �ne details in the stereo pair, solving the stereo corre-
spondence problem is relatively dif�cult. (B) The image from A blurred so as to
remove the �ne details. It is easier to solve the stereo correspondence problem
when the stereo pair is blurred because image features tend to be larger, less
numerous, and more robust to noise.

This style of processing is commonplace in the computer vision litera-
ture. Systems by Marr and Poggio (1979), Quam (1986), and Barnard (1987),
among many others, initially search for correspondences within a pair of
low-resolution images. Low-resolution images are used initially because
these images contain fewer image features, larger image features, and image
features that are relatively robust to noise. Next, these systems re�ne their
estimates of corresponding image features using information from one or
more higher-resolution pairs of images. The usefulness of a coarse-to-�ne
processing strategy when searching for stereo correspondences suggests
that a coarse-scale-to-multiscale developmental strategy might be useful
for learning to detect binocular disparities. Before adopting this hypothe-
sis, however, it is important to keep in mind the differences between these
two strategies. Computer vision researchers use a coarse-to-�ne strategy
when searching for correspondences in individual pairs of images. In con-
trast, we used the coarse-scale-to-multiscale developmental sequence while
training a learning system to detect binocular disparities using many pairs
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of images. It is not obvious that lessons from one situation can be applied
to the other situation.

If we assume that human intelligence provides a guide to creating ma-
chine intelligence, then a second motivation for the prediction that model
C2M should perform best is the fact that human infants show a related de-
velopmental progression. Visual acuity is often measured using a grating,
which is a visual pattern whose luminance values are sinusoidally modu-
lated. Acuity is characterized by the highest-frequency grating, which is dis-
tinguishable from a solid gray pattern. Using this method, it has been found
that newborns’visual acuity is extremely poor. Whereas adults with normal
vision (so-called 20/20 vision) can discriminate approximately 30 cycles per
degree of arc, newborns can discriminate only 1 to 2 cycles per degree, giv-
ing them a visual acuity of about 20/400. Acuity improves approximately
linearly from these low levels at birth to near adult levels by around eight
months of age (Norcia & Tyler, 1985). Importantly for our purposes, infants
are acquiring other visual abilities during this time period; in particular,
sensitivity to binocular disparities appears at around four months of age
(Atkinson & Braddick, 1976; Fox, Aslin, Shea, & Dumais, 1980; Held, Birch,
& Gwiazda, 1980; Petrig, Julesz, Krop�, Baumgartner, & Anliker, 1981). We
speculate that the developments of visual acuity and binocular disparity
sensitivity may be related in the sense that poor acuity at an early age aids
in the acquisition of disparity sensitivity later in life.

An alternative prediction is that model F2M should perform better than
model C2M. A motivation for this prediction is the fact that computer vision
researchers often �nd it easier to solve the stereo correspondenceproblemby
�rst extracting edge information from left and right images, a form of high-
frequency bandpass �ltering, and then searching for a good alignment of the
images based on this information. This strategy is useful because edges can
be sparse, large, and robust to noise relative to other image features. Analo-
gous to computer vision systems’ initial use of high-frequency information,
model F2M is initially trained solely with information extracted from high-
frequency bandpass �lters. If we are willing to assume that computer vision
methods for �nding stereo correspondences may provide lessons for how
learning systems can learn to detect binocular disparities, then we might
predict that model F2M has an advantage.

A second motivation for the prediction that model F2M should perform
best is the seemingly counterintuitive result that neural networks trained
with input patterns that have been corrupted by noise frequently show bet-
ter generalization than equivalent networks trained with input patterns that
have not been corrupted (Sietsma & Dow, 1991). Training with noisy inputs
has been shown analytically to be equivalent to a form of regularization
(Bishop, 1995; Matsuoka, 1992; Webb, 1994). In other words, the learning
process of networks trained with noisy inputs is more constrained than that
of similar networks whose inputs are not corrupted by noise. If the retinal
images contain noise and if model C2M tends to �lter out the noise during
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early stages of training, then this model will not obtain the bene�ts of train-
ing with noisy inputs. We would therefore expect model F2M to perform
best.

Another possible prediction is that models C2M and F2M perform about
equally well. If the relative advantages of model C2M (being able to use
fewer image features, larger image features, and more noise-resistant im-
age features at the start of training) and the relative advantages of model
F2M (initial exposure to high-frequency bandpass information, being able to
obtain the bene�ts of training with noisy inputs) are roughly balanced, then
neither model would be expected to show superior performance. Further-
more, we outlined the logic of computer vision researchers who advocate a
coarse-to-�ne processing strategy when analyzing stereo correspondences,
and we tentatively speculated that the usefulness of this strategy suggests
that the seemingly related coarse-scale-to-multiscale developmental strat-
egy might be useful for learning to detect binocular disparities. If, however,
we again make the assumption that human intelligence provides a guide to
creating machine intelligence, then it is worth noting that humans often do
not use a coarse-to-�ne strategy when analyzing stereo correspondences.
Mallot, Gillner, and Arndt (1996) found that unambiguous information at
a coarse scale is not always used by observers to disambiguate �ner-scale
information and that observers can use unambiguous �ne-scale informa-
tion to disambiguate coarse-scale information, meaning that observers are
using a �ne-to-coarse processing strategy in these circumstances. Related
�ndings have been reported by several other researchers (McKee & Mitchi-
son, 1988; Mowforth, Mayhew, & Frisby, 1981; Smallman, 1995). Because
human observers do not use a coarse-to-�ne strategy or a �ne-to-coarse
strategy exclusively, we might not expect the exclusive use of a C2M devel-
opmental strategy or the exclusive use of a F2M strategy to yield a relative
performance advantage.

When comparing the performances of models C2M and F2M with that of
model RD, the only reasonable prediction seems to be that model RD should
perform no better than the other developmental models, and it is likely that
it will perform worse. We have included model RD in this article in order to
demonstrate that the use of a developmental sequence does not necessarily
lead to performance advantages. Instead, the bene�ts of a developmental
sequence are found only when the sequence incorporates constraints that
are useful for learning the desired behavioral task.

This article reports the results of computer simulations comparing the
learning performances of the developmental and nondevelopmental mod-
els on the task of estimating binocular disparities in novel pairs of im-
ages. The results show that the developmental models whose stages are
based on spatial frequency content (models C2M and F2M) consistently
outperformed the nondevelopmental and random developmental mod-
els. We speculate that the superior performance of these models is due
to two important features of their developmental progressions: (1) these
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models were exposed to visual inputs at a single scale early in training, and
(2) the spatial scale of their inputs progressed in an orderly fashion from one
scale to a neighboring scale. Simulation results consistent with these spec-
ulations are presented. We conclude that suitably designed developmental
sequences can be useful to systems learning to detect binocular disparities
and that the general idea that visual development can aid visual learning is
a viable hypothesis in need of future study.

2 Developmental and Nondevelopmental Models

Figure 2 illustrates the structure of the developmental and nondevelopmen-
tal models. This structure is based on a similar architecture studied by Gray,
Pouget, Zemel, Nowlan, & Sejnowski (1998). The retinal layer consisted of
two one-dimensional arrays 62 pixels in length for the left and right eye
images. Each retina was treated as if it were shaped like a circle; the left-
most and right-most pixels were regarded as neighbors. This wraparound
of the left and right edges was done to avoid edge artifacts. Although one-
dimensional retinas are a simpli�cation, their use is justi�ed by the fact
that the models were concerned only with horizontal disparities, as these
are the ones that provide information about the three-dimensional con�g-
uration of the visual environment.1 The retinal inputs were �ltered using
binocular energy �lters.

Based on neurophysiological studies, Ohzawa, DeAngelis, and Freeman
(1990) proposed binocular energy �lters as a way of modeling the binocular
sensitivities of simple and complex cells in primary visual cortex. These
�lters are an extension of motion energy �lters proposed by Adelson and
Bergen (1985). A simple cell receives input from a pair of subunits, one for
each retina. The receptive �eld pro�les of the subunits can be described
mathematically as Gabor functions:
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2p s
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³

¡
x2

2s2

´
sin(2p vx C w ) (2.1)
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³

¡
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2s2

´
sin(2p vx C w C dw ). (2.2)

Each function is a sinusoid multiplied by a gaussian envelope. The param-
eter x is the distance to the center of the gaussian, s2 is the variance of the

1 Vertical disparities provide information aboutviewing distance and angleof gaze but
by themselves do not carry information about the three-dimensional structure of the visual
environment. That is, by themselves, they cannot be used for making relative or absolute
depth judgments. In contrast, horizontal disparities alone can be used for making relative
depth judgments and, when scaled by viewing distance information (perhaps obtained
via vertical disparities), for making absolute depth judgments.
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Figure 2: The developmental and nondevelopmental models shared a common
structure. The bottom portion of this structure is the left and right retinal images.
These images are then �ltered by binocular energy �lters. The outputs of these
�lters are the inputs to an arti�cial neural network that is trained to estimate
the disparity present in the images. The model illustrated here is model C2M
in which low-spatial-frequency information was received during early stages
of training, and information at higher frequencies was added as training pro-
gressed.

gaussian, v is the frequency of the sinusoid, and w and dw are referred to
as the base phase and phase offset of the sinusoid, respectively. The Ga-
bor functions associated with the left and right retinal subunits differ in
that the phase of one is offset from the phase of the other. The output of
a simple cell is formed in two stages. First, the convolution of the left reti-
nal image with the left subunit Gabor is added to the convolution of the
right retinal image with the right subunit Gabor; next, this sum is half-wave
recti�ed and squared (a negative sum is mapped to zero; a positive sum is
mapped to its square). The magnitude of a simple cell’s output is related to
the presence of a binocular disparity of a particular size in the retinal input.
Simple cells formed from subunits with different phase offsets are sensi-
tive to disparities of different sizes (Fleet, Wagner, & Heeger, 1996; Qian,
1994). The output of a complex cell is the sum of the outputs of four simple
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cells. Because the base phases of these simple cells form quadrature pairs
(the base phases are 0, p /2, p , and 3p /2), the complex cell’s output is rel-
atively insensitive to the exact position of a disparity within its receptive
�eld.

In our simulations, there were 35 receptive �eld locations that received
input from overlapping regions of the retina. At each location, there were 30
complexcells corresponding to three spatial frequencies and 10 phase offsets
at each frequency. The three spatial frequencies were each separated by an
octave: 0.25, 0.125, and 0.0625 cycles per pixel. The standard deviations of
the Gabor functions were set to be inversely proportional to the frequency:
1.0 for 0.25 cycles per pixel, 2.0 for 0.125 cycles per pixel, and 4.0 for 0.0625
cycles per pixel. The 10 phase offsets were equally spaced over a range from
0 to p /2. The outputs of the complex cells were normalized using a softmax
nonlinearity,

OEi (x) D
eEi (x)/t

P
j eEj (x)/t

, (2.3)

where Ei (x) was the initial output of the complex cell, OEi (x) was the normal-
ized output, t is a scaling parameter known as a temperature parameter
(its value was set to 0.25), and j indexed the 10 complex cells with different
phase offsets at a receptive �eld location within a single frequency band. As
a result of this normalization, complex cells tended to respond to relative
contrast in an image rather than absolute contrast.

The normalized outputs of the complex cells were the inputs to an arti-
�cial neural network. The network had 1050 input units (the complex cells
had 35 receptive �eld locations, and there were 30 cells at each location). The
hidden layer of the network contained 32 units organized into 8 groups of 4
units each. The connectivity to the hidden units was set so that each group
had a limited receptive �eld; a group of hidden units received inputs from
seven receptive �eld locations at the complex cell level. The hidden units
used a logistic activation function. The output layer consisted of a single
linear unit; this unit’s output was an estimate of the disparity present in the
right and left retinal images.

The weights of an arti�cial neural network were initialized to small ran-
dom values and were adjusted during the course of training to minimize a
sum of squared error cost function using a conjugate gradient optimization
procedure (Press, Teukolsky, Vetterling, & Flannery, 1992). This procedure
was used because it tends to converge quickly and because it has no free
parameters (e.g., no learning rate or momentum parameters). Weight shar-
ing was implemented at the hidden unit level so that corresponding units
within each group of hidden units had the same incoming and outgoing
weight values and a hidden unit had the same set of weight values from
each receptive �eld location at the complex unit level. This provided the
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network with a degree of translation invariance and also dramatically de-
creased the number of modi�able weight values in the network. It therefore
decreased the number of data items needed to train the network and the
amount of time needed to train the network.

Models were trained and tested using separate sets of training and test
data items. Training sets contained 250 randomly generated data items; test
sets contained 122 data items that were generated so as to cover the range
of possible binocular disparities uniformly. Training was terminated after
35 iterations through the training set in order to minimize over�tting of the
training data. The results reported are based on the data items from the
test set.

Model C2M was trained using a coarse-scale-to-multiscale developmen-
tal sequence. This was implemented as follows. The training period was
divided into three stages where the �rst and second stages were each 10
iterations and the third stage was 15 iterations.2 During the �rst stage, the
neural network portion of the model received only the outputs of complex
cells tuned to low spatial frequencies (the outputs of the other complex
cells were set to zero). During the second stage, the network received the
outputs of complex cells tuned to low and medium spatial frequencies; it
received the outputs of all complex cells during the third stage. The training
of model F2M was identical to that of model C2M except that its training
used a �ne-scale-to-multiscale developmental sequence. During the �rst
stage of training, its network received the outputs of complex cells tuned
to high spatial frequencies. This network received the outputs of complex
cells tuned to high and medium frequencies during the second stage and
received the outputs of all complex cells during the third stage. The train-
ing of model RD also used a developmental sequence, though this sequence
was generated randomly and thus was not based on the spatial frequency
tuning of the complex cells. The collection of complex cells was randomly
partitioned into three equal-sized subsets with the constraint that each sub-
set included all phase offsets at all receptive �eld locations. During the �rst
stage of training, the neural network portion of the model received the out-
puts of only the complex cells in the �rst subset. It received the outputs of
the cells in the �rst and second subsets during the second stage of train-
ing and the outputs of all complex cells during the third stage. In contrast,
the training period for the nondevelopmental model was not divided into
separate stages; its neural network received the outputs of all complex cells
throughout the training period.

2 The number of iterations in the training stages was roughly optimized using models
C2M andF2M andthe solid object dataset described below. Models with stagesof different
sizes were tested, and the results suggest that models tended to show worse generalization
performance if the number of iterations in the �rst and second stages was decreased or
increased.
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3 Data Sets and Simulation Results

The performances of the four models were evaluated on three data sets.
These data sets were based on related data sets used by Gray et al. (1998).
In all cases the images were gray scale with luminance values between 0
and 1 and disparities with values between 0 and 3 pixels. Ten simulations
of each model on each data set were conducted.

In the solid object data set, images consisted of a single light or dark
object on a gray background. The object’s gray-scale value was either be-
tween 0.0 and 0.1 or between 0.9 and 1.0, whereas the gray-scale value of
the background was always 0.5. The location of the object was randomly
chosen to be a real-valued location on the retina. The object’s disparity was
randomly chosen to be a real value between 0 and 3 pixels. The object’s size
was randomly chosen to be a real value between 10 and 25 pixels. Since the
object’s size, location, and disparity were all real numbers, the ends of the
object could fall at a real-valued location within a pixel. In these (common)
cases, the value of the partially covered pixel was interpolated between the
gray-scale value of the object and that of the background in proportion to
the amount of the pixel covered by the object and background. An example
of a right and left image is shown in the top panel of Figure 3. Given the right
and left images, the task of a model was to estimate the object’s disparity.

The upper left graph of Figure 4 illustrates the results. The horizontal
axis gives the model, and the vertical axis gives the root mean squared error
(RMSE) at the end of training on the data items from the test set (the error
bars give the standard error of the mean). On average, developmental model
C2M had a 16.5% smaller generalization error than the nondevelopmental
model (the difference between the mean error rates is statistically signi�-
cant; t D 3.77, p < 0.002 using a two-tailed t-test), and a 19.3% smaller error
than the random developmental model (t D 4.60, p < 0.001). Developmen-
tal model F2M had a 12.2% smaller error than the nondevelopmental model
(t D 23.74, p < 0.001) and a 15.2% smaller error than the random develop-

Figure 3: Examples of right and left images (top and bottom rows in each panel)
from the solid object, noisy object, and planar data sets.
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Figure 4: The four models’ RMSE on the test set data items after training on the
three data sets (the error bars give the standard error of the mean).

mental model (t D 49.01, p < 0.001). Clearly, the two developmental mod-
els whose developmental progressions were organized by spatial frequency
content outperformed both the nondevelopmental model and the random
developmental model. A statistical comparison between models C2M and
F2M shows that their performances were not signi�cantly different.

The variability in model C2M’s performancewas notably greater than the
variability in the performances of the other models. Although it is dif�cult to
know why, it may have to do with the properties of binocular energy units.
As discussed by Qian (1994), Zhu and Qian (1996), and Fleet et al. (1996), the
responses of these units may peak even when the input disparity is outside
the range of disparities to which the unit was thought to be responsive. In
such cases, the large response is known as a false peak. False peaks occur for
nearly all stimuli, including white noise. Moreover, some of the false peaks
will be signi�cantly larger than the peak at the disparity to which the unit
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was thought to be selective. False peaks tend to occur at integer multiples
of the wavelength to which the unit is tuned, meaning that units tuned to
low frequencies tend to have false peaks that are relatively far from each
other, and units tuned to high frequencies tend to have false peaks near
to each other. Consequently, units tuned to low spatial frequencies tend
to have false peaks at disparities that are signi�cantly different from the
disparity to which they were thought to be responsive, whereas units tuned
to high frequencies tend to have false peaks at disparities that are closer to
the disparity to which they were thought to be responsive (see Figure 5). The
large variability in model C2M’s performance may be due to the fact that
this model is sometimes misled early in training by false peaks at disparities
that are far from the disparities to which units are thought to be selective.
This is less likely to be as serious a problem for the other models because
they are less likely than model C2M to emphasize information provided by
units tuned to low spatial frequencies.

The learning curves for the four models on the solid object data set are
illustrated in the upper left graph of Figure 6. The horizontal axis gives the
training time in epochs, and the vertical axis gives the RMSE on the test
set data items. The solid black line is for model C2M, the solid gray line
is for model F2M, the dashed black line is for model RD, and the dotted
black line is for model ND. The learning curve for model ND falls quickly
within the �rst few epochs of training and then is relatively �at for the
remainder of the training period. In contrast, the developmental models
learned relatively slowly, and models C2M and F2M eventually showed the
best generalization performance. This result is consistent with the notion
described above that apparent inadequacies in performance during early
development are not necessarily bad; they sometimes suggest the use of in-
ternal representations, which are useful stepping-stones for the subsequent
development of advanced behaviors.

The images in the second data set, referred to as the noisy object data
set, were meant to resemble random dot stereograms frequently used in
behavioral experiments. Images contained a noisy object against a noisy
background. The gray-scale values of the object pixels and the background
pixels were set to random numbers between 0 and 1. The location of the
object was randomly chosen to be a real-valued location on the retina. The
object’s size was randomly chosen to be a real value between 10 and 25
pixels. The object’s disparity was a randomly chosen integer between 0 and
3 pixels. As before, the task was to map the left and right images to an
estimate of the object’s disparity. An example of a left and right image is
shown in the middle panel of Figure 3.

The results are shown in the upper right panel of Figure 4. As before, the
developmental models whose developmental progressions were organized
by spatial frequency content performed best. On average, model C2M had a
7.1% smaller generalization error than model ND (t D 448.8, p < 0.001) and
a 6.6% smaller error than model RD (t D 2.46, p < 0.05). Model F2M had a
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Figure 5: The top two �gures illustrate Gabor �lters for the left-eye and right-
eye images that are tuned to a low spatial frequency (l is the wavelength). The
right-eye Gabor is phase-shifted by d units relative to the left-eye Gabor. The
sum of the �lter responses tends to be large when the disparity in the images
is d, d ¡ l, or d C l. Because the wavelength l is relatively large, the sum can
peak at input disparities (e.g., d C l) that are far from the disparity (d) to which
the sum was thought to be responsive. As illustrated in the bottom two �gures,
a similar situation holds for �lters tuned to high spatial frequencies, but now
the wavelength l is smaller and the false peaks occur at input disparities that
are signi�cantly closer to the disparity to which the sum was thought to be
responsive. Consequently, false peaks are more misleading when using �lters
tuned to low frequencies than when using �lters tuned to high frequencies.
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Figure 6: Learning curves for the four models on the three data sets.

4.3% smaller error than model ND (t D 1566.5, p < 0.001) and a 3.8% smaller
error than model RD (this result is not statistically signi�cant). Comparing
the developmental models C2M and F2M, C2M had a 2.85% smaller error
(t D 170.6, p < 0.001). The learning curves for the four models are shown
in the upper right graph of Figure 6. A notable feature illustrated by this
graph is that the random developmental model had highly unstable levels
of performance during the course of training.

The last data set, the planar data set, was different from the �rst two
data sets. Instead of an object in front of a background, the images depicted
a frontoparallel plane. The values of the left-image pixels were randomly
chosen to be either 0 or 1. The right image was generated by applying an
integer shift to the left image of 0, 1, 2, or 3 pixels. Given the left and right
images, the task was to estimate the size of the shift. An example of a left
and right image is shown in the bottom panel of Figure 3.
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The results are shown in the bottom graph of Figure 4. Again, the devel-
opmental models whose developmental progressions were organized by
spatial frequency content tended to outperform the other models. Model
C2M had a 6.7% smaller generalization error than model ND (t D 2.27,
p < 0.05) and a 1.3% smaller error than model RD (this result is not statis-
tically signi�cant). Model F2M had an 8.3% smaller error than model ND
(t D 16.84, p < 0.001) and a 3.0% smaller error than model RD (t D 7.01,
p < 0.001). The performances of models C2M and F2M were not statistically
different. The bottom graph of Figure 6 gives the learning curves for the four
models.

In summary, the simulation results using the three data sets show that
the developmental models whose progressions were organized by spatial
frequency content (models C2M and F2M) signi�cantly outperformed the
nondevelopmental and random-developmental models. To understand the
performances of models C2M and F2M better, we analyzed more carefully
their behaviors using the solid object data set.

We looked at how these models performed on images with disparities
of different sizes (small, midsize, and large disparities) at the end of each
developmental stage (stages 1, 2, and 3). These data are given in Figure 7.
The three graphs in this �gure correspond to the three disparity sizes. The
horizontal axis of each graph gives the stage number for each model; the
vertical axis gives each model’s RMSE at the end of the indicated stage
on those test set data items with the indicated disparity size. For purposes
of comparison, the graphs also include the data for the nondevelopmental
model. Model ND did not signi�cantly change its ability to detect disparities
of a given size across training stages; its performance at detecting small,
midsize, or large disparities remained nearly constant across the stages.
Model C2M improvedits ability to estimate disparities of all sizes as training
progressed from one stage to the next. In contrast, model F2M appears
to have learned about different-sized disparities in each of the different
training stages. For example, it learned a great deal about detecting small
disparities in stage 1; in stages 2 and 3, it learned more about detecting
midsize and large disparities. Not surprisingly, its performance at detecting
small disparities degraded as its performance at detecting midsize and large
disparities improved.

The question remains as to why models C2M and F2M showed supe-
rior performance. One logical possibility is that these models performed
well due to the fact that they received relatively few inputs early in train-
ing. This possibility can be ruled out, however, because model RD received
equally few inputs early in training, but this model did not performwell. We
speculate that two important features of the developmental progressions of
models C2M and F2M account for their superior performances. First, these
models were exposed to visual inputs at a single scale early in training.
Model C2M received only coarse-scale information at the start of training;
model F2M received only �ne-scale information. In contrast, models RD
and ND received information at all spatial scales at all stages of training.
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Figure 7: Performance of models C2M, F2M, and ND on images with dispari-
ties of different sizes (small, midsize, and large disparities) at the end of each
developmental stage (stages 1, 2, and 3). Training and test data items came from
the solid object data set.

We conjecture that it might be advantageous for a learning system to receive
inputs at a single scale early in training because this allows the system to
combine and compare input features without the need to compensate for the
fact that these features could be at different spatial scales. Second, models
C2M and F2M might be at an advantage because the spatial scale of their in-
puts progressed in an orderly fashion from one scale to a neighboring scale.
Consequently, when these models received inputs at a new spatial scale, this
new scale was close to a scale with which the models were already familiar.
If it is the case that this second feature of models C2M and F2M is important,
then this leads to an interesting prediction. We predict that developmental
models whose progressions do not proceed in an orderly manner from one
scale to a neighboring scale ought to show poor performance.

To test this prediction, two additional models were created and tested
on the solid object data set. These models had developmental stages based
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Figure 8: RMSE of models C2M, F2M, C-CF-CMF, and F-CF-CMF on the test
items from the solid object data set.

on spatial frequency content (like models C2M and F2M), but the addition
of new frequency bands to their inputs at each stage did not proceed in
an orderly manner. The �rst new model is referred to as model C-CF-CMF.
It received the outputs of complex cells tuned to a low spatial frequency
early in training. In stage 2, it received the outputs of complex cells tuned to
low and high frequencies, and it received the outputs of cells tuned to low,
medium, and high frequencies in stage 3. The second new model, referred
to as model F-CF-CMF, was similar to model C-CF-CMF, but it started with
high-frequency information. That is, it received the outputs of complexcells
tuned to a high spatial frequency early in training. It received the outputs
of cells tuned to low and high frequencies in stage 2, and the outputs of all
complex cells in stage 3.

Figure 8 shows the performances of models C2M, F2M, C-CF-CMF, and
F-CF-CMF at the end of training on the solid object data set. In accord with
our prediction,models C-CF-CMF and F-CF-CMF showed very poorperfor-
mance. These data are consistent with the conjecture that it is advantageous
to a developmental system for the spatial scale of its inputs to progress in
an orderly fashion from one scale to a neighboring scale.

4 Summary and Conclusion

This article has considered the hypothesis that systems learning aspects of
visual perception may bene�t from the use of suitably designed develop-
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mental progressions during training. We reported the results of simulations
in which different systems were trained to detect binocular disparities in
pairs of visual images. Three of the systems were developmental models
in the sense that the nature of their input changed during the course of
training. These systems received a relatively impoverished visual input
early in training, and the quality of this input improved as training pro-
gressed. The fourth system was a nondevelopmental model; the nature
of its input remained constant during the course of training. The results
show that the developmental models whose stages were based on spatial
frequency content, models C2M and F2M, consistently outperformed the
nondevelopmental and random developmental models. We speculate that
the superior performance of these models is due to two important features
of their developmental progressions: (1) these models were exposed to vi-
sual inputs at a single scale early in training, and (2) the spatial scale of
their inputs progressed in an orderly fashion from one scale to a neigh-
boring scale. Simulation results consistent with these speculations were
presented. We conclude that suitably designed developmental sequences
can be useful to systems learning to detect binocular disparities, in ac-
cord with the less-is-more view of development. Moreover, the idea that
visual development can aid visual learning is a viable hypothesis in need
of study.

With relatively few exceptions, the relationship between development
and learning has been ignored by the neural computation community. We
believe that this is unfortunate. It is well known that systems learn best
when they are suitably constrained through the use of domain knowledge.
Learning systems are inherently faced with the bias-variance dilemma (Ge-
man, Bienenstock, & Doursat, 1995). Systems with little or no bias are often
capable of learning many different sets of training items. Unfortunately,
they tend to interpolate in unpredictable ways and thus generalize poorly
to novel data items. In contrast, systems that are constrained through the
use of domain knowledge and thus have large bias are not able to learn as
wide a variety of training sets. However, they tend to show better gener-
alization performance and less variable generalization performance when
exposed to those training sets that they can adequately learn. The design of
appropriate developmental progressions through the use of domain knowl-
edge provides researchers with an effective means of biasing their learning
systems so as to enhance their performances.
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