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Abstract If a person is trained to recognize or categorize
objects or events using one sensory modality, the person
can often recognize or categorize those same (or similar)
objects and events via a novel modality. This phenomenon
is an instance of cross-modal transfer of knowledge. Here,
we study the Multisensory Hypothesis which states that
people extract the intrinsic, modality-independent proper-
ties of objects and events, and represent these properties in
multisensory representations. These representations under-
lie cross-modal transfer of knowledge. We conducted an
experiment evaluating whether people transfer sequence
category knowledge across auditory and visual domains.
Our experimental data clearly indicate that we do. We
also developed a computational model accounting for our
experimental results. Consistent with the probabilistic lan-
guage of thought approach to cognitive modeling, our model
formalizes multisensory representations as symbolic “com-
puter programs” and uses Bayesian inference to learn these
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representations. Because the model demonstrates how the
acquisition and use of amodal, multisensory representa-
tions can underlie cross-modal transfer of knowledge, and
because the model accounts for subjects’ experimental per-
formances, our work lends credence to the Multisensory
Hypothesis. Overall, our work suggests that people auto-
matically extract and represent objects’ and events’ intrinsic
properties, and use these properties to process and under-
stand the same (and similar) objects and events when they
are perceived through novel sensory modalities.

Keywords Multisensory perception · Language of
thought · Sequence learning · Computational modeling

Introduction

Human cognition is robust, at least in part, because peo-
ple mentally represent objects and events in a variety of
ways, such as perceptual, motoric, and semantic represen-
tations. Even within perception, people represent objects
and events in multiple ways. This fact is demonstrated
by cross-modal transfer of knowledge. If a person is
trained to visually categorize a set of objects, this per-
son will often be able to categorize novel objects from
the same categories when objects are grasped but not seen
(Wallraven, Bülthoff, Waterkamp, van Dam, & Gaißert,
2014; Yildirim & Jacobs, 2013). Because knowledge
acquired during visual learning is used during haptic testing,
this finding suggests the existence of both visual and haptic
representations of objects. Below, we report an experiment
in which people were trained to either auditorily or visually
categorize sequences of events. When tested with sequences
presented in a novel sensory modality, people were often
able to categorize these sequences too. Because training
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and testing used different modalities, this result indicates
that people had representations of event sequences in both
modalities.

How do people transfer knowledge across sensory
modalities? A plausible hypothesis, referred to here as
the Multisensory Hypothesis, is that people use sensory-
specific representations of objects and events to infer
amodal or multisensory1 representations characterizing
objects’ and events’ intrinsic properties. These represen-
tations facilitate cross-modal transfer of knowledge. To
understand this hypothesis, it is important to recognize
the distinction between objects’ and events’ intrinsic (or
“deep”) properties and the sensory (or “surface”) features
that these properties give rise to. For instance, the loca-
tion of an event is a modality-independent intrinsic property.
Visual and auditory features are modality-dependent sen-
sory cues to the event’s location arising when the event is
viewed or heard, respectively. To explain how the Multisen-
sory Hypothesis accounts for cross-modal transfer, consider
a sequence categorization task. For example, sequences of
events moving in a clockwise direction belong to cate-
gory A, whereas sequences moving in a counterclockwise
direction belong to category B. When a person is trained to
visually categorize event sequences, the person uses his or
her visual representations to infer multisensory representa-
tions characterizing sequences’ intrinsic properties. When
subsequently tested with an auditory sequence, the person
judges its category based on whether it is more consis-
tent with the intrinsic properties of sequences belonging to
category A or category B.

The Multisensory Hypothesis predicts that people
acquire modality-independent representations of objects’
and events’ intrinsic properties. Converging neural, behav-
ioral, and computational evidence suggests that this is the
case. A striking example comes from Quiroga (2012) who
argued that human brains contain “concept” cells which are
involved in the representation of individual people or objects
regardless of the modality used to sense those people or
objects. For instance, when recording in the human medial
temporal lobe, he and his colleagues reported a neuron that
selectively responded when a person viewed images of the
television host Oprah Winfrey, viewed her written name, or
heard her spoken name (Quiroga, Kraskov, Koch, & Fried,
2009). These and similar findings indicate that our brains
encode abstract representations that are amodal or multisen-
sory in the sense that they are activated by perceptual inputs
spanning multiple modalities.

1Terms such as ‘multisensory’, ‘amodal’, ‘modality-independent’, and
‘modality-invariant’ often have slightly different meanings to different
people. Consequently, here, we often ignore these reader-dependent
and subtle differences and use these terms in an interchangeable man-
ner. We believe that this will not lead to confusions so long as the terms
are interpreted in context.

Why focus on the Multisensory Hypothesis? The Mul-
tisensory Hypothesis is an appropriate focus because of
its inherent interest and potential importance. Due to their
abstract, modality-independent nature, multisensory repre-
sentations are a form of conceptual representation. Cur-
rently, the field of Cognitive Science knows very little about
how people acquire conceptual representations from sen-
sory data, though this topic has garnered much interest in
recent years (e.g., see the literature on grounded cognition;
Barsalou, 2008). Furthermore, the study of multisensory
perception is attracting much attention (Calvert, Spence, &
Stein 2004, Stein, 2012). It may be that recent advances
in our understanding of multisensory perception shed new
light on the Multisensory Hypothesis.

To our knowledge, no one has attempted to explicitly
define and implement a model of cross-modal transfer based
on the Multisensory Hypothesis. The sole exception is our
earlier work where we showed how multisensory repre-
sentations of object shape—consisting of representations
of an object’s parts and the spatial relations among these
parts—can be acquired from visual or haptic features, and
showed how these representations can facilitate transfer of
object category knowledge across visual and haptic modal-
ities (Yildirim & Jacobs, 2013. The work reported in this
article builds on our earlier work. However, it studies a
new domain, namely cross-modal transfer of sequence cat-
egory knowledge across visual and auditory modalities. In
addition, it uses a different modeling approach.

In cognitive modeling, one school of thought favors sym-
bolic approaches, such as approaches based on production
rules or logic. Another school of thought favors statisti-
cal approaches, such as approaches based on connectionist
networks or Bayesian inference. Advocates of these differ-
ent schools of thought have different perspectives, and have
often engaged in heated debates (McClelland & Patterson,
2002a, b; Pinker & Ullman, 2002a, b). Unfortunately, these
debates have not led to a resolution as to which framework
is best.

Our viewpoint is that both symbolic and statistical frame-
works have important merits, and thus it may be best to pur-
sue a hybrid approach taking advantage of each framework’s
best aspects. This viewpoint is recently emerging in the
Cognitive Science literature (e.g., Goodman, Tenenbaum,
Feldman, & Griffiths, 2008; Piantadosi, Tenenbaum, &
Goodman, 2012; Ullman, Goodman, & Tenenbaum, 2012).
It is referred to as a “probabilistic language of thought”
(pLOT) approach because it applies Bayesian inference to a
representation consisting of symbolic primitives and combi-
natorial rules (Fodor 1975). To date, the pLOT approach has
been used almost exclusively in domains that are typically
modeled using symbolic methods, such as human language
and high-level cognition. A contribution of the work pre-
sented here is that we apply this approach to the study of



Psychon Bull Rev (2015) 22:673–686 675

human perception, an area whose study is dominated by sta-
tistical techniques. We believe that the pLOT approach can
be advantageous for characterizing perceptual processes,
particularly multisensory processes, including the acquisi-
tion of amodal, multisensory representations of objects and
events from sensory data and their subsequent use.

Experiment

Previous experimental and theoretical studies examined
people’s performances in tasks requiring them to learn
about sequences. For example, researchers studied the
learnability of sequences with different kinds of structural
(e.g., Markovian, non-Markovian, hierarchical) dependen-
cies (e.g., Jordan, 1986; Elman, 1990; Cleeremans &
McClelland, 1991; McCallum, 1996; Fiser & Aslin, 2002),
and proposed different kinds of cognitive architectures to
explain the observed behavioral patterns (see Gureckis &
Love, 2010, for a critical review and comparison).

A subset of these researchers used sequences of spatial
locations (e.g., Hunt & Aslin, 2001; Deroost & Soetens,
2006; Hunt & Aslin, 2010; Bo & Seidler, 2010). The serial
reaction time task is frequently used in these studies. It
has been found that people’s reaction times decline more
quickly with a structured or highly predictable sequence
than with a random or relatively unpredictable sequence
(e.g., Hunt & Aslin, 2001).

Our experiment focuses on categorization of spatial
sequences, and on generalization of sequence category
knowledge to exemplars presented in an untrained sen-
sory modality. The experiment made use of an innovative
auditory-visual environment (see Fig. 1a) whose major
components are a vertically-oriented (and oriented per-
pendicular to a subject’s line of sight) planar surface
covered with sheet metal, speakers, and light emitting
diodes (LEDs). Each speaker and LED has a magnet
attached to its back, meaning that each speaker and LED
can be placed at any location on the vertical surface.

Because a scrim (a curtain made from light gauzy material
often used in theatre productions) covers the environment,
the speakers and unlit LEDs are not visible by a sub-
ject. However, lit LEDs are visible to a subject due to
the scrim’s translucent properties. This environment is very
useful for auditory-visual experiments. It is a large-scale
environment—when a subject is seated 60 cm from the ver-
tical surface, speakers and LEDs can be placed over a region
subtending nearly 90 degrees of visual angle. The environ-
ment is flexible because speakers and LEDs can be placed
at any location on the vertical surface, and precise because
each speaker and LED is controlled independently on a
millisecond time scale.

Participants

Participants were 21 students from the University of
Rochester. All participants were at least 18 years old.
We obtained all participants’ written informed consent.
Each experimental session lasted less than an hour, and
participants were paid $10. This study was approved by
the University of Rochester Research Subjects Review
Board.

Stimuli

Stimuli consisted of temporal sequences of spatial locations
presented in the auditory-visual environment. There were 7
possible locations arranged on an imaginary circle of radius
about 57 cm (see Fig. 1b). Sequence lengths were sampled
from a uniform distribution with minimum and maximum
values of 6 and 15, respectively. When a sequence was pre-
sented auditorily, a location was indicated by a beep emitted
by a small speaker. When a sequence was presented visu-
ally, a location was indicated by a flash of a white LED.
Beeps or flashes lasted 200 ms, and pauses between beeps
or flashes lasted 300 ms.

Sequences were exemplars from 4 possible categories.
Fourteen exemplars from each category were generated. For
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Fig. 1 a Photos of the audio-visual environment. In the left photo,
the speakers, LEDs, and electrical hardware are visible. In the right
photo, a scrim conceals the environment, meaning that the speakers,

unlit LEDs, and electrical hardware are not visible. b A schematic of
the 7 locations used in our experimental stimuli, and the speaker and
LED at each location



676 Psychon Bull Rev (2015) 22:673–686

each category, each of the 7 possible locations was used as
a starting location twice.

Locations in exemplars from Category 1 change one unit
in a clockwise direction at each time step, referred to as a
[+1] pattern. Using the location indices in Fig. 1b, exem-
plars from Category 1 include “456712”, “2345671234”,
and “45671234”.

Exemplars from Category 2 are clockwise cycles of
length 3, denoted [+1 +1 -2]. That is, the second loca-
tion is one clockwise unit from the first location, the third
location is one clockwise unit from the second location, and
the fourth location is equal to the first location. This pat-
tern repeats until the end of the sequence. Exemplars include
“23423423”, “7127127”, and “456456456”.

For Category 3, exemplars are counterclockwise cycles
of length 4, denoted [-1 -1 -1 +3]. Exemplars include
“17651765176517”, “6543654”, and “54325432”.

Exemplars in Category 4 follow a [+2 -1] pat-
tern. Exemplars include “72132435465”, “132435”, and
“4657617213”.

Procedures

At the start of a trial, a red LED at the center of the
auditory-visual environment was illuminated for 1000 ms.
Participants were asked to fixate this LED. Next, a sequence
was presented, either auditorily or visually. Following the
sequence presentation, participants indicated the category
to which they thought the sequence belonged by pressing
a key on a keyboard. On training trials, auditory feedback
indicated whether a response was correct. Feedback was not
provided on test trials.

Participants were seated approximately 50 cm from the
auditory-visual display panel. However, because people’s
auditory estimates of location are less accurate than their
visual estimates (Battaglia, Jacobs, & Aslin, 2003; Alais
& Burr, 2004), and because localization of auditory events
was difficult during preliminary studies, participants were
encouraged to lean forward to be as close as possible to the
panel while observing auditory events.

Two groups of 9 people each participated in the exper-
iment (3 people were excluded because they performed
at chance on training trials or because they did not com-
plete the full set of training and test trials). Participants in
Group A-V were told at the start of the experiment that they
would receive auditory training followed by visual testing.
During training, these participants were trained to catego-
rize 36 exemplars (9 exemplars from each of the 4 categories
selected at random for each participant) presented audito-
rily. This auditory training stage consisted of blocks of 36
trials, where all exemplars were presented once and in ran-
domized order in a block. At the end of a block, a message
appeared on a computer screen informing a participant of

his or her performance during that block. During training, a
participant’s performance was monitored within a window
of the most recent 36 trials. Training was terminated as soon
as this performance exceeded 90 %, or when the participant
completed 7 blocks of training.

Following training, Group A-V participants were
reminded that test trials would use the visual modality.
Test trials were identical to training trials except that
sequences were presented visually, and participants did not
receive feedback about the correctness of their responses.
Participants performed 56 test trials (14 exemplars from
each of 4 categories; 9 of the 14 exemplars were familiar
[these sequences were presented during auditory training],
whereas 6 exemplars were novel). Presentation order of the
test sequences was randomized.

Participants in Group V-A followed the same procedures
as participants in Group A-V except that the training and
test modalities were switched. These participants underwent
visual training and auditory testing.

Results

The left and right panels of Fig. 2 show each partici-
pant’s learning curve during training for Groups V-A and
A-V, respectively. The horizontal axis of each graph plots
the training trial number, and the vertical axis plots the
percent correct in the most recent 36 trials (for trials up
to the 36th, we assumed that a participant made 36 − t

incorrect responses where t is the trial number). Partic-
ipants in Group V-A were better at learning the cate-
gories (9 of 9 participants from Group V-A and 3 of 9
participants from Group A-V reached the training cut-
off criteria of 90 %). The performances of Group A-V
participants tended to plateau at around the 100th trial.
These differences in the learning performances between
the two groups are most likely due to the differing
reliabilities of audition and vision for spatial localiza-
tion. Clearly, however, all participants acquired significant
knowledge of the sequence categories (chance performance
is 25 %).

The left panel in Fig. 3 shows participants’ average per-
formances on the final training block (i.e., the last 36 trials
of training) and on the test block for both groups (error bars
indicate standard errors of the means). The training perfor-
mance of Group V-A reflects the fact that all participants
achieved the training cut-off criteria of 90 % correct. On
auditory test trials, the performance of this group remained
high (about 75 %). The drop in performance from train-
ing to test is most likely due to the lower reliability of
audition for spatial localization. The training performance
of Group A-V was also good (slightly less than 75 %),
and its test performance was not significantly different than
its training performance (t = −0.8, DF = 15.3, p = 0.44,
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Fig. 2 Learning curves during training for Groups V-A and A-V

two-tailed t-test with unequal variances). Neither Group V-
A’s nor Group A-V’s test performances differed on trials
with familiar (i.e., previously observed during training) ver-
sus novel sequences (Group A-V: t = 0.5, DF = 16,
p = 0.61; Group V-A: t = −0.4, DF = 15.2, p = 0.67;
both two-tailed t-tests with unequal variances).

The right panel in Fig. 3 shows the final training block
and test performances across the two groups when trials
are sorted by the category of the sequence observed on a
trial. For example, the leftmost bar in this panel shows the
average performance on the final training block on trials
that used sequences that are exemplars from Category 1.

When examining the data in this manner, chance perfor-
mance is 50 % correct because a participant either correctly
classified a sequence from, for instance, Category 1 or did
not. This analyses allows us to examine the relative ease of
correctly classifying exemplars from each category. When
sorted by the categories, a Friedman test revealed that there
was a statistically significant rank ordering of the categories
across training (p < 0.001) and test (p < 0.01) blocks.
From participants’ average performances, categories can be
ordered with respect to their learnability (from highest to
lowest) as follows: Category 1, Category 4, Category 2, and
Category 3.

Fig. 3 (Left) Average performances on the final training block (last 36
trials of training) and on the test block for Groups V-A and A-V (error
bars indicate standard errors of the means). (Right) Groups’ final-

training block and test performances when trials are sorted by the
category of the sequence observed on a trial
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In summary, we are interested in people’s abilities to
acquire and transfer knowledge of sequence categories.
When categorical knowledge of spatial sequences is
obtained through one sensory modality, can people trans-
fer this knowledge to conditions in which sequences are
observed through an untrained modality? Our experimental
results indicate that the answer is yes.

Overview of the computational model

Our experiment suggests that participants transferred
sequence category knowledge across auditory and visual
modalities. How did they do this? To address this ques-
tion, we propose a computational model accounting for our
experimental results. The model includes a multisensory
representation of each sequence category. A multisensory
representation characterizes the intrinsic properties of a
category in a modality-independent manner (Yildirim &
Jacobs, 2013). The model also includes sensory-specific
forward models. Because sensory-specific forward models
map multisensory representations to sensory data, they can
be thought of as implementing a type of mental imagery
(Miall & Wolpert, 1996; Ito, 2008; Tian & Poeppel,
2010; Yildirim & Jacobs, 2013). This section provides an
overview of the model’s components. The next section
describes learning and cross-modal transfer by the model in
the context of our experiment.

Multisensory representations of sequence categories

Given auditory exemplars, visual exemplars, or both, the
model learns a multisensory representation of a category.
Behavioral and neural data suggest the existence of multi-
sensory representations, and also suggest that these repre-
sentations underlie, at least in part, a variety of behaviors
in auditory-visual environments (e.g., Calvert et al. 1997;
Pascual-Leone & Hamilton, 2001; Pekkola, et al., 2005;
Tanabe, Honda, & Sadato, 2005; de Gelder & Vroomen,
2000; von Kriegstein & Giraud, 2006; Lehmann & Murray,
2005; Quiroga, Kraskov, Koch, & Fried, 2009; Liang,
Mouraux, Hu, & Iannetti, 2013).

We characterize multisensory representations as “com-
puter programs” for generating or predicting exemplars
from a category. This approach builds on earlier work by
Piantadosi et al. (2012) who used computer programs to
characterize people’s mental representations of numerical
concepts.

When designing the computational model, our main
focus was not on developing new insights regarding
how people acquire and process sequential information.
Although this is an important topic, many researchers
already study this topic (e.g., Jordan, 1986; Elman, 1990;

Fig. 4 Sample programs for characterizing sequence categories

Cleeremans & McClelland, 1991; Gureckis & Love, 2010;
McCallum, 1996; Fiser & Aslin, 2002). Rather, our pri-
mary goal was to understand how multisensory representa-
tions can be learned from sensory data, and to understand
how multisensory representations can facilitate transfer of
knowledge across sensory modalities. Because our model
needs to represent sequences, it necessarily resembles pre-
viously existing models that also represent sequences. Of
particular interest is the fact that our model shares impor-
tant features with an early model of sequence learning
by Simon and Kotovsky (1963). Although our model and
their model have different goals, the two models use “pro-
gramming languages” with similar symbolic operators to
represent sequences. Indeed, it is only a moderate stretch
to say that our model might be seen as a revised version
of their model, modified to accept and process sensory data
and updated to use modern learning (Bayesian inference)
techniques.

We describe the programming language used by our
model by explaining several sample programs. Consider
the program in Panel A of Fig. 4. This program gener-
ates sequences in which locations change one unit in a
clockwise direction at each time step (Category 1 from the
experiment reported above). The first line of the program,
denoted L1, randomly initializes a spatial cursor, denoted
k. The spatial cursor is a variable that keeps track of the
current spatial location. The init function randomly sets
the cursor to a random integer between 1 and 7 (recall
that there are 7 possible locations). Line L2, next(k),
moves the cursor one unit in a clockwise direction. Line
L3, go to L2, states that the next line to be executed
is L2, thereby creating a loop. Putting aside the fact that
the program creates infinite sequences of locations (see
below), the reader should intuitively understand that this
program is consistent with sequences such as “456712” and
“23456”, but inconsistent with sequences such as “124” and
“765”.
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Next, consider the program in Panel B. It uses the same
primitives as the previous program, but it composes them
in a different way. This program generates sequences of
length 3 in which the second location is one clockwise unit
from the first location, and the third location is two clock-
wise units from the second location (e.g., sequences such as
“124” and “457”). In addition, this program uses recursion
(see line L3).

The program in Panel C generates sequences that alter-
nate between two neighboring locations, first moving one
clockwise unit, then returning to the original location by
moving one counterclockwise unit. Movement of the spatial
cursor by one counterclockwise unit is achieved using the
command prev(k) (line L3). This program is consistent
with sequences such as “454545” and “1212121”.

The program in Panel D generates sequences with
counterclockwise cycles of length 4. It is consistent with
sequences such as “654365” and “32173217”. This program
illustrates an additional feature of the init function that
was not illustrated by earlier programs. The first time that
init is called, it sets the spatial cursor to a random loca-
tion. It then stores this location. Subsequent calls to init
set the cursor to the stored location.

Based on these programs, the reader should have a good
understanding of the nature of the model’s programming
language. Programs contain line numbers, a spatial cursor,
and init, next, prev, and go to commands. Programs
are capable of looping and of recursion. Clearly, these ele-
ments provide the model with a rich, expressive language
for characterizing sequence categories.

Sensory-specific forward models

Because multisensory representations are modality-
independent, sensory-specific forward models are needed
to relate the representations to sensory data. An auditory-
specific (vision-specific) forward model maps an exemplar
to a prediction of the auditory (visual) features that an
observer would perceive when the exemplar is auditorily
(visually) rendered. Because of the simple nature of our
stimuli—beeps and flashes—our forward models are rel-
atively simple.2 In particular, the location of an observed
beep or flash is predicted to be equal to the location of the
actual beep or flash plus some additive noise sampled from
a circular Gaussian or von Mises distribution (recall that
locations lie on a circle). The key feature of these forward
models are their noise distributions. Because vision is a
more precise cue to spatial location than audition (Battaglia

2In other cases, sensory-specific models can be complex. For example,
Yildirim and Jacobs (2013) considered visual and haptic cues to object
shape. In this case, the vision-specific forward model was a graphics
library (e.g., OpenGL) and the haptics-specific forward model was a
simulator of a human hand.

et al. 2003; Alais & Burr, 2004), the vision-specific forward
model used a noise distribution with a higher precision
(κV = 4.0 roughly corresponding to a variance of 17◦) than
the noise distribution used by the audition-specific forward
model (κA = 2.5 corresponding to a variance of 32◦). The
values of κA and κV were chosen on the basis of a trial-and-
error search for values that allowed the model’s predictions
to match our experimental data. This occurred whenever
vision was a reasonably more precise cue to spatial location
than audition—that is, the model’s performance was highly
robust to the exact values chosen.

Learning and cross-modal transfer

Having introduced the multisensory representations and
sensory-specific forward models, we now describe how the
model learns and transfers knowledge across auditory and
visual modalities. We do so in the context of the experiment
described above.

The model learns multisensory representations of
sequence categories based on its sensory input. As described
above, the hypothesis space of category representations
(i.e., the space of possible computer programs) is large.
How should the model evaluate different hypotheses dur-
ing learning? Here, we cast this problem as an instance of
Bayesian inference.

For ease of exposition, we describe the model from
the standpoint of a participant in Group V-A. Let V =
{�v1, . . . , �vN } denote N visual sequences from one of the
four categories (we exclude subscripts indexing categories
to avoid unnecessary notation). Each �vi is a vector of Ki

spatial locations, where Ki is the length of the ith visual
sequence. Thus, we write �vi = [vi1, . . . , viKi

]T , and let
vij denote the visual observation at the j th time step in
sequence �vi .

The model learns multisensory representations from sen-
sory data as follows. Cognitive models often assume that
sensory data are the products of a generative process. In the
context of our experiment, a visual sequence is generated
when a multisensory representation for a sequence category
produces a sequence of locations and this sequence is visu-
ally rendered. To learn about multisensory representations,
this generative process can be inverted via Bayes’ rule:

P(R|V )∝P(R)p(V |R)=P(R)
∏N

i=1

∏Ki

j=1
p(vij |R) (1)

where P(R) is the prior probability of multisensory repre-
sentation R, and p(V |R) is the likelihood function arising
from the vision-specific forward model. We consider each
of these quantities—the prior and the likelihood function—
in turn.
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Table 1 PCFG for multisensory representations of sequence
categories

Production rule Probability

S → init(L)

U 1.0

U → L 0.25

U → O 0.25

U → L

U 0.25

U → O

U 0.25

L → init(L) 0.25

L → next(L) 0.25

L → prev(L) 0.25

L → k 0.25

O → go to [one of the earlier

lines in the current program

(use equal probabilities)] 1.0

As described above, multisensory representations are
computer programs. For the purpose of assigning prior prob-
abilities to programs, we characterize these programs using
the probabilistic context-free grammar (PCFG) in Table 1
(this general approach is adopted from Piantadosi et al.
(2012)).3 A particular program, R, can be generated from
the start symbol S by a derivation, a sequence of productions
in the PCFG that ends when all non-terminals are replaced
with terminals. At each step of a derivation, a choice is
made among the productions which could be used to expand
a non-terminal. Because a probability is assigned to each
production choice in a derivation, the probability of the
complete derivation is the product of the probabilities for
these choices. In principle, the prior probability of a pro-
gram should be defined as the sum of the probabilities of its
possible derivations. However, derivations using our gram-
mar are unique due to the structure of the grammar (there
is, at most, only one non-terminal on the right-hand side
of a production rule) and the consistent order in which we
expand the non-terminals. In accord, we calculate the prior
probability of program R, P(R), using the equation:

P(R) = P(T |G, ρ) =
∏

n∈Nnt

P (n → ch(n)|G, ρ) (2)

where T is the derivation (i.e., parse tree) for program R, G
is the set of production rules in the PCFG (left column of
Table 1), and ρ is the set of probabilities associated with the
production rules (right column of Table 1). In addition, Nnt

3Although the expressions that our PCFG support are not Turing
complete, we refer to these expressions as “computer programs”
because, intuitively, the expressions resemble programs. In principle,
the PCFG introduced here can be extended to support Turing complete
computation.

is the set of all non-terminals in derivation T , ch(n) is the
set of node n’s children nodes, and P(n → ch(n)|G, ρ) is
the probability for production rule n → ch(n).4

An advantage of this prior distribution is that it favors
“simple” programs, meaning programs with short deriva-
tions. (To see this, note that Eq. 2 multiplies probabilities
[i.e., numbers less than one]. The number of terms that
are multiplied increases with the length of the derivation.)
Consequently, it can be regarded as a type of Occam’s
Razor.5

The likelihood of a visual sequence, p(�vi |R), was esti-
mated as follows. The initial observed location, vi1, is an
imperfect cue to the actual starting location of a sequence
due to sensory noise. To deal with this uncertainty, we used
the vision-specific forward model to select the three most
probable locations based on the value of vi1, and averaged
the likelihood scores over these locations:

p(�vi |R) = 1

3

∑
l1∈L

p(�vi |R, l1) (3)

where l1 ∈ L indexes the three most probable locations, and
p(�vi |R, l1) is the likelihood score of sequence �vi based on
multisensory representation R assuming that the sequence
started at location l1.6

To compute p(�vi |R, l1), we used program R to generate
a sequence. The initial location of this sequence was set to
l1. If the program was not capable of generating a sequence
whose length is at least as long as Ki—the length of visual
sequence �vi—then the likelihood score was set to 0 (e.g.,
the program in Panel B of Fig. 4 only generates sequences
of length 3). Otherwise the program was used to generate a
sequence of length Ki . Let lj denote the j th element of this
sequence. The likelihood score of p(�vi |R, l1) is computed
using the vision-specific forward model as follows:

p(�vi |R, l1) =
∏Ki

j=1
V M(vij |lj , κV ) (4)

4This prior probability distribution is similar (but not identical) to the
prior distribution used by Goodman et al. (2008) which analytically
integrates out ρ by assuming it has a uniform hyper-prior distribution.
Our choice of prior distribution is motivated by the fact that Piantadosi
et al. (2012) reports that choosing ρ to be uniform over the production
rules for each non-terminal gives very similar results to integrating it
out.
5Ceteris paribus, moves that require recursion (e.g., moving the loca-
tion of the cursor two steps clockwise) are less probable under this
distribution. Recursion is appealing from the perspective of com-
putability. We believe that a deliberate experimental design can shed
light on the trade-off between inserting new primitives to a grammar
versus recursive calls.
6We also considered a different likelihood function in which, instead
of summing over possible initial locations, we searched for the ini-
tial location that maximized the likelihood score of �vi with respect to
R. Our simulation results were qualitatively indistinguishable between
these two alternatives.
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where V M(·|lj , κV ) is the univariate von Mises probability
density function with mean lj and precision κV . To simulate
participants from Group A-V, the model is identical except
that visual sequences V = {�v1, . . . , �vN } are replaced with
auditiory sequences A = {�a1, . . . , �aN }, and visual precision
κV in Eq. 4 is replaced with auditory precision κA.

Ideally, we would insert the prior distribution and like-
lihood function into Bayes’ rule (1) to compute the poste-
rior distribution over multisensory representations. Unfortu-
nately, computing the posterior distribution in this manner
is intractable, and thus we performed numerical simula-
tions to search the space of multisensory representations.
Specifically, we used a tree-based Monte Carlo Markov
chain (MCMC) algorithm—a type of Metropolis-Hastings
algorithm—based on the algorithm in Goodman et al.
(2008).

The algorithm was initialized with a random multisen-
sory representation by drawing a random derivation from
the PCFG. This random representation was used as the cur-
rent hypothesized program, also known as the current state
of the Markov chain, at iteration 1. At each subsequent itera-
tion, a proposal program was generated and compared to the
current hypothesized program. Proposals were generated as
follows. A derivation of a program can be represented by a
tree in which internal nodes represent non-terminals and leaf
nodes represent terminals. A proposal program was formed
by randomly perturbing the current program. A node from
the derivation tree of the current program was randomly
selected. The subtree below this node was deleted. Non-
terminals in the remaining tree were then expanded using
random choices of productions from the PCFG.

Finally, a choice was made between the proposal and
current program based on the Metropolis-Hastings accep-
tance function. The proposal was accepted, and thus became
the new current program, with probability equal to the
minimum of 1 and:

p(V |R′) |R′|
p(V |R) |R| (5)

where R′ is the proposal, |R′| is the number of non-
terminals in the derivation of R′, R is the current program,
and |R| is the number of non-terminals in the derivation
of R.7 This process of randomly generating a proposal and
stochastically choosing between the proposal and the cur-
rent program was repeated for many iterations. The current
programs from the final iterations (presumably following
convergence of the algorithm) are samples from the poste-
rior distribution over multisensory representations.

7As shown by Goodman et al. (2008), including the number of non-
terminals terms, |R| and |R′|, in the acceptance function ensures the
detailed balance condition of the MCMC algorithm.

Simulation results

We trained the model in a manner analogous to the way
that participants in our experiment were trained. Recall
that the experiment had 2 groups (Groups A-V and V-
A), with 9 participants per group. Each participant was
trained with exemplars from 4 categories. Correspondingly,
our model included 2 groups of simulations, one group for
auditory training and the other for visual training, with 9
participant-level simulations per group. Each participant-
level simulation consisted of 4 category-level simulations. A
category-level simulation used the same sensory modality as
its corresponding participant, and the same number of exem-
plars from a category as was observed by this participant
during the experiment. For example, consider a category-
level simulation corresponding to Category 1, Participant 1,
Group A-V. This simulation was conducted using the same
number of exemplars from Category 1 as were heard by Par-
ticipant 1 in Group A-V during the experiment. To mimic
sensory noise in our simulations, each location in an exem-
plar (i.e., a sequence of locations) was perturbed by adding a
random number drawn from a von Mises distribution to the
location. This was accomplished using the vision-specific or
auditory-specific forward models described above.

Each category-level simulation was run for 150,000 iter-
ations of the MCMC algorithm. Samples from the first
100,000 iterations were excluded as burn-in. Samples from
the remaining 50,000 iterations were thinned to a set of
5,000 samples to reduce autocorrelations between samples.
This set of 5,000 samples is referred to as the category-level
simulation’s posterior sample.

Posterior distributions

Figure 5 illustrates our results. The first and second rows
correspond to Groups A-V and V-A, respectively. The
four columns correspond to categories 1-4. Each graph
shows the posterior probabilities based on the category-
level simulations for a given group and category (there
are 9 participant-level simulations per group, and thus there
are 9 category-level simulations for a given group and cat-
egory). The horizontal axis of a graph gives a program
identification number. Each program appearing in the pos-
terior sample was assigned a unique ID based on the rank
of its posterior probability (the program with the largest
probability was numbered 1, the program with the next
largest probability was numbered 2, and so on). The ver-
tical axis gives the posterior probability of a program in
the posterior sample. For a given group and category,
the probability distribution over programs was calculated
as follows. For each category-level simulation, we first
calculated each program’s unnormalized posterior score—
defined as the product of a program’s likelihood score and
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Fig. 5 First and second rows show posterior probabilities based on the
category-level simulations (see text for details). The horizontal axis of
each graph gives a program identification number, and the vertical axis
gives the posterior probability of a program in the posterior sample.
The entropy (H) of each posterior distribution is shown in each graph.
The third row shows the program with the highest posterior probability
(i.e., the MAP estimate) for each category when samples are combined

across all participant-level simulations. The model shows modality
invariance as evidenced by the fact that MAP estimates are identical
for simulations with auditory and visual training. The fourth and fifth
rows show the program with the second-highest posterior probability
on the basis of auditory and visual training (Groups A-V and V-A,
respectively)

its prior—and then normalized these scores. The normalized
scores are a posterior probability distribution over pro-
grams for a given category-level simulation. These scores
were then averaged across category-level simulations to
arrive at the final estimate of a program’s posterior prob-
ability. The entropy (denoted H and measured in bits),
an information-theoretic measure of uncertainty (Cover &
Thomas, 1991), of each posterior distribution is shown in
each graph.

There are several important features of these data.
First, posterior distributions are peaked around a single
program. Although the hypothesis space of possible pro-
grams is infinite (i.e., the probabilistic context-free gram-
mar can generate an infinite number of programs), our
results indicate that only a small number of these programs
have significant posterior probability for each group and
category.

Second, the model shows perfect modality invariance.
The third row of Fig. 5 shows the program with the great-
est posterior probability for each category when samples
are combined across all participant-level simulations. These

programs are the model’s maximum a posteriori (MAP)
estimates of the multisensory representations. Critically, the
MAP estimates for each category are identical for simula-
tions of visual and auditory training groups. That is, the
model learns the same program regardless of the sensory
modality used to perceive a category’s training exemplars.
Moreover, for all categories, the MAP estimate is correct,
meaning that it is identical to the actual program used to
generate the exemplars. This result indicates that our model
is very effective at learning multisensory representations
from sensory data.

The fourth and fifth rows of Fig. 5 show programs with
the second-highest posterior probabilities (referred to as
‘Next-to-MAP’ in the figure) with auditory and visual train-
ing, respectively. In some cases, the second-highest scoring
program is correct but not the most parsimonious solu-
tion (e.g., compare the category 1 MAP estimate and the
second-highest scoring Group V-A program). More often,
a second-highest scoring program produces sequential pat-
terns that are similar, but not identical, to exemplars from
the program’s corresponding category.
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Lastly, the entropies (i.e., uncertainties) of the poste-
rior distributions follow an interesting pattern. As expected,
entropies are higher for auditory training than for visual
training. Interestingly, entropies are lowest for Category 1,
highest for Category 3, and have intermediate values for
Categories 2 and 4. This result suggests that learning about
Category 1 should be easiest, learning about Category 3
should be hardest, and learning about Categories 2 and 4
should have intermediate levels of difficulty. This result is
consistent with our experimental data (see the right graph in
Fig. 3).

Training and test categorization performances

We computed the model’s categorization performances as
follows. Consider the model’s performance during visual
training. For the moment, we focus on one participant-
level simulation consisting of 4 category-level simulations.
For each of these category-level simulations, we calcu-
lated the MAP estimate of a multisensory representation
(i.e., for each category, we found the program with the
highest frequency in the posterior sample). These MAP
representations may be regarded as (point estimates of)
the category representations acquired by a participant-level
simulation. We used them to classify individual training
exemplars. Given an exemplar, we computed a poste-
rior score for each MAP representation based solely on
that exemplar. The computation of this score used the
prior distribution and likelihood function described above
(Section “Learning and cross-modal transfer”). The catego-
rization response was taken to be the category correspond-
ing to the MAP representation with highest posterior score.
This process was repeated for each of the 36 visual exem-
plars (9 exemplars× 4 categories) used in a participant-level
simulation. Analogous computations were performed dur-
ing visual testing and during auditory training and testing
(as in the experiment, testing included 14 exemplars × 4
categories).

Figure 6 shows the model’s categorization performances.
The left panel illustrates the training and test results.
On average, the participant-level simulations correspond-
ing to Group V-A performed at more than 95 % cor-
rect on visual training exemplars. When tested with audi-
tory test exemplars, the simulations showed excellent
cross-modal transfer, performing at nearly 85 % correct
(recall that chance performance is 25 %). Participant-
level simulations corresponding to Group A-V per-
formed at 85 % correct on auditory training items, and
more than 90 % correct on visual test items, meaning
that this group too showed excellent cross-modal trans-
fer. We emphasize the match between our experimen-
tal (left panel of Fig. 3) and modeling (left panel of
Fig. 6) results.

Fig. 6 Modeling results presented in the same format as our experi-
mental results (Fig. 3). (Left) Average performances of the participant-
level simulations on the training and test exemplars for simulations
corresponding to Groups V-A and A-V (error bars indicate standard
errors of the means). (Right) Participant-level simulations’ training
and test performances when trials are sorted by the category of the
sequence observed on the trial

The right panel of Fig. 6 shows the participant-level
simulations’ training and test performances when trials are
sorted by sequence category. This type of analysis was dis-
cussed above in the context of our experimental data (right
panel of Fig. 3), and is useful because it allows us to exam-
ine the relative ease of correctly classifying exemplars from
each category. Recall that experimental participants per-
formed best with exemplars from Category 1, worst with
exemplars from Category 3, and at intermediate levels with
exemplars from Categories 2 and 4. Does our model show
this same rank ordering of category difficulty? The answer
is yes. Based on the participant-level simulations’ average
performances, the rank ordering of the category difficulties
parallel the behavioral results.8 A Friedman test revealed
a statistically significant rank ordering of the categories
based on training (p < 0.01) and test (p < 10−4) block
responses.

Role of the prior in accounting for participants’
performances

When considering our model, we would like to evaluate
the role of the prior probability distribution. To do so, we
could attempt to develop an alternative model that does not

8Rather than use MAP estimates of multisensory representations, an
alternative strategy is to randomly sample from the posterior distri-
bution over representations. This alternative strategy provides very
similar performances to those shown in Fig. 6. This result was expected
because posterior distributions tend to have small variances.
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include a prior (i.e, a model in which all multisensory rep-
resentations are equally probable). In our case, however,
this would be difficult to do, particularly when training the
model to acquire multisensory representations. As described
above, our model learns multisensory representations via an
MCMC algorithm in which proposals are generated at each
iteration by sampling from the prior distribution. This is
where a significant problem arises. If we did not have a prior
distribution, then where would proposals come from? Recall
that sampling from the prior occurs through the use of the
production rules in the PCFG. Even if we could devise a
scheme in which all derivations from the PCFG are equally
probable (it is not clear that we could), then this would likely
lead to other challenges, such as creatingMCMC algorithms
that converge.

The model uses the prior distribution both when acquir-
ing multisensory representations and when using these rep-
resentations to categorize an exemplar. Given that it may be
impossible to ignore the prior during the acquisition stage,
we decided to focus on what would happen if we ignored
the prior during the categorization stage. When categoriz-
ing an exemplar, our model calculated a posterior score
for each multisensory MAP representation, and labeled the
exemplar based on the representation with the highest score.
We wondered what would happen if we did not calcu-
late a posterior score but, rather, calculated a likelihood
score. That is, what if MAP representations were evaluated
based solely on the likelihood function, ignoring the prior
distribution?

Figure 7 shows the results. Clearly, the model’s results
are now less similar to the experimental results. For exam-
ple, differences between training and test performances are
now greatly reduced. Furthermore, the rank ordering of

Fig. 7 Results from the model in which multisensory MAP repre-
sentations are evaluated based on a likelihood score, not a posterior
score

category difficulties observed in the behavioral data and
in the original model’s data is absent from this model’s
data. Perhaps the most striking aspect of this model’s data
is that the performances are so high. That is, ignoring
the prior distribution when evaluating multisensory MAP
representations leads to better performances. At the same
time, it also makes the model’s performances less simi-
lar to experimental participants’ performances, suggesting
that people, like our model, might also have a bias toward
“simpler programs”. Future work will need to address this
hypothesis.

Discussion

In summary, our goal has been to use the Multisensory
Hypothesis to better understand how people acquire and
use multisensory representations to facilitate transfer of
knowledge across sensory modalities. We conducted an
experiment evaluating whether people transfer sequence
category knowledge across auditory and visual domains.
Our experimental data clearly indicate that we do. We then
developed a computational model accounting for our exper-
imental results. To our knowledge, this is among the first
formulations of the Multisensory Hypothesis that has been
explicitly defined and implemented (also see Yildirim &
Jacobs, 2013). Because our model demonstrates how the
acquisition and use of amodal, multisensory representa-
tions can underlie cross-modal transfer of knowledge, and
because our model accounts for subjects’ performances, our
work lends credence to the Multisensory Hypothesis. Over-
all, our work suggests that people automatically extract and
represent objects’ and events’ intrinsic properties, and use
these properties to process and understand the same (and
similar) objects and events when they are perceived through
novel sensory modalities.

pLOT approach beyond higher-level cognition Multisen-
sory representations lie at the core of our computational
model. An unusual aspect of the model is that these rep-
resentations are characterized as computer programs, and
programs are learned via Bayesian inference. As discussed
above, our work contributes to the emerging pLOT per-
spective. Symbolic and statistical approaches to cognitive
modeling often have complementary strengths and weak-
nesses. A strength of symbolic approaches is their repre-
sentational expressiveness which comes from their use of
highly structured, compositional data structures. However,
symbolic approaches are often “brittle” (i.e., they often fail
in uncertain environments) and often have limited learning
capabilities. In contrast, statistical approaches tend to be
robust in the sense that they often work well despite uncer-
tainty. In addition, these approaches can excel at inference
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and learning, especially when using new computational
techniques developed in the past 25 years (e.g., new Monte
Carlo sampling methods or variational approximations).
However, statistical approaches often require highly struc-
tured prior distributions or likelihood functions to work well
(Tenenbaum, Kemp, Griffiths, & Goodman, 2011). By com-
bining the strengths of symbolic and statistical approaches,
the pLOT perspective may offer a unifying framework for
thinking about many aspects of human cognition. Our work
extends the small (but hopefully growing) literature on the
pLOT modeling approach. To our knowledge, our model
is among the first pLOT models to address the domain of
human perception.

Extensions of the current model Our model is an instance
of a “single cause” model because it assumes that visual and
auditory signals arise from a single source (i.e, a sequence of
events). In the real world, however, visual and auditory sig-
nals sometimes arise from the same source and other times
arise from different sources. People are able to learn if dif-
ferent sensory signals should be attributed to the same or
different underlying causes. Future extensions of the current
model will need to learn this too (Körding et al., 2007).

Future extensions will also need to consider how the
model can be scaled to larger, more realistic scenarios. In
more realistic settings, richer sets of representational primi-
tives will be needed, as well as more sophisticated forward
models. We are encouraged by the fact that researchers
are developing advanced software for perceptual (e.g.,
visual, auditory) rendering, for simulating the kinematics
and dynamics of robots, and for simulating dynamic inter-
actions among objects. Cognitive scientists can build larger,
more realistic models by using these software packages as
forward models in their models of human perception, motor
control, and intuitive physics (see Battaglia, Hamrick, &
Tenenbaum, 2013; Yildirim & Jacobs, 2013).

Computational and representation/algorithm levels of anal-
ysis Cognitive models are often classified based on
whether they contribute to computational or represen-
tational/algorithmic levels of analysis (Marr, 1982). We
believe that our model currently makes a contribution at
the computational level and may, in the future, make a
contribution at the representational/algorithmic level. At
the computational level, our model defines optimal perfor-
mance on our experimental task (given the assumptions of
the model; see Jacobs & Kruschke, 2011). Therefore, it
can be used as a benchmark to evaluate subjects’ perfor-
mances. Subjects performed correctly on about 70-75 % of
final training and test trials. In addition, they performed best
on exemplars from Category 1, worst on exemplars from
Category 3, and at intermediate levels on exemplars from
Categories 2 and 4. Are these performances good or bad? By

comparing subjects’ performances with those of the com-
putational model, we see that subjects’ performances are
similar to those of the model, though subjects are moder-
ately less proficient. This indicates that subjects performed
well, but that there was still room for improvements in these
performances. The gap between subjects’ performances and
the model’s performances may have been due to our train-
ing procedures. Future work will need to investigate this
issue.

Our model can potentially be used as a starting point for
a new model intended to faithfully capture people’s psy-
chological operations and representations underlying cross-
modal transfer. In particular, our simulation results make a
case in favor of the use of compositional representations for
understanding multisensory perception. Future research will
need to study the psychological plausibility and the detailed
role of compositional representations in human perception.
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