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Bayesian integration of visual and auditory
signals for spatial localization
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Human observers localize events in the world by using sensory signals from multiple modalities. We evalu-
ated two theories of spatial localization that predict how visual and auditory information are weighted when
these signals specify different locations in space. According to one theory (visual capture), the signal that is
typically most reliable dominates in a winner-take-all competition, whereas the other theory (maximum-
likelihood estimation) proposes that perceptual judgments are based on a weighted average of the sensory sig-
nals in proportion to each signal’s relative reliability. Our results indicate that both theories are partially
correct, in that relative signal reliability significantly altered judgments of spatial location, but these judg-
ments were also characterized by an overall bias to rely on visual over auditory information. These results
have important implications for the development of cue integration and for neural plasticity in the adult brain
that enables humans to optimally integrate multimodal information. © 2003 Optical Society of America
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1. INTRODUCTION
The ability to localize a stimulus in the environment is
based on a complex mapping of sensory signals that leads
to a perceptual judgment. For example, auditory local-
ization relies, in part, on binaural time-of-arrival differ-
ences that must be scaled by the distance between the two
ears to provide a ‘‘correct’’ interpretation of the stimulus
location with respect to the head. Similarly, visual local-
ization relies, in part, on the coordinates of retinal stimu-
lation, the position of the eye in the orbit, and the orien-
tation of the head on the body. Thus stimulus
localization entails the integration of multiple sources of
sensory and motor information.1

In most circumstances, events in the environment pro-
vide consistent cues to spatial location; a mouse running
across a field is visually, auditorily, and tactually located
in the same position in space when a barn owl swoops
down to capture it. However, not all events in the envi-
ronment are characterized by consistent cues.2 For ex-
ample, in a movie theater the visual information is lo-
cated on the screen whereas the auditory information
often comes from loudspeakers located to the side of the
screen. Nevertheless, we perceive the sound to originate
from the location of the visual stimulus (e.g., the moving
lips of a face or the crash of an automobile). This is an
example of ‘‘visual capture’’ in which the visual informa-
tion for spatial location dominates completely the conflict-
ing auditory information.3,4 Knudsen and his colleagues
have shown in the barn owl that vision dominates audi-
tion when these two sources of information are artificially
put into conflict.5,6 Juvenile barn owls whose auditory
cues to the location of a sound are altered (with a monau-
ral earplug) or whose visual cues to object location are al-
tered (with displacing prisms) recalibrate the relationship
between sight and sound, with vision dominating audi-
tion.
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Two models have been proposed to account for how ob-
servers make perceptual judgments when signals from
different modalities are in conflict. One model proposes
that the signal that is typically most reliable dominates in
a winner-take-all competition, and an observer’s judg-
ment is based exclusively on that dominant signal. In
the context of spatial localization based on visual and au-
ditory signals, this model is called visual capture because
localization judgments are dominated by visual informa-
tion. The other model proposes that perceptual judg-
ments are based on a blend of information arising from
multiple modalities.7 Several investigators have re-
cently examined whether human adults combine informa-
tion from multiple sensory sources in a statistically opti-
mal manner.8–11 With certain mathematical assump-
tions, an optimal model of sensory integration has been
derived based on maximum-likelihood estimation (MLE)
theory. Specifically, the model assumes that the sensory
signals are statistically independent given a value of a
property of a scene and that an observer’s estimate of the
value of the scene property given a sensory signal has a
normal distribution. In the engineering literature, the
MLE model is also known as a Kalman filter.12,13 Ac-
cording to this model, a sensory source is reliable if the
distribution of inferences based on that source has a rela-
tively small variance; otherwise the source is regarded as
unreliable. More-reliable sources are assigned a larger
weight in a linear-cue-combination rule, and less reliable
sources are assigned a smaller weight. Thus visual cap-
ture is simply a special case in which one highly reliable
cue (vision) is assigned a weight of one and a less reliable
cue (audition) is assigned a weight of zero.

Figure 1 illustrates two hypothetical situations in
which visual and auditory signals provide different infor-
mation about the location of an event. In the two graphs
in this figure, the horizontal axis indicates a spatial loca-
2003 Optical Society of America
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tion and the vertical axis plots the probability that the
event occurred at a location based on one or more sensory
signals. The leftmost normal distribution in each graph
gives the probability distribution of locations based on the
visual signal; the rightmost probability distribution is for
locations based on the auditory signal.

In Fig. 1(a), the two distributions have equal variances,
indicating that visual and auditory signals are equally re-
liable information sources about location. In this case,
the statistically optimal way of integrating visual and au-
ditory signals is to linearly average the best location esti-
mate based on the visual signal with the best location es-
timate based on the auditory signal, where the two
location estimates (e.g., the peaks of the distributions) are
given equal weight. The dashed line in the graph shows
the optimal estimate of location based on both sensory
signals.

In Fig. 1(b), the probability distribution based on the
visual signal has a smaller variance than the distribution
based on the auditory signal. In this case, the visual sig-
nal is regarded as more reliable. In computing the opti-
mal estimate of location based on both signals, a linear
average of the best location estimates based on the indi-
vidual signals assigns a larger weight to the estimate de-
rived from visual information.

Mathematically, the MLE model of sensory integration
is characterized in the following way. Let L denote a pos-
sible location of an event, and let v and a denote the val-
ues of the visual and auditory signals. In addition, let
Lv* denote the best location estimate based on the visual
signal [this is the location L that maximizes the probabil-
ity of a location value given the visual signal, P(Luv)], let
La* denote the best location estimate based on the audi-
tory signal [the location L that maximizes P(Lua)], and
let L* denote the optimal location estimate based on both
visual and auditory signals [the location L that maxi-
mizes P(Luv,a)]. Then it can be shown that the optimal
location estimate based on both signals can be computed
as follows:

Fig. 1. Optimal model of sensory integration based on MLE
theory. (a) Visual and auditory signals are equally reliable in-
dicators of event location. (b) Visual signal is a more reliable in-
dicator of event location.
L* 5 wvLv* 1 waLa* , (1)

where

wv 5
1/sv

2

1/sv
2 1 1/sa

2 and wa 5
1/sa

2

1/sv
2 1 1/sa

2 (2)

and sv
2 and sa

2 are the variances of the distributions
P(Luv) and P(Lua), respectively.14

Do human observers localize events on the basis of vi-
sual and auditory signals in a way that is best predicted
by the visual capture model or by the MLE model? We
conducted an experiment designed to evaluate this ques-
tion. Surprisingly, the results indicate that both models
are partially correct and that a hybrid model may provide
the best account of subjects’ performances. We examined
the extent to which subjects use visual and auditory in-
formation to estimate location when the visual signal is
corrupted by noise of varying amounts. As greater
amounts of noise were added to the visual signal, subjects
tended to use auditory information more and more. Al-
though this trend is predicted by the MLE model, this
model does not correctly predict subjects’ responses. In-
stead, the model makes a systematic error by consistently
underestimating the degree to which subjects made use of
visual information. That is, subjects seem to be biased to
use visual information to a greater extent than predicted
by the MLE model, a bias that is broadly consistent with
the visual capture model. Our findings are interesting
because they provide a new way of thinking about a modi-
fied MLE model that is biased toward the use of visual in-
formation or, alternatively, a modified visual capture
model that is made probabilistic in the manner of the
MLE model. Overall, our results can be accounted for by
a Bayesian model that modifies the MLE model through
the addition of a prior probability distribution that leads
the model to make greater use of visual information.

2. METHODS
A. Subjects
Ten subjects participated in the study. All had normal or
corrected-to-normal vision and normal hearing. Subjects
were naı̈ve to the purposes of the study. All subjects gave
informed consent according to procedures approved by the
University of Rochester Research Subjects Review Board.

B. Stimuli and Experimental Apparatus
The auditory signal used in the experiment was a broad-
band noise burst filtered to eliminate onset and offset
transients and to mimic the spectral characteristics of a
sound source external to the listener (with use of head-
related transfer functions supplied by F. Wightman15).
In particular, these characteristics were manipulated so
that the noise appeared to originate from one of seven lo-
cations arranged along a horizontal axis spanning the
width of the experimental workspace. Locations were
spaced at intervals of 1.5° of visual angle. These loca-
tions are referred to as comparison locations. The stimu-
lus was created with a Tucker–Davis Technologies RP2
signal processor and the Visual Design Studio software.
The processor was connected to a Tucker–Davis Technolo-
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gies HB7 headphone driver that delivered the stimulus
through Sennheiser HD-265 headphones.

The visual stimulus was a random-dot stereogram of a
bump, shaped like a normal distribution, protruding from
a frontal parallel background surface. The bump was
centered at one of the seven comparison locations. The
height at the top of the bump was 150 pixels from the
background (20.8 cm assuming a viewing distance of one
m). The dots of the stereogram subtended 13.5 arc min,
and the density was ;6 dots per square degree. The vi-
sual signal was corrupted by one of five levels of noise.
The noise was created by scattering a percentage of dots
at random depths in the workspace instead of being
placed on the background or the bump.10,16 These noise
dots were placed at random depths in the interval from 15
pixels behind the background to 15 pixels in front of the
peak of the bump (where 15 pixels is 2.08 cm assuming a
viewing distance of one m). The five noise levels random-
ized 10%, 23%, 36%, 49%, and 62% of the dots. The vi-
sual stimulus was displayed on two monitors mounted in
a Virtual Research V6 head-mounted display system.
Each monitor had a resolution of 640 3 480 pixels and a
refresh rate of 60 Hz. The effective viewing distance was
approximately 1 m.

C. Procedure
The experiment was conducted in two phases. Trials in
the first phase used signals from a single sensory modal-
ity, whereas trials in the second phase used signals from
both modalities. The goal of the first phase was to mea-
sure subjects’ localizations when exposed to either an au-
ditory signal or to a visual signal corrupted with one of
five levels of noise. On the basis of these trials, the pa-
rameter values of the MLE model were estimated for each
subject at each visual noise level (see Appendix A for
mathematical details). The MLE model used the data
from single-modality trials so that predictions could be
made about subjects’ judgments when exposed to auditory
and visual signals simultaneously. The accuracy of these
predictions was evaluated in the second phase of the ex-
periment when subjects localized events on the basis of
both signals, which were presented in different spatial lo-
cations.

In each single-modality trial, subjects observed stimuli
in two temporal intervals and judged whether the event
depicted in the second interval was located to the left or
the right of the event depicted in the first interval. One
stimulus, called the standard, always depicted an event
at the center of the experimental workspace. The other
stimulus, called the comparison, depicted an event at one
of the seven comparison locations. Figures 2(a) and 2(b)
illustrate the auditory-only and visual-only trials. The
standard stimulus is shown on the left of each figure and
the comparison stimulus on the right.

In each multimodality trial, the standard stimulus in-
cluded both visual and auditory signals, but these signals
depicted events at different locations. The visual signal
corresponded to an event at 21.5° to the left of the work-
space center and the auditory signal an event at 1.5° to
the right. This discrepancy was introduced so that we
could measure the relative degree to which subjects relied
on visual versus auditory information when localizing
events. For example, a subject who localized the event in
the standard stimulus at 21.5° would be basing that
judgment entirely on the visual signal, a localization at
1.5° would indicate that the judgment was based entirely
on the auditory stimulus, and a localization at 0° would
suggest that the subject weighted visual and auditory in-
formation equally. With one possible exception, all sub-
jects reported being unaware of the discrepancy between
the visual and auditory signals in the standard stimulus.
These signals were spatially coincident in the comparison
stimulus [see Fig. 2(c)].

Subjects participated in two experimental sessions on
successive days. In the first session they performed
three blocks of practice trials consisting of 35 trials each
of either auditory-only, visual-only, or visual-auditory tri-
als. The data from practice trials were not used in the
study. Subjects then performed 105 auditory-only trials
followed by 525 visual-only trials (105 trials at each noise
level 3 5 noise levels; trials with different noise levels
were randomly intermixed). In the second session, sub-
jects performed 525 visual–auditory trials (again, trials
with different noise levels were intermixed).

On each trial, standard and comparison stimuli were
presented in random order to eliminate an anchoring
bias. Subjects used key presses to indicate their judg-
ments of whether the event depicted in the second stimu-
lus was to the left or the right of the event depicted in the
first stimulus. Stimuli were presented for 500 ms, and
there was a 500-ms delay between the presentations of
the first and the second stimuli.

3. RESULTS
The results for one subject on the auditory-only trials are
shown in Fig. 3. The horizontal axis shows the compari-
son locations (in degrees of visual angle away from the

Fig. 2. Schematic illustration of single-modality and multimo-
dality trials. The standard stimulus is shown on the left and
the comparison stimulus is on the right. For simplicity, the com-
parison stimulus is shown only at one of the seven possible loca-
tions at which it could appear. (a) Auditory-only trial. (b)
Visual-only trial. (c) Visual–auditory trial.
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center of the workspace), and the vertical axis shows the
percentage of trials in which the subject judged the com-
parison stimulus as depicting an event located to the
right of the event depicted in the standard stimulus. A
cumulative normal distribution was fitted to the data
points, and the mean and variance of this distribution
were used by the MLE model as described in Eqs. (1) and
(2).

The results for the same subject on the visual-only tri-
als are shown in Fig. 4. The two sets of data points, and
their corresponding best-fitting cumulative normal distri-
butions, are for the trials when the visual signal was cor-
rupted by the lowest and the highest amounts of noise.
Because the distribution fitted to the data points in the
highest-noise condition (dashed curve) has a larger vari-
ance than the distribution for the lowest-noise condition
(solid curve), we can conclude that greater amounts of
noise in the visual signal increased the uncertainty in the
subject’s localization judgments.

On the basis of the data in Figs. 3 and 4, the MLE
model can be used to predict the subject’s responses on
trials that contain conflicting visual and auditory signals.
The subject’s responses had a comparatively small vari-
ance when the visual signal was corrupted by a small
level of noise, as measured by the cumulative normal dis-

Fig. 3. Results for one subject on the auditory-only trials. The
horizontal axis shows the comparison locations (in degrees of vi-
sual angle away from the center of the workspace), and the ver-
tical axis shows the percentage of trials in which the subject
judged the comparison stimulus as depicting an event located to
the right of the event depicted in the standard stimulus. The
curve fitted to the data points is a cumulative normal distribu-
tion.

Fig. 4. Results for one subject on the visual-only trials. The
solid and dashed curves are cumulative normal distributions fit-
ted to the data points in the lowest-noise and highest-noise con-
ditions, respectively.
tribution fitted to the subject’s data. Therefore the model
predicts that the subject should weight visual information
highly when both signals are available and the visual sig-
nal has little noise [i.e., wv is assigned a large number in
Eqs. (1) and (2)]. When the visual signal is highly cor-
rupted, however, the subject’s responses had a larger vari-
ance. Consequently, the model predicts that the subject
should weight visual information to a smaller degree and
auditory information to a greater degree (i.e., wv is as-
signed a smaller number and wa a larger number) when
both signals are available and the visual signal is noisy.
These predictions were tested in the multimodality trials.

Figure 5 shows the results on the visual–auditory tri-
als for the same subject as discussed above. The stars
and the solid curve are for the case when the visual signal
was corrupted by the lowest level of noise, and the
squares and the dashed curve are for the highest-noise
condition. The dependent measure of spatial localization
is the mean of each cumulative normal distribution (the
point where the distribution crosses 50%), which is com-
monly referred to as the point of subjective equality
(PSE). In the lowest-noise condition, the subject’s PSE is
approximately 21.1°, which is very close to 21.5°, the
event location depicted by the visual signal in the stan-
dard stimulus. Consequently, we can conclude that this
subject’s localizations were strongly dominated by infor-
mation from the visual signal when both visual and audi-
tory signals were available and the visual signal had only
a small level of noise. In contrast, the subject showed a
different pattern in the high-noise condition. In this
case, the PSE is approximately 0.1°, which is almost ex-
actly in the middle of the locations depicted by the visual
and auditory signals of the standard stimulus. We can
conclude, therefore, that this subject’s localizations were
based on visual and auditory information in equal
amounts when the visual signal was corrupted by a large
level of noise. The shift in the subject’s dominant reli-
ance on visual information in the lowest-noise condition
to a balanced reliance on both visual and auditory infor-
mation in the highest-noise condition is in qualitative
agreement with the predictions of the MLE model.

Although there was variability in the performances of
different subjects, the subject discussed above is typical.
Figure 6 shows the average PSE over all ten subjects on
the multimodality trials. The horizontal axis represents
the visual noise level (1, lowest level; 5, highest level),

Fig. 5. Results for one subject on the visual–auditory trials.
The solid and dashed curves are cumulative normal distributions
fitted to the data points in the lowest-noise and highest-noise
conditions, respectively.
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and the vertical axis shows the average PSE in degrees of
visual angle (the error bars give the standard errors of
the means). On average, PSEs were close to 21.5° at the
lowest visual-noise level, indicating that subject’s judg-
ments were based mostly on the visual signal. At the
highest noise level, PSEs were close to 0°, indicating that
subjects used visual and auditory information in roughly
equal amounts in this condition.

If we assume that subjects use a linear-cue-
combination rule for integrating visual and auditory in-
formation [Eq. (1)], then we can estimate the degree to
which each subject used visual and auditory information
(the values of the visual and auditory weights wv and wa)
on the basis of their responses on the multimodality trials
(see Appendix A for further details). Figure 7 shows the
average visual weights across all ten subjects (the audi-
tory weight is one minus the visual weight). The hori-
zontal axis represents the visual noise level, and the ver-
tical axis shows the visual weight. The estimated
weights based on subjects’ empirical data are given by the
open circles connected with a solid line. At the lowest vi-
sual noise level, visual weights were large (approximately
0.8). As the amount of noise in the visual signal in-
creased, visual weights decreased monotonically. The
open squares connected with a dashed line give the visual
weights predicted by the MLE model. Although the gen-
eral shape of the MLE model’s predictions fits the data

Fig. 6. Average PSE over all ten subjects on the visual–auditory
trials. The horizontal axis represents the visual noise level (1,
lowest level; 5, highest level), and the vertical axis gives the av-
erage PSE in degrees of visual angle (the error bars give the
standard errors of the means).

Fig. 7. Average visual weights over all ten subjects on the
visual–auditory trials. The horizontal axis represents the vi-
sual noise level (1, lowest level; 5, highest level), and the vertical
axis gives the average visual weight (the error bars give the stan-
dard errors of the means).
well, this model does not predict subject’s responses cor-
rectly. Instead, the model makes a systematic error by
underestimating the extent to which subjects made use of
visual information. This bias toward the use of visual in-
formation is broadly consistent with the visual capture
model and suggests that a hybrid approach that combines
properties of the MLE model and the visual capture
model may provide a good account of the data.

To evaluate this hybrid approach, we developed a Baye-
sian model that is identical to the MLE model except that
it includes a prior probability distribution that leads the
model to make greater use of visual information. In
short, this prior probability distribution is used in esti-
mating the variances of the cumulative normal distribu-
tions for the visual-only trials. The use of this prior
causes the Bayesian model to estimate smaller values for
the variances of the cumulative distributions than the
MLE model. As a result, the Bayesian model estimates
larger values for the visual weights at all noise levels (see
Appendix A for further details). The 3s connected with a
dotted line in Fig. 7 show the Bayesian model’s predicted
visual weights, which are in close agreement with the em-
pirical weights. An appropriate test of the Bayesian
model would evaluate whether the prior distribution,
which we estimated on the basis of the data collected in
our experiment, provides accurate predictions of observ-
ers’ judgments in other stimulus contexts.

4. DISCUSSION
The visual capture and MLE models are commonplace in
the scientific literature on sensory integration. A
strength of the visual capture model is that it accounts for
the finding that observers’ perceptual judgments in mul-
timodal situations often seem to be dominated by visual
information. Its weaknesses include the fact that it fails
to account for the probabilistic nature of observers’ per-
cepts. The MLE model has complementary strengths
and weaknesses. It proposes an elegant statistical model
of observers’ multimodal percepts, but it fails to take into
account observers’ perceptual biases. We believe that the
work reported here demonstrates the strengths and
weaknesses of both of these models and highlights the
fact that a hybrid approach may provide the best expla-
nation for observers’ perceptual judgments.

The MLE model hypothesizes that observers judge the
reliability of a sensory signal as inversely proportional to
the variance of the distribution of inferences based on
that signal. It is not known, however, how observers es-
timate this variance. It is possible that a neural repre-
sentation of a stimulus property in a scene may encode
the uncertainty in sensory signals.10 For example, con-
sider an observer localizing an object in space on the basis
of visual and auditory signals. The activities of neurons
in the observer’s visual cortex form a neural population
code that represents an estimate of the object’s location
based on the visual signal as well as the uncertainty in
this estimate. Similarly, a neural population code in the
observer’s auditory cortex represents a location estimate,
and the uncertainty of this estimate, based on the audi-
tory signal. If each population code were shaped like a
normal distribution such that the mean and the variance
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of this distribution represented the location estimate and
the uncertainty in this estimate, respectively, then the
nervous system could implement the MLE model in a di-
rect manner. The product of two normal-shaped popula-
tion codes, based on two sensory signals such as visual
and auditory cues to location, is also a normal-shaped
population code. The mean and variance of this new code
represent the optimal location estimate according to MLE
theory based on the mean of each signal and their respec-
tive uncertainties. Computational neuroscientists have
made important progress in recent years in developing
biologically realistic neural models that perform MLE us-
ing population codes.17,18 An unsolved problem, but one
that is currently being pursued, is to develop models that
show perceptual biases through the use of prior probabil-
ity distributions.19,20

Although observers are biased toward the use of visual
information when localizing events in the world, they
might not show this bias in other contexts. For example,
Shams, Kamitani, and Shimojo21,22 reported a case in
which subjects seemed to be biased toward the use of au-
ditory information: When a single visual flash is accom-
panied by multiple auditory beeps, the single flash is in-
correctly perceived as multiple flashes. It seems possible
that the MLE model can account for the diversity of ex-
perimental findings from use of visual and auditory
stimuli, at least in part, by taking advantage of the fact
that some estimates (e.g., of spatial location) may be more
precise in the visual system whereas other estimates (e.g.,
of temporal variations) may be more precise in the audi-
tory system.

Observers localizing events show a bias toward the use
of visual information as a result of either evolutionary
history or experience-dependent learning. If the latter,
then it would be interesting to evaluate whether observ-
ers with different histories of visual experience show the
same bias. For example, consider observers with im-
paired vision or observers who lost vision at an early age
but then had some visual abilities restored later in life.23

Would these individuals also show a bias toward the use
of visual information? Such ‘‘experiments of nature’’
could reveal whether visual capture is under adaptive
control or whether it is a hard-wired bias.

APPENDIX A: MATHEMATICAL
PROCEDURES FOR ESTIMATING VISUAL
AND AUDITORY WEIGHTS
A cumulative normal distribution was fitted to each sub-
ject’s responses on the auditory-only trials and on the
visual-only and visual–auditory trials at each of the five
visual noise levels. The mean and variance of this distri-
bution were found by MLE. Because responses on each
trial were a binary event, the likelihood function is a Ber-
noulli function,

p~Rum, s 2! 5 )
t51

T

pt
rt~1 2 pt!

12rt, (3)

where t denotes the trial number, rt denotes the subject’s
response on trial t (1, event in comparison stimulus is to
right of event in standard stimulus; 0, otherwise), pt
5 p(rt 5 1/m, s 2) denotes the probability that rt 5 1 on
trial t according to a cumulative normal distribution with
mean m and variance s 2, and R denotes the entire set of
responses for all trials. The values of m and s 2 that
maximize Eq. (3) are the maximum-likelihood estimates
of these parameters. Visual and auditory weights for the
MLE model were computed by using maximum-likelihood
estimates of the variances for the auditory-only and
visual-only trials in Eq. (2).

The visual and auditory weights based on subjects’ re-
sponses on the visual–auditory trials, referred to as em-
pirical estimates in Fig. 7, were computed as follows. Let
Lv

c , La
c , and Lc denote location estimates based on the vi-

sual signal, the auditory signal, and both signals in the
comparison stimulus. Similarly, let Lv

s , La
s , and Ls de-

note the corresponding quantities for the standard stimu-
lus. Assume a linear-sensory-integration rule,

Lc 5 wvLv
c 1 waLa

c , (4)

Ls 5 wvLv
s 1 waLa

s , (5)

where wv and wa are visual and auditory weights that are
assumed to sum to 1. Maximum-likelihood estimates of
these weights were the values that maximized the likeli-
hood function given above [the right-hand side of Eq. (3)]
with the exception that the probability pt was given by a
logistic function:

pt 5 p~rt 5 1uwv , wa! 5
1

1 1 exp@2~Lc 2 Ls!/t#
,

(6)

where t is a scale parameter often referred to as a tem-
perature or a slope.

The Bayesian model was identical to the MLE model
described above with the following exception. For the
visual-only trials, the cumulative normal distribution’s
mean and variance were estimated by using the values
that maximized the product of the likelihood function
given above [the right-hand side of Eq. (3)] and a prior
probability distribution for these parameters. To keep
things simple, we assumed that the mean and variance
are statistically independent, that the prior distribution
for the mean is a uniform distribution (meaning that all
possible values are equally likely), and that the prior dis-
tribution for the variance is an inverse-gamma distribu-
tion (this is the conjugate prior distribution for a normal
variance24). The parameters of the inverse-gamma dis-
tribution were set so that this distribution had most of its
mass toward small values of the variance (the shape pa-
rameter was set to 46.0 and the scale parameter was set
to 10234; these parameter values were used for all sub-
jects). Consequently, the Bayesian model was biased to-
ward smaller variance estimates for the visual-only trials
and, thus, larger visual weight estimates.
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