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The use of structured symbolic representations in cogni-
tive theories has a long history in cognitive psychology, 
dating back to Boole’s (1854) development of symbolic 
logic to characterize the “laws of thought.” The approach 
reached prominence through the work of Fodor, who 
argues for the existence of a language-like system of 
mental representations, a language of thought (LOT; 
Fodor, 1975, 2008). In this formalism, concepts are formed 
through structured compositions of symbols. For instance, 
a mental representation of uncle (as a relation between 
two individuals) might be realized as a logical structure,

UNCLE x y z SIBLING x z PARENT z y, : . , , .( ) = ∃ ( ) ∧ ( )

Here, uncle is defined in terms of other—likely simpler—
operations, including sibling, parent, existential quantifi-
cation (∃), and logical conjunction (∧), with free variables 
(x, y, and z) representing the individuals involved. These 
operations may in turn be composed of even simpler con-
cepts, but eventually all operations reduce to primitives 
that are assumed to be innate. In this way, the LOT shares 
much of its spirit with programming languages, whose 
power comes from an ability to combine a small number 
of built-in operations to express unboundedly complex 
ideas. The LOT naturally handles problems like the syste-
maticity, productivity, and compositionality of thinking 
(Fodor & Pylyshyn, 1988), and it has the advantage of 

explaining cognitive processes via symbols that are them-
selves interpretable and testable from the outside.

In its basic form, the LOT represents a claim about 
representation, not learning or inference. However, a 
number of learning theories have drawn on LOT formal-
isms and attempted to explain how learners might decide 
which compositions of primitives they should construct 
in the face of data. For instance, the classic studies of 
Bruner, Goodnow, and Austin (1956) examined the dis-
covery of LOT-like Boolean rules in simple domains (see 
also Hunt, Marin, & Stone, 1966). A concept might be

red x square x circle x( ) ∧ ( ) ∨ ( )( ) ,

where subjects would look at data (e.g., positive and nega-
tive instances of objects with shape and color features) 
and try to deduce the correct particular combination of 
features (e.g., red, square, circle) and logical connectives 
(≠, ∧, and ∨). Bruner et al. provided heuristic or deductive 
theories of human performance based on falsification of 
rules by examples. Siskind (1996) similarly studied the 
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Abstract
We argue for the advantages of the probabilistic language of thought (pLOT), a recently emerging approach to 
modeling human cognition. Work using this framework demonstrates how the pLOT (a) refines the debate between 
symbols and statistics in cognitive modeling, (b) permits theories that draw on insights from both nativist and empiricist 
approaches, (c) explains the origins of novel and complex computational concepts, and (d) provides a framework 
for abstraction that can link sensation and conception. In each of these areas, the pLOT provides a productive middle 
ground between historical divides in cognitive psychology, pointing to a promising way forward for the field.
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acquisition of word meanings in a compositional represen-
tation language, providing a heuristic algorithm for build-
ing compositional word meanings.

More recently, the LOT has been combined with infer-
entially rigorous systems that model probabilistic beliefs, 
drawing motivation from both ideal-observer analyses 
and Bayesian cognitive theories more generally (e.g., 
Geisler, 2003; Tenenbaum, 1999). The first such example 
was Goodman, Tenenbaum, Feldman, and Griffiths 
(2008), who showed how probabilistic inference could 
be used to model people’s acquisition of Boolean con-
cepts, such as that shown in (2). Building on Feldman’s 
(2000) findings that logical simplicity influences learning, 
Goodman et al.’s model combines a prior favoring rule 
simplicity with a noisy likelihood function via Bayesian 
inference.1 This work showed that phenomena in Bool-
ean concept learning, like selective-attention effects and 
simplicity preferences, could be understood as results 
from rationally determining how to combine logical 
primitives into concepts.

This model can be viewed as the first formulation of 
the probabilistic language of thought (pLOT), combining 
structured, rule-like representations with Bayesian proba-
bilistic inference to solve problems of learning and infer-
ence. The logic of the pLOT is illustrated in Figure 1, in 
which Bayesian inference is used to decide how likely any 
particular composition of functions (rows) is, given some 
observed data. The inductive use of a LOT builds on other 
work in artificial intelligence (e.g., De Raedt, 2008; Richard-
son & Domingos, 2006) and psychology (e.g., Anderson, 
1996) that has married rules with probability and inference. 
Goodman, Tenenbaum, and Gerstenberg (2015) described 

a version of the pLOT in which the evaluation of primi-
tives themselves is stochastic, meaning that a single 
expression yields a distribution of values. By condition-
ing on one of these values, their inference engines are 
able to discover what random choices were made in the 
evaluation of a (stochastic) pLOT expression, a frame-
work implemented in the programming language Church 
(Goodman, Mansinghka, Roy, Bonawitz, & Tenenbaum, 
2008). They argue that this marriage of rules, probability, 
and Bayesian inference provides a means for unifying 
rule-like, fuzzy, and compositional aspects of human 
concepts. Recently, pLOT models have been proposed in 
a variety of domains, bringing into focus a new unifying 
perspective on a number of central debates in cognitive 
psychology.

Symbols and Statistics

Historically, there have been two primary frameworks for 
cognitive modeling. One school of thought favors sym-
bolic approaches, typically based on grammars, produc-
tion rules, or logic. These approaches focus on the 
processes for combining and manipulating symbols to 
form new symbols (often of a more abstract nature) and 
complex multisymbol expressions and structures. This 
permits rich expressiveness via compositionality but is 
often criticized for being “brittle,” failing to adequately 
characterize domains with inherently noisy or ambiguous 
input. In contrast, statistical approaches (e.g., Bayesian 
networks) are flexible and robust, able to handle ambigu-
ity and uncertainty in a principled way. Of course, their 
flexibility and adaptability come at a price. These 

Fig. 1. In the probabilistic language of thought (pLOT), hypotheses are constructed by composing a small set of primitive operations 
according to a grammar. Simple compositions are assigned higher priors, which are then combined with a statistical likelihood measuring 
how well each hypothesis explains the data—here, mappings from shapes to Boolean values (Y = yes, N = no) that are assumed to be noisy. 
Hypotheses that achieve a trade-off between simplicity (prior) and fit to data (likelihood) are found to have the highest posterior probability, 
reflecting rational learners’ theorized beliefs.
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approaches often require highly structured ways of char-
acterizing prior beliefs (e.g., in the form of prior distribu-
tions) and new experiences (in the form of likelihood 
functions).

Since the 1950s, the dominance of either symbolic or 
statistical schools of thought have waxed and waned. At 
several moments, advocates of these different frame-
works have engaged in heated debates engaging the 
question of rules versus statistics as well as the appropri-
ate cognitive architecture (McClelland & Patterson, 2002a, 
2002b; Pinker & Ullman, 2002a, 2002b). Prior debates 
have not led to a consensus as to which approach is 
best—and probably for good reason. The cognitive sys-
tem is probably both symbolic and statistical. Indeed, 
Feldman (2012) developed a unifying view of symbols as 
arising from effective representations of environments 
with sparse components. In his formalism, symbols are 
justified only under some assumptions, potentially pro-
viding a way to understand why humans have both sym-
bolic and nonsymbolic representations. The pLOT takes 
the advantages of both symbols and statistics in order to 
formalize a hybrid middle ground. Like symbolic 
approaches, pLOT systems use symbols and processes 
for combining and manipulating symbols. Consequently, 
these systems are capable of generating rich representa-
tions. However, the application of processes to symbols 
is probabilistic, not deterministic. The pLOT uses proba-
bilistic inference to learn from data which processes 
should be applied to which symbols. Because this learn-
ing is statistical, it can be robust to noise and ambiguity.

A prototypical domain for this problem is word learn-
ing, in which children must take observations of words 
across contexts and infer their underlying meaning. Typi-
cally, a single context will not fully disambiguate word 
meaning; at the same time, many word meanings are 
abstract and logical. Function words (e.g., many, the, 
of,  and, etc.), for instance, do not refer to observable 
properties in the world but rather determine how other 
words in a sentence combine. Building on Siskind (1996), 
recent pLOT work in the case of quantifiers (Piantadosi,  
Goodman, & Tenenbaum, 2015) and number words 
(Piantadosi, Tenenbaum, & Goodman, 2012) showed 
how the pLOT could learn these meanings in a way that 
adequately handled noise, ambiguous evidence, and 
abstract logical semantics.

Nativism and Empiricism

Though it is rarely described as such, the historical debate 
between nativism and empiricism in cognitive psychol-
ogy has been extremely fruitful. In the prototypical 
domain of language acquisition, both sides have toed the 
boundaries of plausible theories, allowing the field to 
understand the positives and negatives of a wide range of 

assumptions—from the theory that learners “build in” only 
architectural constraints to the theory that they essentially 
come with a full-fledged grammar. The main lesson from 
this debate is that both sides are deeply unsatisfying. The 
strongest empiricist versions of language learning fail to 
provide workable theories of learning that are connected 
to children’s incremental performance and adults’ remark-
able ability. Strongly nativist theories have neglected the 
power of modern machine learning, instead falling back 
on what has been called an “argument from lack of imagi-
nation” about how learning could possibly succeed.2

Children clearly have something special—something 
lacking in other animals—that permits language acquisi-
tion by humans alone. At the same time, children do 
learn something substantial about how language works, 
given the remarkable diversity of languages children 
acquire (Evans & Levinson, 2009). These facts leave us in 
need of a theoretical approach that can integrate the 
built-in capacities future work will discover with what-
ever genuine learning and inference we observe.

The pLOT provides an appealing approach to this end 
because it necessarily has both innate and learned com-
ponents, and these are made explicit in any model. The 
primitives are assumed to be either innate or learned at 
an earlier time during development, and the set of pos-
sible compositions of primitives form learners’ innate 
space of hypotheses in any particular domain. For 
instance Piantadosi et al. (2012) built in primitives corre-
sponding to a hypothesis about children’s “core knowl-
edge” (Carey, 2009; Spelke, 2003; Spelke & Kinzler, 2007) 
in the domain of number, including an ability to repre-
sent sets and perform basic set-theoretic operations. The 
choice of innate primitives can be viewed as a strictly 
empirical question that should be determined through 
independent experiments. At the same time, the model 
also captured genuine learning, as these abilities on their 
own were not the same as knowledge of number and 
counting. This provided a concrete (implemented) dem-
onstration of the sense in which number might be con-
structed (Xu & Kushnir, 2013) out of children’s innate 
repertoire. The explicit differentiation between what is 
built in and what is learned permits the pLOT to tread the 
middle grounds between nativist and empiricist extremes.3

Novelty in Learning

One outstanding mystery of cognition is where novel 
complex concepts may come from. Adults clearly possess 
a large number of complex concepts that children lack, 
yet there is no theory of how such rich knowledge and 
computation might arise. This is most striking when we 
consider the range of things ordinary adults do—things 
like reasoning through what likely caused car troubles, 
determining which ingredients in a recipe can be altered, 
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or guessing which present a relative will like most. Each 
of these is an extremely complex computation, drawing 
on rich types of world knowledge, deduction, induction, 
and knowledge of intricate causal mechanisms. How can 
we start with the cognitive mechanisms infants possess 
and arrive at such rich cognitive processes?

Fodor (1975) has developed the case for “extreme 
nativism,” in which even our complex concepts—most 
famously the concept of a carburetor—are innate primi-
tives. Fodor’s reasoning is that most concepts are not 
compositional; however, in LOT learning, all that can be 
learned is compositions of primitive operations. If most 
concepts are not compositional, but only compositions 
can be learned, then the only way these complex con-
cepts (e.g., carburetor) can get into cognitive systems is 
as innate primitives.

Fodor’s argument is a curious one to make for some-
one who is otherwise such a proponent of the computa-
tional theory of mind. The reason is that everything that 
can be computed can be characterized compositionally, a 
deep finding in mathematical logic. Computability is 
most famously formalized via Turing machines. However, 
contemporaries of Turing such as Church (1936) alterna-
tively developed lambda calculus, a logical system for 
computation that is based entirely on function composi-
tion. A composition of functions evaluates (“runs”) 
through function application to yield a given value (or 
does not halt evaluation). This approach to computation 
survives today in functional programming languages 
such as Scheme and Haskell and forms the foundation 
for the programming language Church (Goodman,  
Mansinghka, et al., 2008). Computability for lambda cal-
culus is equivalent to Turing computability (Turing, 
1937), meaning that any computation in one can be 
translated to the other. The existence of a formalism that 
is (a) Turing-complete and (b) based entirely on compo-
sitions nullifies Fodor’s argument. If one believes a com-
putational theory of mind, then everything the mind 
does—including compute the meaning of carburetor—
can be expressed as compositions of logical operations. 
Fodor’s argument for radical concept nativism fails 
because computability implies compositionality.

The view from pLOT is again a middle ground: Learn-
ers come with some special innate primitives—namely, a 
set of Turing-complete operators—and use these to build 
new representations. The formal requirements are extraor-
dinarily minimal: Lambda calculus expresses the laws of 
function combination, and combinatory logic (see Hindley 
& Seldin, 1986) expresses all computations as composi-
tions of a few higher-order functions. In theory, one can 
build in just these Turing-complete minimal systems, 
allowing learners to acquire new representations as com-
positions. When this representational capacity is combined 
with the pLOT’s inductive machinery, learners could in 

principle acquire representations of unbounded computa-
tional complexity. This theoretical perspective points to 
what we believe to be the only formal system currently 
capable—even in principle—of acquiring the arbitrarily 
complex computational representations adults possess.

From Sensation to Conception

In the domain of perception, it seems clear that people 
have multiple representations of objects and events. 
Some representations are more sensory in nature, 
whereas others are more conceptual. This is illustrated by 
crossmodal transfer of knowledge: If a person is trained 
to visually categorize a set of objects, he or she will often 
be able to categorize novel objects from the same catego-
ries when those objects are grasped but not seen (Wall-
raven, Bülthoff, Waterkamp, van Dam, & Gaißert, 2014; 
Yildirim & Jacobs, 2013). This suggests that people pos-
sess conceptual representations that can characterize 
objects and events (e.g., object shape) in a modality-
independent manner. How might modality-independent 
conceptual representations arise from modality-specific 
sensory representations?

The pLOT combines the necessary structure and 
robustness to address this question by simultaneously 
describing domains at multiple levels of abstraction. The 
grammar behind a pLOT theory can describe how repre-
sentations are built on multiple scales—for instance, in 
the domain of vision, it can specify how local patches 
combine to form surfaces, how surfaces combine to form 
parts, how parts combine to form objects, and how 
objects combine to form scenes. This is the main idea 
underlying computer graphics systems. In these systems, 
an object’s shape, for instance, is described using a mesh 
of hundreds or thousands of small polygons. Because 
each polygon is small and simple, it is easy to map it to 
its visual features; because it is part of a larger schematic, 
it is easy to integrate it with high-level structures that 
determine, for instance, its position relative to other 
patches.

Yildirim and Jacobs (2015) showed concretely how 
pLOT models can bridge sensation to conception in an 
environment with both visual and auditory sequences of 
spatial locations. Their system included three main com-
ponents: (a) a probabilistic grammar that characterized 
spatial sequences in a modality-independent manner 
(e.g., “move one unit clockwise,” “move two units coun-
terclockwise,” etc.); (b) sensory-specific forward models 
that mapped modality-independent sequence representa-
tions to corresponding visual (perhaps a form of visual 
imagery) or auditory (perhaps a form of auditory imag-
ery) features; and (c) a Bayesian-inference algorithm that 
inferred modality-independent sequence representations 
from either visual or auditory features despite significant 
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sensory noise in these features. Because this system con-
tained both sensory and conceptual representations of 
sequences, it showed successful crossmodal transfer of 
knowledge—after training to categorize sequences based 
on visual information, it was able to categorize these 
same sequences when they were heard but not seen, and 
vice versa. Yildirim and Jacobs (2013) and Erdogan, 
Yildirim, and Jacobs (2015) developed related systems 
containing both sensory and conceptual representations 
of objects when objects were viewed, grasped, or both. 
These systems showed crossmodal transfer of object-
shape knowledge across visual and haptic modalities. 
The pLOT is unique in that it provides a single frame-
work supporting representation and learning that can 
process everything from low-level feature-based primi-
tives to abstract compositional functions.

Conclusion

The pLOT is not a revolutionary new theory that promises 
to overthrow existing paradigms; it is a resurgent old the-
ory that promises to integrate many approaches into a uni-
tary framework. However, the pLOT research program 
reviewed here will not, by itself, make the link to the bio-
logical systems supporting cognition. To do so, research 
on the pLOT must eventually connect to neural and cogni-
tive theories of how symbolic LOTs can arise out of sub-
symbolic systems. Until then, we argue that it provides one 
of the most promising frameworks for cognition, combin-
ing the compositionality of symbolic approaches with the 
robustness of probabilistic approaches, thereby permitting 
researchers to formulate and test theories that do not 
acquiesce to the poles of major debates.

Recommended Reading

Erdogan, G., Yildirim, I., & Jacobs, R. A. (2015). (See References). 
Shows how a probabilistic LOT can explain the learning of 
representations that span individual modalities and sensory 
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ity to logical complexity in learning tasks, thus providing 
evidence for the psychological reality of logical representa-
tions like those posited by the LOT.

Fodor, J. (1975). (See References). A philosophical overview of 
the arguments supporting a LOT.

Goodman, N. D., & Lassiter, D. (2015). Probabilistic semantics 
and pragmatics: Uncertainty in language and thought. In 
S. Lappin & C. Fox (Eds.), The Handbook of Contemporary 
Semantic Theory (2nd ed., pp. 655-686). Hoboken, NJ: 
Wiley-Blackwell. Applies a probabilistic language to under-
standing semantic and pragmatic theories and phenomena 
in linguistics.

Goodman, N., Tenenbaum, J., Feldman, J., & Griffiths, T. 
(2008). (See References). The first work to combine logi-
cal LOT representations with a Bayesian inferential model, 

which develops methods and techniques commonly used 
by later LOT models.

Piantadosi, S., Tenenbaum, J., & Goodman, N. (2012). (See 
References). Shows how children’s patterns in learning 
number words can be explained by a probabilistic LOT, 
helping to direct the philosophical debate about whether 
concepts such as number are necessarily innate.
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Notes

1. This work also developed one of the first Monte Carlo infer-
ence algorithms capable of working with a LOT—a general-
ization of the Metropolis–Hastings algorithm that provided a 
sampler for LOT expressions given data.
2. Even the formal results, such as those of Gold (Gold, 1967), 
rely on the assumption of parents who are infinitely antagonis-
tic to their children’s success (see Johnson, 2004).
3. It also makes the pLOT itself testable: The pLOT would fail 
as a framework if one could provide strong evidence for a set 
of primitives (operations) that children can use but strong evi-
dence against the developmental trajectory those primitives 
would predict under pLOT learning.
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