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Abstract

We report the results of an experiment in which human subjects were trained to perform a percep-

tual matching task. Subjects were asked to manipulate comparison objects until they matched target

objects using the fewest manipulations possible. An unusual feature of the experimental task is that

efficient performance requires an understanding of the hidden or latent causal structure governing

the relationships between actions and perceptual outcomes. We use two benchmarks to evaluate the

quality of subjects’ learning. One benchmark is based on optimal performance as calculated by a

dynamic programming procedure. The other is based on an adaptive computational agent that uses a

reinforcement-learning method known as Q-learning to learn to perform the task. Our analyses sug-

gest that subjects were successful learners. In particular, they learned to perform the perceptual

matching task in a near-optimal manner (i.e., using a small number of manipulations) at the end of

training. Subjects were able to achieve near-optimal performance because they learned, at least par-

tially, the causal structure underlying the task. In addition, subjects’ performances were broadly con-

sistent with those of model-based reinforcement-learning agents that built and used internal models

of how their actions influenced the external environment. We hypothesize that people will achieve

near-optimal performances on tasks requiring sequences of action—especially sensorimotor tasks

with underlying latent causal structures—when they can detect the effects of their actions on the

environment, and when they can represent and reason about these effects using an internal mental

model.
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1. Introduction

Tasks requiring people to make a sequence of actions to reach a goal are commonplace in

our lives. When playing chess, a person must make a sequence of chess moves to capture an

opponent’s king. When driving to work, a person must make a sequence of left and right

turns to arrive at work in a timely manner. When pursuing health goals, a person must make

a sequence of food and exercise choices to reach a desired weight. And when pursuing

financial goals, a person must make a sequence of saving and spending choices to achieve a

financial target. Unsurprisingly, interest in sequential action tasks among cognitive scientists

has increased dramatically in recent years (e.g., Busemeyer, 2001; Daw, O’Doherty, Dayan,

Seymour, & Dolan, 2006; Fu & Anderson, 2006; Gibson, Fichman, & Plaut, 1997;

Gonzalez, Vanyukov, & Martin, 2005; Gureckis & Love, 2009a,b; Shanks, Tunney, &

McCarthy, 2002; Stanley, Mathews, Buss, & Kotler-Cope, 1989; Sutton & Barto, 1998).

Here, we focus on a particular type of sequential action task known as a perceptual

matching task. Perceptual matching tasks are commonplace in our everyday lives. They

occur when we attempt to mimic some aspect of our environments. For example, when a

student in a dance class learns from an instructor, the student makes a sequence of actions

(chosen from the set of possible arm, leg, and body movements) so that the student’s move-

ments mimic those of the instructor. Or when an artist draws a person, object, or scene, the

artist makes a sequence of actions (chosen from the set of possible pen colors and pen

strokes) so that the drawing resembles the visual target. Or when a person cooks a dish pre-

viously eaten in a restaurant, the person makes a sequence of actions (chosen from the set of

possible ingredients and ways of combining them) so that the food resembles the food

served in the restaurant. Perceptual matching tasks have previously been used to study

sequential actions in the contexts of visual cognition and sensorimotor control (e.g., Ballard,

Hayhoe, Pook, & Rao, 1997; Gray, Sims, Fu, & Schoelles, 2006).

An important aspect of the perceptual matching task used in the experiment reported

here is that efficient performance requires knowledge (possibly implicit) of a hidden or

latent causal structure governing the relationships between actions and perceptual out-

comes. In many everyday tasks, people are required to understand the interactions, or

‘‘causal relations,’’ among actions and their effects (Busemeyer, 2001; Gopnik & Shulz,

2007). For example, when a student in a dance class moves his or her arm to mimic the

instructor’s arm movement, the student must understand that forces exerted at the shoulder

also influence the positions and velocities of the elbow, wrist, and fingers. To make an effi-

cient movement, the student must use this knowledge of the causal interactions among

forces and motor states to design an effective motor plan. The student does not directly

receive instruction regarding these causal interactions, and thus, the student must acquire

knowledge of these interactions in a trial-and-error manner while learning to dance. Our

experiment mimicked this type of situation in the sense that subjects were required to

learn about latent causal interactions in a trial-and-error manner while performing the

experimental task.

Our primary interest is in whether people are successful at learning to perform a sequen-

tial action task—specifically a perceptual matching task—with an underlying latent causal
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structure. Methodologically, we evaluate the quality of our subjects’ learning in two differ-

ent ways. These ways differ in terms of the benchmarks to which subjects’ performances are

compared. One way uses a benchmark of optimal performance on a task. Analyses based on

optimal performance are referred to as ideal observer analyses, ideal actor analyses, or

rational analyses in the literatures on perception, motor control, and cognition, respectively

(e.g., Anderson, 1990; Geisler, 2004; Todorov, 2004). At each moment during training with

a task, a learner’s performance can be compared to the optimal performance for that task. If

a learner achieves near-optimal performance at the end of training, then it can be claimed

that the learner has been successful.

This general approach has previously been used to study the performances—though not

necessarily the learning—of different organisms on different sequential action tasks. In

some instances, researchers have found that organisms perform in a near-optimal manner

either at the end of laboratory training or in the absence of training. Stephens and Krebs

(1986) argued that many species forage in a near-optimal manner, and that this optimality

helps explain many of their behaviors. Lee (2006) found that at least some people performed

near-optimally on a ‘‘stopping’’ problem in which people are sequentially presented with

alternatives and it is efficient to make a selection without waiting to see all alternatives. In

addition, he found no evidence for learning during the course of the experiment. Chhabra

and Jacobs (2006) found that people performed near-optimally at the end of training on an

adaptive control task in a variety of noise environments. In contrast to Lee (2006), however,

they found evidence for learning during the experiment.

In other instances, it seems that people perform in a suboptimal manner, even at the end

of extensive laboratory training. Stankiewicz, Legge, Mansfield, and Schlicht (2006)

reported that people performed suboptimally on a navigation task due to the fact that they

often confused spatial locations with identical visual appearances (a phenomenon known as

‘‘perceptual aliasing’’; McCallum, 1993; Whitehead & Ballard, 1991). Neth, Sims, and

Gray (2005, 2006) and Gureckis and Love (2009a,b) found that people often performed

suboptimally on a task in which it is efficient to choose options that produce significant

long-term gains despite minimal short-term gains.

In addition to comparing a learner’s performances on our experimental task with the opti-

mal performance on the task, we also analyze our data by comparing a subject’s learning

performances with those of adaptive computational agents that are trained to perform the

same task. We consider agents that learn via ‘‘reinforcement-learning’’ methods developed

by researchers interested in artificial intelligence (Sutton & Barto, 1998). Cognitive scien-

tists have begun to use reinforcement-learning methods to develop new theories of biologi-

cal learning (Busemeyer & Pleskac, 2009; Daw & Touretzky, 2002; Fu & Anderson, 2006;

Schultz, Dayan, & Montague, 1997; Sun, Slusarz, & Terry, 2005). Because reinforcement

learning is regarded as effective and well-understood from an engineering perspective, and

as plausible from psychological and neurophysiological perspectives, the performances of

agents based on this form of learning can provide useful benchmarks for evaluating a per-

son’s learning. If a person’s performances during training improve at the same rate as those

of a reinforcement-learning agent, then it can be argued that the person is a successful lear-

ner. If a person’s performances improve at a slower rate than those of the agent, then the
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person is not learning as much from experience as he or she could learn. Experimentation is

often required to identify the cognitive ‘‘bottlenecks’’ preventing the person from learning

faster. Lastly, if a person’s performances improve at a faster rate, then this might suggest,

for example, that the person is using information sources that are not available to the agent.

A new, more complex agent should be considered in this case.

The research reported in this article is unusual for several reasons. Although earlier arti-

cles have considered sequential action tasks, there are relatively few articles that have con-

sidered perceptual matching tasks and even fewer (none to our knowledge) that have

considered perceptual matching tasks in which relationships between actions and outcomes

are governed by latent causal structures. In addition, as mentioned above, we combine our

experimental study with sophisticated computational analyses. We compare human perfor-

mances on the experimental task to optimal performance on the task, where optimal perfor-

mance is calculated via dynamic programming. To our knowledge, only one other paper has

compared human performances with optimal performance on a sequential action task as cal-

culated by dynamic programming (Chhabra & Jacobs, 2006). We also compare human

learning on the experimental task with the learning performances of model-free and

model-based reinforcement-learning agents. To date, detailed comparisons of learning

performances between humans and reinforcement-learning agents are relatively rare in the

scientific literature (e.g., Fu & Anderson, 2006; Gray et al., 2006).

In summary, we analyze our experimental data by comparing subjects’ learning perfor-

mances to optimal performance on the experimental task and to the performances of

adaptive computational agents. These comparisons suggest that subjects were successful

learners. In particular, subjects learned to perform the perceptual matching task in a

near-optimal manner at the end of training. Subjects were able to achieve near-optimal

performance because they learned, at least partially, the causal structure underlying the

task. In addition, subjects’ performances were broadly consistent with those of model-

based reinforcement-learning agents that built and used internal models of how their

actions influenced the external environment. We hypothesize that people will achieve

near-optimal performances on sequential action tasks—especially sensorimotor tasks with

latent causal structures—when they can detect the effects of their actions on the environ-

ment, and when they can represent and reason about these effects using an internal

mental model.

2. Experiment

The perceptual matching task used visual objects from a class of parameterized objects

known as ‘‘supershapes’’ (Gielis, 2003). The parameters were hidden or latent variables

whose values determined the shapes of the objects. On each trial, subjects viewed a target

object, a comparison object, and a set of six buttons. The buttons were organized into three

pairs, and each pair could be used to decrease or increase the value of an action variable. By

pressing the buttons, subjects could change the values of the action variables which, in turn,

changed the values of the parameters underlying the comparison object’s shape which, in
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turn, changed the shape of the comparison object. Subjects’ task was to press one or more

buttons (i.e., to change the values of the action variables) to modify the shape of the

comparison object until it matched the shape of the target object using as few button presses

as possible.

A specific experimental condition was characterized by a specific set of causal relations

among the latent shape parameters. For example, one such set is schematically illustrated in

Fig. 1. Here, the three action variables are denoted A, B, and C. These variables are observa-

ble in the sense that subjects could directly and easily control their values through the use of

the buttons. The values of the action variables determined the values of the shape parame-

ters, denoted X, Y, and Z. Note that there are causal relations among the shape parameters.

According to the network in Fig. 1, if the value of X is changed, then this leads to a modifi-

cation of Y which, in turn, leads to a modification of Z. The shape parameters determine the

shape of the comparison object, whose perceptual features are denoted f1, f2, f3, f4, f5, and f6.

The perceptual features used by a subject to assess the similarity of target and comparison

object shapes may only be implicitly known by a subject, and their number and nature may

differ between subjects.

Importantly, to efficiently convert the comparison object’s shape to the target object’s

shape (i.e., with the fewest number of button presses) often requires an understanding of the

causal relations among the shape parameters. For instance, if the values of parameters X, Y,

and Z all need to be modified, a person who does not understand the causal relations among

the shape parameters may decide to change the value of action variable C (thereby changing

shape parameter Z), then the value of action variable B (thereby changing Y and Z), and

finally the value of action variable A (thereby changing X, Y, and Z). In many cases, this will

be an inefficient strategy. A person with good knowledge of the causal relations among the

shape parameters knows that he or she can change the values of X, Y, and Z with a single

button press that decreases or increases the value of action variable A. Thus, a good under-

standing of the causal relations among the shape parameters will lead to efficient task per-

formance; however, a poor understanding of the causal relations will lead to many more

button presses than necessary.

CA

X Z

f4f3 f5 f6f2f1

Y

B

Perceptual features
(observable)

Shape parameters
(latent)

Action variables
(observable)

Fig. 1. A Bayesian network representing the causal relations (in one of the experimental conditions) among the

observable action variables A, B, and C, the latent shape parameters X, Y, and Z, and the observable perceptual

features f1, f2, f3, f4, f5, and f6. For the sake of simplicity, this network does not represent the fact that subjects’

button presses determined the values of the action variables.
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2.1. Methods

2.1.1. Subjects
Twenty-four undergraduate students at the University of Rochester participated in the

experiment. Subjects were paid $10 for their participation. All subjects had normal or cor-

rected-to-normal vision.

2.1.2. Stimuli
Visual stimuli depicted three-dimensional objects whose shapes belonged to a parameter-

ized family of shapes known as ‘‘supershapes’’ (Gielis, 2003). In polar coordinates, the radii

of the objects in horizontal and vertical dimensions, denoted r1 and r2 respectively, are

given by the equations:

r1ðhÞ ¼
cos m1h

4

� �
a1

�����
�����
n12

þ
sin m1h

4

� �
b1

�����
�����
n13

" #� 1
n11

r2ð/Þ ¼
cos m2/

4

� �
a2

������
������
n22

þ
sin m2/

4

� �
b2

������
������
n232

4
3
5
� 1

n21

where h () p < h < p) and u � p
2</< p

2

� �
index angles in the horizontal and vertical

dimensions. Polar coordinates are converted to Cartesian coordinates using the equations:

x ¼ r1ðhÞ cosðhÞr2ð/Þ cosð/Þ

y ¼ r1ðhÞ sinðhÞr2ð/Þ cosð/Þ

z ¼ r2ð/Þ sinð/Þ

Supershapes contain 12 free parameters: m1, m2, a1, a2, b1, b2, n11, n12, n13, n21, n22,

and n23. In the experiment, the values of four supershape parameters were linked to the three

shape parameters X, Y, and Z as follows: m1 = X, n12 = n13 = Y, and m2 = Z. The values of

all other supershape parameters were set to 1.

Fig. 2 illustrates some of the shapes used in the experiment. The top row shows a shape,

along with how the shape is modified as shape parameter X increases in value. The middle

and bottom rows show how a shape changes as parameters Y and Z increase in value,

respectively.

Training and test trials used different shapes for the target objects. On each training

trial, a target object was formed by setting its shape parameters X, Y, and Z to either

(5, 7, 5), (5, 8, 6), (6, 7, 6), or (6, 8, 5). On each test trial, these values were set to either

(5, 7, 6), (5, 8, 5), (6, 7, 5), or (6, 8, 6). On both training and test trials, a comparison object

was formed by initializing its shape parameters to values that were within one integer unit

944 R. Yakushijin, R. A. Jacobs ⁄ Cognitive Science 35 (2011)



of those of the target object. Let Xt, Yt, and Zt denote the values of a target object’s shape

parameters, and let Xc, Yc, and Zc denote the initial values of a comparison object’s

shape parameters. Then Xc 2 {Xt ) 1, Xt, Xt + 1}, Yc 2 {Yt ) 1, Yt, Yt + 1}, and Zc 2
{Zt ) 1, Zt, Zt + 1}. The sole exception was that a comparison object’s shape was never ini-

tialized to be equal to the target object’s shape. In other words, the shape of the comparison

object was initialized to be a perturbation of the shape of the target object, and there were

26 possible perturbations.

2.1.3 Procedure
Subjects performed the experiment in a small, darkened room. Computer displays were

presented on a 21-inch CRT monitor whose resolution (in pixels) was set to 1600 · 1200.

Subjects viewed the displays from a distance of approximately 60 cm. At this distance, the

image of a target object subtended approximately 5� of visual angle in each of the horizontal

and vertical dimensions. The image of a comparison object ranged from 2� to 14� in the hor-

izontal dimension and 3� to 8� in the vertical dimension. Each subject participated in a sin-

gle experimental session lasting about an hour.

The experiment included six experimental conditions differing in the causal relations

among the shape parameters X, Y, and Z. The six possible causal relations are shown in

Fig. 3. Two of the causal relations are ‘‘linear’’ structures (one parameter has a direct causal

influence on a second parameter, which, in turn, has a direct causal influence on a third

parameter), two of the relations are ‘‘common cause’’ structures (one parameter has direct

causal influences on the two remaining parameters), and two of the relations are ‘‘common

effect’’ structures (two parameters have direct causal influences on a third parameter). Sub-

jects were randomly assigned to one of the six experimental conditions. Each condition

included both training and test trials.

On a training trial, a target object shape and initial comparison object shape were ran-

domly selected as described above. The top portion of Fig. 4 shows a typical display at the

Fig. 2. Examples of shapes used in the experiments. The top, middle, and bottom rows illustrate how the shapes

change when the shape parameters X, Y, and Z increase their values.
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Fig. 3. Bayesian networks illustrating the six causal relations used in Experiment 1. The networks in the left

column represent linear structures, the networks in the middle column represent common cause structures, and

the networks in the right column represent common effect structures.

Fig. 4. (Top) An example of a grayscale display used in Experiment 1. A target object is on the left side of the

display, a comparison object is in the middle, and the three pairs of buttons used to decrease or increase the val-

ues of the action variables A, B, and C are on the right. (Bottom) Illustrations of the ‘‘shape space’’ defined by

the shape parameters X, Y, and Z. See text for explanation.
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start of a training trial. The target object is on the left side of the display, the comparison

object is in the middle, and the three pairs of buttons used to decrease or increase the values

of action variables A, B, and C are on the right. A subject’s task was to change the values of

the action variables by pressing the buttons so as to convert the comparison object shape

into the target object shape using as few button presses as possible. The step number dis-

played above the buttons was the number of button presses that the subject had executed

during the current trial. When the subject successfully converted the comparison object

shape to the target object shape, a high-pitched sound was presented. If a subject pressed the

buttons 10 times without converting the comparison object shape to the target object shape,

a low-pitched sound was presented and the trial was terminated.1 If a subject pressed a but-

ton which would have moved a shape parameter value out of its allowable range (i.e., more

than three units away from the corresponding value of the target object), the button press

was ignored and an error message appeared stating that the button press was not currently

allowed.

To further illustrate the experimental task, the bottom portion of Fig. 4 illustrates the

‘‘shape space’’ defined by the latent shape parameters. The eight shapes in the bottom, left

panel are the shapes at the corners of a three-dimensional cube whose sides each have a

length of four units, and which is centered at X = 5, Y = 7, and Z = 5. To understand the

bottom, right panel, consider a subject trained with the linear causal structure

X fi Y fi Z (as in Fig. 1). Suppose that at some moment in time, the comparison object

has shape parameters X = 4, Y = 7, and Z = 5. Then the subject presses a button to increase

the value of action variable A, thereby increasing the values of shape parameters X, Y, and Z
(meaning, the parameters now have values X = 5, Y = 8, and Z = 6). Finally, the subject

presses a button to decrease the value of action variable B, thereby decreasing the values of

shape parameters Y and Z (now, X = 5, Y = 7, and Z = 5). This sequence of three compari-

son object shapes is illustrated in the bottom, right panel.

Test trials tested subjects’ one-step look-ahead knowledge. They were similar to training

trials with the following exceptions. On a test trial, subjects had to decide if the comparison

object shape could be converted to the target object shape using a single button press. If so,

subjects were instructed to press the appropriate button. If not, subjects pressed a button

labeled ‘‘Discard.’’ Subjects did not receive feedback on test trials. That is, they were not

informed about the correctness of their responses, and the comparison object did not change

shape if subjects pressed one of the six buttons controlling the action variables.

An experimental session consisted of seven blocks of trials where a block contained a set

of training trials followed by a set of test trials. Each set contained 26 trials, one trial for

each possible perturbation of a target object shape to form an initial comparison object

shape.

2.2. Results

We first report data on subjects’ task performances including comparisons between their

performances and optimal task performance, then report data regarding subjects’ under-

standings of the causal relations among shape parameters, and finally report data comparing
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subjects’ learning curves with those of adaptive computational agents that learn via

reinforcement-learning methods.

2.2.1. Task performances
As a benchmark for evaluating subjects’ performances on the training trials, we first com-

puted the optimal performances on these trials in the six experimental conditions using an

optimization method known as dynamic programming (Bellman, 1957; Cormen, Leiserson,

Rivest, & Stein, 2001). Recall that for every condition, a set of training trials contained 26

trials corresponding to 26 possible perturbations of the target object to form the initial shape

of the comparison object. For the experimental conditions in which the causal relations

among the shape parameters was a linear structure or a common effect structure, six of the

26 trials could optimally be performed in one step (i.e., one button press), six could be per-

formed in two steps, ten could be performed in three steps, two could be performed in four

steps, and four could be performed in five steps. For the experimental conditions in which

the causal relations was a common cause structure, six trials could optimally be performed

in one step, eight could be performed in two steps, six could be performed in three steps,

four could be performed in four steps, and two could be performed in five steps. For all con-

ditions, the average optimal number of steps was 2.54. Thus, the experimental conditions

were well balanced in terms of their intrinsic difficulties.

The three graphs in Fig. 5 show subjects’ average learning curves on the sets of training

trials for experimental conditions with linear, common cause, and common effect causal

structures, respectively. The horizontal axis of each graph shows the block number, and the

vertical axis shows the average difference between the number of steps (i.e., button presses)

used by subjects during a trial and the optimal number of steps for that trial as computed by

Fig. 5. The three graphs show subjects’ learning performances on the training trials for experimental conditions

with linear, common cause, and common effect causal structures, respectively. The horizontal axis of each graph

shows the block number, and the vertical axis shows the average difference between the number of steps (i.e.,

button presses) used by subjects during a trial and the optimal number of steps for that trial as computed by the

dynamic programming procedure. (For each subject, the average difference for a block of trials was computed.

These values were then averaged across subjects. Error bars indicate the standard deviations across subjects.)

The solid and dotted lines in each graph plot the data for the subjects in the two experimental conditions using

that graph’s causal structure.
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the dynamic programming procedure. (For each subject, the average difference for a block

of trials was computed. These values were then averaged across subjects. Error bars indicate

the standard deviations across subjects.) The solid and dotted lines in each graph plot the

data for the subjects in the two experimental conditions using that graph’s causal structure.

These graphs show a number of important features of subjects’ performances. First, subjects

often found the task to be difficult toward the start of the experiment and, thus, their perfor-

mances were highly suboptimal during this time period. This poor performance is consistent

with subjects’ verbal reports that they felt as if they were pressing buttons in a near-random

manner during the initial blocks of the experiment.2 Second, subjects learned during the

course of the experiment. Third, subjects achieved near-optimal performances at the end of

training: The average difference between a subject’s performance and the optimal perfor-

mance at the end of training is less than half of a step (M = 0.434; SD = 0.324).

We applied a mixed-design anova (three causal structures as the between-subjects vari-

able · seven training blocks as the within-subjects variable) to the data in Fig. 5. There was

a significant effect of block number (F(6, 126) = 47.41, p < .001), indicating that subjects’

performances improved as they received more training. The main effect of causal structure

(F(2, 21) = 1.70, p = .207) and the interaction between causal structure and block number

(F(12, 126) = 1.72, p = .067) were not statistically significant, although the F-value for the

interaction was close to significant. Hence, we cannot conclude that subjects’ performances

differed when different causal structures were used.

In regard to test trials, the three graphs in Fig. 6 show subjects’ average percent corrects

on these trials for the experimental conditions with linear, common cause, and common

effect causal structures, respectively. The horizontal axis of each graph gives the block num-

ber, and the vertical axis gives the average percent correct. Based on a mixed-design anova

(three causal structures as the between-subjects variable · seven training blocks as the

within-subjects variable), there was a significant effect of block number (F(6, 126) = 10.33,

p < .001), suggesting that subjects’ performances improved on the test trials as they

Fig. 6. The three graphs show subjects’ average percent corrects on the test trials for experimental conditions

with linear, common cause, and common effect causal structures, respectively. The horizontal axis of each graph

gives the block number, and the vertical axis gives the average percent correct (error bars indicate the standard

deviations across subjects, as in Fig. 5). The solid and dotted lines in each graph plot the data for the subjects in

the two experimental conditions using that graph’s causal structure.
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received more training. Although the main effect of causal structure was not significant

(F(2, 21) = 0.234, p = .793), the interaction between causal structure and block number was

significant (F(12,126) = 2.05, p = .025). Paired comparisons between causal structures at

each block show that performances with the linear structure were significantly lower than

with the common cause structure only at the first block (p < .05). That is, after the first

block of training, differences in performances on the test trials in different causal conditions

were not statistically significant.

Taken as a whole, data from both training and test trials suggest that subjects improved in

their task performances during the course of the experiment. Indeed, data from the training

trials show that subjects achieved near-optimal performances. These results are consistent

with the idea that subjects learned about the causal relations among shape parameters. To

more directly evaluate this idea, we performed additional analyses.

2.2.2. Causal learning
To assess whether data from the training trials support the conclusion that subjects

showed good causal learning, we examined the order in which subjects pressed buttons

during these trials. The order in which a subject button-pressed should reflect something

about the subject’s understanding of the causal relations among the shape parameters (even

if only imperfectly). For example, consider a subject trained with a linear structure in

which X has a direct causal influence on Y which, in turn, has a direct causal influence on Z
(X fi Y fi Z). If the subject wants to change the values of X, Y, and Z, then the subject

should press the buttons that modify the value of action variable A (see Fig. 1). If the subject

wants to change Y and Z, then the subject should press buttons so as to modify action vari-

able B, and if the subject only wants to change Z, then the subject should press buttons so as

to modify C. Consequently, the action variables can be assigned a hierarchical ordering in

which A is superordinate to B, which, in turn, is superordinate to C. For the purposes of this

analysis, we reasoned that if a subject partially understands the causal relations among the

shape parameters and wants to perform the task using the fewest number of button presses,

we should expect to see many instances in which a subject modifies a superordinate action

variable before modifying a subordinate variable.3

We examined the orderings of subjects’ button presses by measuring the rate at which

consecutive button presses modified a superordinate action variable after a subordinate vari-

able. This rate is referred to as the ‘‘reversed-order rate.’’ For example, suppose that a sub-

ject trained with the linear structure X fi Y fi Z pressed seven buttons on a trial,

thereby modifying the action variables in the following order: ABACCBA. In this sequence,

there are three neighboring pairs of variables in which a superordinate variable was modified

after a subordinate variable and, thus, the reversed-order rate is 3 ⁄ 6 = 0.5. A large reversed-

order rate indicates that the subject did not understand the causal relations among the shape

parameters, whereas a small rate suggests that the subject did understand these relations.

The three graphs in Fig. 7 show subjects’ reversed-order rates for the experimental condi-

tions with linear, common cause, and common effect causal structures, respectively. The

horizontal axis of each graph gives the block number, and the vertical axis gives the average

reversed-order rate. The two solid lines in each graph plot the data for the subjects in the
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two experimental conditions using that graph’s causal structure. The two dotted lines show

the reversed-order rates of a simulated agent that pressed buttons (i.e., modified action vari-

ables) at random. This agent formed all action sequences of the same lengths as the subjects

and with the same components, but in a random order. (If a subject changed action variables

ABACCBA on a trial, then the agent formed all sequences of length seven containing three

As, two Bs, and two Cs.) Based on paired t tests, subjects’ rates were significantly lower than

those of the simulated agent on every block in every causal structure (all t tests were signifi-

cant at the p < .05 level). In addition, subjects’ rates were always significantly lower in the

last two blocks of the experiment than in the first two blocks (p < .05). These results suggest

that subjects had at least partial knowledge of the causal relations among the shape parame-

ters, and that their causal knowledge increased during the course of training.

An analysis of subjects’ understandings of the effects of pressing buttons on test trials

provides additional evidence that subjects learned about the causal relations among shape

parameters. This analysis was limited to test trials in which a subject pressed one of the six

buttons modifying the action variables. We measured the correlations between a subject’s

decision to modify an action variable (ignoring whether the variable was decreased or

increased) and the absolute value of the difference between the target and comparison

objects along each shape parameter.

For example, consider button presses modifying action variable B. Suppose that every

time the target and comparison objects differed in their values of shape parameter X, a sub-

ject never pressed a button modifying variable B. However, if the target and comparison

objects differed in their values of Y, the subject often pressed a button modifying B and, sim-

ilarly, if the objects differed in their values of Z, the subject again often pressed a button

modifying B. In this case, there would be a negative correlation between modifications of

action variable B and differences in shape parameter X, and positive correlations between

modifications of B and differences in Y and in Z. Based on these correlations, we can

Fig. 7. The three graphs show subjects’ average reversed-order rates for experimental conditions with linear,

common cause, and common effect causal structures, respectively. The horizontal axis of each graph gives the

block number, and the vertical axis gives the average reversed-order rate. The two solid lines in each graph plot

the data for the subjects in the two experimental conditions using that graph’s causal structure. The two dotted

lines show the reversed-order rates of a simulated agent that pressed buttons (i.e., modified action variables) at

random.
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conclude that the subject believed that action variable B did not influence shape parameter

X, but that it did influence shape parameters Y and Z.

The results of this analysis are shown in Fig. 8. The diagrams in the top, middle, and bot-

tom rows correspond to experimental conditions with linear, common cause, and common

Fig. 8. The average relative correlations between subjects’ decisions to modify an action variable and the abso-

lute value of the difference between the target and comparison objects along each shape parameter. See text for

explanation.
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effect causal structures, respectively. In each diagram, the top portion gives the labels for

the action variables and shape parameters. The seven rows in the bottom portion correspond

to the seven blocks in an experimental session. The diameter of a circle is proportional to

the relative magnitude of an average correlation. Remarkably, these diagrams show that sub-

jects developed excellent understandings of the relationships between action variables and

shape parameters. For instance, consider the top left diagram in Fig. 8. Subjects whose data

are plotted in this diagram were trained with the linear causal structure X fi Y fi Z. The

correlations plotted in this diagram show that, by the end of training, subjects clearly under-

stood that modifications of action variable A influenced the values of shape parameters X, Y,

and Z, modifications of B influenced Y and Z, and modifications of C influenced Z. As a sec-

ond example, consider the middle right diagram in Fig. 8. For this diagram, subjects were

trained with the common cause structure X ‹ Y fi Z. By the end of training, subjects

understood that modifications of action variable B influenced shape parameters X, Y, and Z,

modifications of A influenced X, and modifications of C influenced Z. Based on this data, it

appears that subjects developed good understandings of the causal relations characterizing

their experimental conditions.

2.2.3. Interim summary
The experiment studied subjects’ abilities to learn to perform a perceptual matching task

when the task included causal relations among latent parameters governing objects’ shapes.

We found that, by the end of training, subjects performed in a near-optimal manner. An

examination of the sequential order of subjects’ actions on the training trials, and an exami-

nation of correlations between actions and differences between objects’ shapes on test trials,

both provided suggestive evidence that subjects learned about the causal relations among

the latent shape parameters. We hypothesize that subjects learned the causal relations among

the shape parameters (at least partially), and that this causal knowledge underlay their near-

optimal task performances.

Above, our analysis of subjects’ data used a benchmark of optimal performance based on

an optimization technique known as dynamic programming. Although very useful, this anal-

ysis does not allow us to evaluate the quality of subjects’ rates of learning. To do so, we use

a different benchmark based on an adaptive computational agent that uses a reinforcement-

learning method known as Q-learning to learn to perform the perceptual matching task

(Sutton & Barto, 1998; Watkins, 1989). Without going into the mathematical details, the

reader should note that Q-learning is an approximate dynamic programming method (Si,

Barto, Powell, & Wunsch, 2004). It is easy to show that, under mild conditions, the

sequence of actions found by an agent using Q-learning is guaranteed to converge to an opti-

mal sequence found by dynamic programming (Watkins & Dayan, 1992). Hence, the bench-

marks based on dynamic programming and on Q-learning are related.

2.2.4. Reinforcement learning and task performances
In a reinforcement-learning framework, it is assumed that an agent attempts to choose

actions so as to receive the most reward possible. The agent explores its environment by

assessing its current state and choosing an action. After executing this action, the agent will
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be in a new state and will receive a reward (possibly zero) associated with this new state.

The agent adapts its behavior in a trial-by-trial manner by noticing which actions tend to be

followed by future rewards and which actions are not.

To choose good actions, the agent needs to estimate the long-term reward values of

selecting possible actions from possible states. Ideally, the value of selecting action at in

state st at time t, denoted Q(st, at), should equal the sum of rewards that the agent can expect

to receive in the future if it takes action at in state st:

Qðst; atÞ ¼ E
X1
k¼0

ckrtþkþ1

" #

where t is the current time step, k is an index over future time steps, rt+k+1 is the reward

received at time t + k + 1, and c (0 < c £ 1) is a term that serves to discount rewards that

occur in the far future more than rewards that occur in the near future. An agent can learn

accurate estimates of these ideal values on the basis of experience if it updates its estimates

at each time step using the Q-learning update equation:

Qðst; atÞ  Qðst; atÞ þ a rtþ1 þ c max
a

Qðstþ1; aÞ �Qðst; atÞ
� �

where the agent makes action at in state st and receives reward rt+1, and a is a step size or

learning rate parameter (Sutton & Barto, 1998; Watkins, 1989).

In our first set of simulations, a reinforcement-learning agent was trained to perform the

perceptual matching task as follows. At each time step, the state of the agent represented the

difference in shape between the comparison and target objects. The state was a three-dimen-

sional vector whose elements were set to the values of the shape parameters for the compari-

son object minus the values of these parameters for the target object. Six possible actions

were available to the agent corresponding to the six buttons that a subject could press to

modify the action variables. The agent chose an action using an e-greedy strategy, meaning

that the agent chose the action a that maximized Q(st, a) with probability 1 ) e (ties were

broken at random), and chose a random action with probability e. The value of e was initial-

ized to one, and then it was slowly decreased during the course of a simulation. (Specifi-

cally, e was set to 1 ⁄ N where N is the action number. That is, e was set to 1 at the first

action, 1 ⁄ 2 at the second action, 1 ⁄ 3 at the third action, and so on.) As a result, the agent

tended to often ‘‘explore’’ a wide range of actions toward the beginning of a simulation,

and tended to ‘‘exploit’’ its current estimates of the best action to take toward the middle

and end of a simulation. If the agent chose an action that caused the comparison object to

have the same shape as the target object, the agent received a reward of 100. Otherwise, it

received a reward of )1. The agent performed the training trials of the experiment in the

same manner as our human subjects—it performed seven blocks of training trials with 26

trials per block. At the start of each simulation, its ‘‘Q-values’’ were initialized to zero, its

discount rate c was set to 0.7, and its learning rate a was set to 0.45. In preliminary simula-

tions, these values were found to be best in the sense that they led to performances that most

closely matched human performances (i.e., they led to performances that minimized the
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sum of squared differences between the average number of steps used by the agent at each

block and the average number of steps used by subjects). To accurately estimate the agent’s

performances during training, the agent was simulated 1000 times.

For brevity, only the results for the training trials using the two linear causal structures

are reported here (similar results were obtained for the other causal structures). The leftmost

graph in Fig. 9 shows the learning curves of the reinforcement-learning agent (referred to as

the model-free agent; see blue line) and of the human subjects that participated in our exper-

iment (gray line). The horizontal axis of this graph plots the block number, and the vertical

axis plots the average difference between the number of steps (i.e., actions or button presses)

used by the agent or by human subjects during a trial and the optimal number of steps for

that trial as computed by the dynamic programming procedure (as in Fig. 5). Interestingly,

the learning curves of the simulated agent and of the human subjects have similar shapes,

though subjects outperformed the agent at nearly all stages of training. Modifications of the

agent by either using different values for the agent’s parameters or by adding ‘‘eligibility

traces’’4 did not significantly alter this basic finding.

The rightmost graph of Fig. 9 shows the average reversed-order rates as a function of the

block number for the agent and the subjects. Whereas subjects’ rates declined during the

course of training, suggesting an increase in their causal knowledge, the agent’s rates

remained relatively constant.

Why did human subjects show better learning performances than the simulated agent? In

the Artificial Intelligence literature, a distinction is made between model-free versus

model-based reinforcement-learning agents. The agent described above is an instance of a

Fig. 9. (Left) Learning curves for the model-free agent (blue line), the model-based agent (green line), the

model-based agent with noise (red line), and for human subjects (gray line) on the training trials for experimental

conditions with linear causal structures. The horizontal axis plots the block number, and the vertical axis shows

the average difference between the number of steps (i.e., button presses) used by an agent or by subjects during

a trial and the optimal number of steps for that trial as computed by the dynamic programming procedure.

(Right) Average reversed-order rates for the reinforcement-learning agents and for human subjects.
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model-free agent. Although model-free agents are more common in the literature, we

hypothesized that a model-based reinforcement-learning agent may provide a better account

of our subjects’ performances. Previous researchers have hypothesized that people are capa-

ble of both model-free and model-based reinforcement learning (Daw, Niv, & Dayan, 2005;

Gläscher, Daw, Dayan, & O’Doherty, 2010). Model-based agents typically learn faster than

model-free agents, albeit with greater computational expense. Based on real-world experi-

ences, a model-based agent learns an internal model of how its actions influence the envi-

ronment. Importantly, the agent updates its Q-values from both real-world experiences with

the environment and from simulated experiences with the model (see Sutton & Barto, 1998,

for details).

In our next set of simulations, we implemented a model-based reinforcement-learning

agent. The agent’s model was an artificial neural network which learned a mapping from

actions to changes in shape parameters. Its six input units corresponded to the six possible

actions or key presses (an action variable could either increase or decrease in value, and

there were three action variables). Its nine output units corresponded to the nine possible

influences on the comparison objects’ shape parameters (a shape parameter could either

increase in value, decrease in value, or maintain the same value, and there were three

shape parameters). The three output units corresponding to each shape parameter used the

softmax activation function, meaning that their activations provided a multinomial

distribution over the possible influences on the parameter. The network did not contain

any hidden units.

When updating its Q-values, the model-based agent used ‘‘prioritized sweeping’’ (Moore

& Atkeson, 1993). This is an efficient method for focusing Q-value updates to state-action

pairs associated with large changes in expected reward. Large changes occur, for example,

when the current state is a non-goal state and the agent discovers a previously unfamiliar

action that leads to a goal state. Large changes also occur when the current state is a

non-goal state, and the agent discovers a new action that leads to a new non-goal state

known to lie on a path toward a goal state.

The prioritized sweeping algorithm is described in Fig. 10. In brief, our simulations used

prioritized sweeping as follows. At each moment in time, the model-based agent maintained

a queue of state-action pairs whose Q-values would change based on either real or simulated

experiences. For each update based on a real experience, there were up to N updates based

on simulated experiences. The items on the queue were prioritized by the absolute amount

that their Q-values would be modified. Suppose that at some moment in time, state-action

pair (s*, a*) had the highest priority. Then Q(s*, a*) would be updated. If performing this

update on the basis of simulated experience, the agent used the model to predict the result-

ing new state. In addition, the agent also used the model to examine changes to the Q-values

for all state-action pairs predicted to lead to state s*, known as predecessor state-action pairs.

These predecessor state-action pairs were added to the queue, along with their correspond-

ing priorities.

The simulations with the model-based agent were conducted in an identical manner to

those with the model-free agent. However, the model-based agent used different parameter

values. Its discount rate c was set to 0.3, its learning rate a was set to 0.05, and N, the
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number of Q-value updates based on simulated experiences for each update based on a real

experience, was set to 5. In preliminary simulations, these values were found to be best in

the sense that they led to performances that most closely matched human performances.

The results for the two experimental conditions using linear causal structures are shown

in the leftmost graph of Fig. 9 (once again, results for the other conditions were similar).

The learning curves for the model-based agent (green line) and for human subjects (gray

line) are nearly identical. Because the model-based agent provides a better account of sub-

jects’ performances than the model-free agent discussed above (based upon the sum of

squared differences between the average number of steps used by an agent at each block

and the average number used by subjects), the results suggest that our subjects may have

also built and used internal models of how their actions influenced the environment. The

rightmost graph of Fig. 9 shows the average reversed-order rates. Although the model-based

agent performed as well as people on the experimental task, its reversed-order rate was

significantly greater than that of human subjects.

A possible explanation for the model-based agent’s large reversed-order rate was hinted

at above.4 If an agent has a perfect model of how its actions influence the environment, then

it may be possible for the agent to perform well using button presses in which a subordinate

action variable is modified before a superordinate variable. However, if there is uncertainty

in the model, then better performance will be achieved if superordinate variables are chan-

ged first. Thus, it may be that the model-based agent had larger reversed-order rates than

subjects because the agent learned a perfect model (or nearly so), whereas subjects’ models

were imperfect or uncertain.

To test this hypothesis, we simulated a third reinforcement-learning agent, referred to as

the model-based agent with noise. This agent was identical to the original model-based

agent, except that noise was added when training its neural network model of how actions

influence the environment. The three output units corresponding to a shape parameter

received the correct target signals with probability p (we set p = 0.95 in our simulations).

Loop forever:
(a) s� current (non-goal) state
(b) a� action chosen via ε -greedy strategy
(c) Execute action a, observe resultant state s’ and reward r
(d) Update Model based on action a and state s’
(e) p� '| max ( ', ') ( , ) |ar Q s a Q s aγ+ −
(f) Insert s, a into PQueue with priority p
(g) Repeat N times, while PQueue is not empty:

a. s, a� first(PQueue)
b. s’� Model(s, a)
c. r� 100 if s’ is goal state, -1 otherwise
d. ( , )Q s a � '( , ) [ max ( ', ') ( , )]aQ s a r Q s a Q s aα γ+ + −
e. Repeat for all s , a predicted by Model to lead to s:

i. r � 100 if s is goal state, -1 otherwise
ii. p� | max ( , ) ( , ) |ar Q s a Q s aγ+ −

iii. Insert s , a into PQueue with priority p

Fig. 10. Prioritized sweeping algorithm (adapted from Sutton & Barto, 1998).

R. Yakushijin, R. A. Jacobs ⁄ Cognitive Science 35 (2011) 957



With probability 1 ) p, the units received target signals indicating that the shape parameter

did not change its value. This type of noise was intended to mimic a situation in which the

agent noticed perceptual changes to a comparison object corresponding to a change in the

value of a shape parameter with probability p. However, the agent failed to notice these

changes with probability 1 ) p. When the agent failed to notice the changes, this could be

referred to as a lapse of attention.

The results for the two conditions using linear causal structures are shown in the leftmost

graph of Fig. 9. The learning curves for the model-based agent with noise (red line) and for

human subjects (gray line) are nearly identical. The rightmost graph shows the average

reversed-order rates. The rates of the model-based agent with noise and of subjects are also

nearly identical. On the basis of these data, we conclude that the model-based agent with

noise provides a good account of subjects’ performances on the perceptual matching task.

3. Conclusions

Sequential action tasks are commonplace in our everyday lives. In this article, we studied

whether people were successful at learning to perform a perceptual matching task, an

instance of a sequential action task. We used two benchmarks to evaluate the quality of sub-

jects’ learning. One benchmark was based on optimal performance as defined by a dynamic

programming procedure. The other was based on an adaptive computational agent that used

reinforcement learning to learn to perform the task. Overall, our analyses suggest that sub-

jects learned to perform the perceptual matching task in a near-optimal manner. When doing

so, subjects learned, at least partially, the causal structure underlying the task. In addition,

subjects’ performances were broadly consistent with those of model-based reinforcement-

learning agents. These agents learned internal models of how their actions influenced the

external environment, and they used these models to reason about good actions to take at

each moment in time.

From a methodological perspective, the research reported here is notable for the way it

combines experimental and computational studies of people’s performances on a sequential

action task. Comparisons of people’s performances with either optimal performance as cal-

culated by dynamic programming or with learning performances of reinforcement-learning

agents are relatively unusual in the scientific literature. We believe that this article high-

lights the advantages of conducting both types of comparisons. We hope that other research-

ers will also include both types of comparisons in their future studies of people’s

performances on sequential action tasks.

Conceptually, the research reported here is also notable. In the Artificial Intelligence liter-

ature, model-free reinforcement-learning agents are significantly more common than model-

based agents. Here, we found that model-based agents provided a better account of our

experimental data. This result suggests that our subjects did not learn to perform the percep-

tual matching task by simply correlating experimental states and actions with predictions of

future reward. Instead, subjects learned detailed models of the influences of actions on their

environments, or of how actions altered one experimental state into another state. Moreover,
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subjects were able to use these models to reason about good actions to take at each moment

in time.

Above we argued that subjects achieved near-optimal performance on the experimental

task because they learned the causal structure underlying this task. If so, then it is worth

probing further into precisely what they learned. Did they learn causal relations among the

shape parameters, such as X has a causal influence on Y which, in turn, has a causal influ-

ence on Z? Or did they learn causal relations between action variables and shape parameters,

such as action variable A has a causal influence on shape parameters X, Y, and Z? Impor-

tantly, these two possibilities are exact notational variants of each other using the notation

of Bayesian networks (i.e., the Bayesian networks corresponding to these two possibilities

characterize the same joint probability distribution over all variables). Based on the experi-

mental data collected here, we cannot distinguish which possibility better describes what

our subjects learned. We have consistently described the causal relations in the experimental

task in terms of the former possibility (causal relations among shape parameters) for ease of

explanation.

We are also unable to distinguish the type of mental representation that our subjects used

to represent these causal relations. Did subjects represent their causal knowledge as

Bayesian networks, sets of logical rules, or sets of associations? Again, our experimental

data does not allow us to answer this question.

Moreover, we are unable to conclude that subjects found some causal structures easier to

learn than others. Although this possibility seems plausible, statistical tests of this possibility

did not reach our threshold for statistical significance. Future work will need to address this

issue.

The cognitive science literature now contains several studies of human performances on

sequential action tasks. Some studies have suggested that human performances are optimal,

whereas other studies have suggested the opposite. To date, the field of Cognitive Science

does not have a good understanding of the factors influencing whether people will achieve

optimal performance on a sequential action task. Future research will need to focus on this

critical issue. In the Introduction section of this article, we mentioned that perceptual alias-

ing (Stankiewicz et al., 2006) or the existence of actions leading to large rewards in the

short-term but not the long-term (Gureckis & Love, 2009b; Neth et al., 2005) seem to be

factors leading to suboptimal performances. Here, we propose a new understanding of when

people will (or will not) achieve optimal performances on sequential action tasks. We

hypothesize that people will achieve near-optimal performances on sequential action

tasks—especially sensorimotor tasks with underlying latent causal structures—when they

can detect the effects of their actions on the environment, and when they can represent and

reason about these effects using an internal mental model.

Future research will need to test this hypothesis by considering extreme instances of

sequential action tasks. For example, how will people perform when long sequences of

actions are needed to achieve a goal? How will they perform when there are long temporal

delays between the execution of an action and the effect of that action on the environment?

Or how will they perform when the effects of actions are only partially observable? Experi-

ments addressing these questions may highlight the importance of developing new teaching
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or training procedures. If people perform suboptimally on a sequential action task, it may be

possible to develop new training procedures that enable people to boost their performances

so they are closer to optimal. If so, we conjecture that these procedures will be effective

because they better allow people to detect and understand the causal effects of their actions

on the environment.

Notes

1. Trials on which a subject failed to convert the comparison shape to the target shape

within 10 button presses were ignored in the analyses discussed below. Such trials

were more common in early stages of training (about 7 times in Block 1), and

relatively uncommon in later stages of training (about 0–1 times in Blocks 4–7).

2. This result motivates our use of deterministic causal influences among variables.

Stochastic influences would have made a difficult task even harder to perform.

3. A perhaps subtle point is that if a subject has perfect knowledge of the causal relations

among the shape parameters, then it may be possible for the subject to perform opti-

mally using button presses in which a subordinate action variable is modified before a

superordinate variable. But if there is uncertainty in a subject’s causal knowledge, as

was the case with our subjects, then better performance will be achieved (on average)

if superordinate variables are modified first.

4. Eligibility traces allow an agent to remember which actions it has selected in the

recent past, and to use this information to help credit actions which lead to reward.
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Gläscher, J., Daw, N., Dayan, P., & O’Doherty, J. P. (2010). States versus rewards: Dissociable neural prediction

error signals underlying model-based and model-free reinforcement learning. Neuron, 66, 585–595.

Gonzalez, C., Vanyukov, P., & Martin, M. K. (2005). The use of microworlds to study dynamic decision

making. Computers in Human Behavior, 21, 273–286.

Gopnik, A., & Shulz, L. (2007). Causal learning: Psychology, philosophy, and computation. New York: Oxford

University Press.

Gray, W. D., Sims, C. R., Fu, W.-T., & Schoelles, M. J. (2006). The soft constraints hypothesis: A rational anal-

ysis approach to resource allocation for interactive behavior. Psychological Review, 113, 461–482.

Gureckis, T. M., & Love, B. C. (2009a). Learning in noise: Dynamic decision-making in a variable environment.

Journal of Mathematical Psychology, 53, 180–193.

Gureckis, T. M., & Love, B. C. (2009b). Short-term gains, long-term pains: Reinforcement learning in dynamic

environments. Cognition, 113, 293–313.

Lee, M. D. (2006). A hierarchical Bayesian model of human decision-making on an optimal stopping problem.

Cognitive Science, 30, 1–26.

McCallum, R. A. (1993). Overcoming incomplete perception with utile distinction memory. In Proceedings of
the 10th International Machine Learning Conference, pp. 190–196. San Francisco: Morgan Kaufmann.

Moore, A., & Atkeson, C. (1993). Prioritized sweeping: Reinforcement learning with less data and less real time.

Machine Learning, 13, 103–130.

Neth, H., Sims, C. R., & Gray, W. D. (2005). Melioration despite more information: The role of feedback

frequency in stable suboptimal performance. In Proceedings of the 49th Annual Meeting of the Human Fac-
tors and Ergonomics Society, pp. 627–632. Santa Monica, CA: Human Factors and Ergonomics Society.

Neth, H., Sims, C. R., & Gray, W. D. (2006). Melioration dominates maximization: Stable suboptimal

performance despite global feedback. In Proceedings of the 28th Annual Meeting of the Cognitive
Science Society, pp. 627–632. Mahwah, NJ: Erlbaum.

Schultz, W., Dayan, P., & Montague, P. R. (1997). A neural substrate of prediction and reward. Science, 275,

1593–1598.

Shanks, D. R., Tunney, R. J., & McCarthy, J. D. (2002). A re-examination of melioration and rational choice.

Journal of Behavioral Decision Making, 15, 233–250.

Si, J., Barto, A. G., Powell, W. B., & Wunsch, D. (2004). Handbook of learning and approximate dynamic
programming. Piscataway, NJ: Wiley-IEEE.

R. Yakushijin, R. A. Jacobs ⁄ Cognitive Science 35 (2011) 961



Stankiewicz, B. J., Legge, G. E., Mansfield, J. S., & Schlicht, E. J. (2006). Lost in virtual space: Studies

in human and ideal spatial navigation. Journal of Experimental Psychology: Human Perception and
Performance, 32, 688–704.

Stanley, W. B., Mathews, R. C., Buss, R. R., & Kotler-Cope, S. (1989). Insight without awareness: On the inter-

action of verbalization, instruction, and practice in a simulated process control task. Quarterly Journal of
Experimental Psychology, 41A, 553–577.

Stephens, D. W., & Krebs, J. R. (1986). Foraging theory. Princeton, NJ: Princeton University Press.

Sun, R., Slusarz, P., & Terry, C. (2005). The interaction of the explicit and the implicit in skill learning: A

dual-process approach. Psychological Review, 112, 159–192.

Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: An introduction. Cambridge, MA: MIT Press.

Todorov, E. (2004). Optimality principles in sensorimotor control. Nature Neuroscience, 7, 907–915.

Watkins, C. J. C. H. (1989). Learning from delayed rewards. Unpublished doctoral dissertation. Cambridge,

UK: Cambridge, University.

Watkins, C. J. C. H., & Dayan, P. (1992). Q-learning. Machine Learning, 8, 279–292.

Whitehead, S. D., & Ballard, D. H. (1991). Learning to perceive and act by trial and error. Machine Learning, 7,

45–83.

962 R. Yakushijin, R. A. Jacobs ⁄ Cognitive Science 35 (2011)


