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Introduction

For perceptual scientists interested in how people
combine information from multiple sensory signals, the
notion of cue or feature “reliability” is important. Reliability
is typically defined in a statistical manner, as illustrated in
Figure 1. Consider the information that a sensory cue or
feature provides about a scene property, as quantified by
the probability distribution p(scene propertyªfeature
value). If this distribution has a small variance, then the
feature provides highly precise or diagnostic information
about the scene property and, thus, is regarded as a
reliable feature. In contrast, if this distribution has a large
variance, then the feature provides imprecise information
about the scene property and is regarded as an unreliable
feature.
Several studies have shown that people’s estimates of a

scene property based on multiple perceptual features can
often be modeled as a weighted average of estimates
based on individual features, where the weight associated
with a feature is related to a feature’s reliability (e.g.,
Battaglia, Jacobs, & Aslin, 2003; Ernst & Banks, 2002;
Jacobs, 1999; Johnston, Cumming, & Landy, 1994; Knill
& Saunders, 2003; Landy, Maloney, Johnston, & Young,
1995; Maloney & Landy, 1989; Young, Landy, &

Maloney, 1993). For example, consider a person attempt-
ing to estimate the curvature of a surface that is both seen
and touched. Information about the surface’s curvature is
provided by a visual stereo cue and by a haptic cue. Suppose
that the visual stereo cue provides precise information
about curvature (i.e., p(curvatureªstereo cue) has a small
variance) and, thus, is reliable, but the haptic cue provides
imprecise information (i.e., p(curvatureªhaptic cue) has a
large variance) and, thus, is unreliable. In this case, the
model will form its estimate of curvature as a weighted
average of the estimate based on the visual cue and the
estimate based on the haptic cue. Because the stereo cue is
more reliable, the curvature estimate based on this cue will
be assigned a large weight. In contrast, the haptic cue is
less reliable, meaning that the curvature estimate based on
it will be assigned a small weight.
Existing studies of sensory integration demonstrate how

the reliabilities of perceptual cues or features influence
perceptual decisions. However, these studies tell us little
about the influence of feature reliability on visual learning.
Here, we study the implications of feature reliability for
perceptual learning in the context of binary classification
tasks. A main point of this article is that finite sets of
training data (i.e., the stimuli and corresponding class
labels used on training trials) contain different information
about a learner’s parameters associated with reliable
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versus unreliable features. In particular, the statistical
information provided by a finite number of training trials
strongly constrains the set of possible parameter values
associated with unreliable features, but only weakly
constrains the parameter values associated with reliable
features.
To illustrate this point, consider a learner attempting to

learn to perform a binary classification task. The learner
performs, for instance, 600 training trials in which, on
each trial, he or she views a stimulus and decides whether
it belongs to class A or class B. Auditory feedback
indicates the correctness of the learner’s decision.
As shown in the left panel of Figure 2, each class of

stimuli is represented by a two-dimensional normal
distribution in which the mean vector is the class
prototype and the covariance matrix characterizes the
spread of exemplars around the prototype. In this
example, feature X1 is an unreliable indicator of class
membership, whereas X2 is a reliable indicator.

Suppose that the learner can be characterized as
follows. On each trial, the learner calculates a sum of
weighted feature values, S = w1x1 + w2x2, where x1 and x2
are the current stimulus values of the features X1 and X2,
respectively, and w1 and w2 are the learner’s weights or
parameters. If the sum S is positive, the learner is likely to
decide that the stimulus belongs to class A; otherwise, the
learner is likely to decide that the stimulus belongs to
class B.
To perform well on the classification task, the learner

needs to discover good values for its parameters w1 and
w2. For us, an important question is: How much
information does the training data (i.e., the 600 stimuli
and their corresponding class labels, which were presented
on the training trials) provide about good values of the
parameters? To address this question, we examine the
probability distributions of the parameters given the train-
ing data, p(w1ª{data}) and p(w2ª{data}).
The middle and right panels of Figure 2 show hypo-

thetical distributions p(w1ª{data}) and p(w2ª{data}) for
the classification task illustrated in the left panel. For
parameter w1, the parameter associated with the unreliable
feature X1, the distribution is centered at zero and has a
small variance. In other words, the training data indicate
with high certainty that the value of this parameter should
be zero. For parameter w2, the parameter associated with
the reliable feature X2, the distribution is centered at a
positive value and has a large variance. That is, the data
indicate that feature X2 should be positively weighted, but
there is significant uncertainty as to the exact value to
which w2 should be set. Thus, according to the distribu-
tions in Figure 2, the training data provide very different
statistical information about the parameters associated
with reliable versus unreliable features.
In this article, we study the implications of feature

reliability for visual learning in the context of binary
classification tasks. We do so by examining the distribution
of a learner’s weights or parameters given a finite amount
of training data. We analyze learning performances on two

Figure 1. The probability distribution of a scene property given the
value of a feature for reliable (red) and unreliable (blue) features.

Figure 2. (Left panel) A two-dimensional binary classification task. (Middle and right panels) The probability distributions of weights w1 and
w2, respectively, given a finite set of training data.
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sets of tasks. One task is a simple two-dimensional binary
classification task, useful for explanatory purposes (as
illustrated by the discussion above and in Figure 2). The
second task is a complex twenty-dimensional task that
was used in Experiment 2 of Michel and Jacobs (2008).
The performances of both human subjects and of
computational models known as “ideal observers” are
examined.
Our results reveal at least two important insights, one

about the nature of some types of classification tasks and
the other about the nature of human learners. In regard to
classification tasks, we find results consistent with those
described above with respect to the hypothetical example
of Figure 2. That is, the posterior marginal distributions of
weights associated with relatively unreliable features are
centered at near-zero values and have small variances. The
distributions of weights associated with reliable features,
however, tend to have significantly larger variances. This
means that the statistical information provided by the
training data (as quantified by the distributions p(wiª{data})
for all weights wi, where {data} refers to the finite set of
visual stimuli and their corresponding class labels used on
training trials) indicates with high precision that an
unreliable feature is unreliable. In contrast, the information
provided by the data indicates with low precision the exact
relevance of a reliable feature.
An open research question is whether people are sensitive

to this type of statistical information. One possible answer
is that we are not. For example, it might be the case that
human subjects show the same amount of uncertainty about
how to quantify the extent to which a feature should be used
regardless of whether the feature is reliable or unreliable.
Alternatively, people might be sensitive to this task
information. If so, they would learn with high certainty
that an unreliable feature should not be used when
performing the classification task. However, they would
have much greater uncertainty about how to quantify the
extent to which a reliable feature should be used. Our
analyses based on a logistic regressor that was fit to
subjects’ responses in Experiment 2 of Michel and Jacobs
(2008) suggest that these subjects were indeed sensitive to
the task information about the different precisions for
parameters associated with reliable and unreliable features.
Additional analyses indicate that subjects showed sub-

optimal learning performances because they tended to
dramatically underestimate the extent to which they should
use reliable features. A possible explanation for this
underestimation is that people are highly “regularized”
learners, meaning that people are biased toward believing
that features tend to be irrelevant (e.g., to a Bayesian
statistician, it is as if we use prior distributions on our
regression weights that are centered at zero and have small
variances). Alternatively, it may be that subjects did not
actually underestimate the extent to which they should use
reliable features. Instead, it may be that their performances
appear to be sub-optimal because they did not always
exploit their own beliefs about visual stimuli. For instance,

a subject may have believed that the probability that a
stimulus belongs to class A is 0.7, but still judged the
stimulus as belonging to class B on an experimental trial.
If so, this would suggest that the subject engaged in
“exploration”, a strategy that can be useful in many
learning situations (Bellman, 1956; Sutton & Barto, 1998).
This article is organized as follows. In the next section,

we describe a two-dimensional binary classification task
and our analysis of this task. Our goal is to study a small
example where the intuitions underlying our approach can
be easily explained and visualized. Following this, we
describe Experiment 2 of Michel and Jacobs (2008) that is
the source of the experimental data that we reevaluated.
We then report the results of applying our techniques to
these data. Lastly, we summarize our findings and draw
final conclusions.

Two-dimensional binary
classification task

In the two-dimensional binary classification task, each
class of stimuli was represented by a bivariate normal
distribution in which the mean vector was the class
prototype and the covariance matrix characterized the
spread of exemplars around the prototype (as was the case
in Figure 2 described above). Class prototypes were
placed at [j1 1]T and [1 j1]T. As illustrated in the
leftmost column of Figure 3, three versions of the task
were created differing in their covariance matrices. In all
versions, the covariance matrices for classes A and B were
identical, diagonal matrices. The covariance structures
were isotropic in the first version, meaning that stimulus
features X1 and X2 had equal variances (AX1

2 = AX2

2 = 1).
Because of the placement of the mean vectors, and
because these variances were equal, the two stimulus
features were equally reliable indicators of class member-
ship. The variance of X1 was relatively large and the
variance of X2 was small in the second version (AX1

2 = 25,
AX2

2 = 1). Consequently, X1 was an unreliable indicator of
class membership, whereas X2 was reliable. In the final
version, the variance of X1 was small and the variance of
X2 was large (AX1

2 = 1, AX2

2 = 25), meaning that X1 was a
reliable feature, but X2 was unreliable.
For a binary classification task in which classes are

characterized by normal distributions, a logistic regressor
maps a stimulus to the probability that the stimulus
belongs to class A (one minus this value is the probability
that a stimulus belongs to class B). Let xÔ = [x1 x2]

T denote
a stimulus where x1 and x2 are the stimulus values for
features X1 and X2, respectively. Let y = 1 denote that the
stimulus belongs to class A, and y = 0 denote that the
stimulus belongs to class B. The logistic regressor works
as follows. It first calculates a weighted sum, denoted S, of
the stimulus feature values: S = ~iwixi where {wi} is the
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set of parameters of the regressor. It then uses this
weighted sum and the logistic function to calculate the
probability that the stimulus belongs to class A: p(y =
1ªxÔ) = 1 / (1 + ejS).
A maximum likelihood model and a Bayesian model

were created for each version of the two-dimensional
binary classification task. The models differed in how they
inferred values for the weights or parameters w

Y
= [w1 w2]

T

of a logistic regressor. The maximum likelihood model is
referred to as the ML model with infinite data. For each
task version, its parameters were set to values that
maximized the likelihood of a fictional data set containing
an infinite number of data items: wi = (2i

A j 2i
B) / Ai

2

where 2i
A and 2i

B are the values of feature Xi for the
prototypes of classes A and B, respectively, and Ai

2 is the
variance of feature Xi (Bishop, 2006).
The Bayesian model used a finite data set for each task

version. A data set consisting of 600 data items was
created as follows. For each data item, a class was
randomly selected, and then the normal distribution
representing the selected class was sampled. The sample
was assigned a class label in a stochastic manner using the
probabilities from the ML model with infinite data (i.e.,
the true posterior probabilities p(y = 1ªxÔ) and p(y =
0ªxÔ)). A data item consisted of the sample and the
assigned class label. The Bayesian model inferred the
joint distribution of the logistic parameters using a

Markov chain Monte Carlo sampling method due to
Holmes and Held (2006). (A summary of this method is
provided in Appendix A.) Each parameter was assigned a
vague prior distribution, namely p(wi) È N(0, 1002). A
single chain was run, and 100,000 samples were collected.
The first 10,000 samples were discarded as burn-in. After
examining the autocorrelation function of the samples, the
chain was then thinned to every 10th sample to reduce
correlations among nearby samples. Thus, the results for
the Bayesian model were based on 9,000 samples.1

The middle and rightmost columns of Figure 3 show the
results for parameters w1 and w2, respectively. The point
estimates of the parameter values for the ML model with
infinite data are given by the red dashed lines. The
distributions are the posterior marginal distributions
calculated by the Bayesian model.
These results reveal a number of important findings.

First, the models show similar behaviors; the expected
values of the parameters computed by the Bayesian model
are very close to the point estimates of the ML model with
infinite data. Second, the results of the Bayesian model
show that the distributions for parameters associated with
unreliable features are centered at near-zero values and
have small variances. This means that the training data
constrain or specify the values of these parameters with
high precision. In contrast, the distributions for parameters
associated with reliable features have larger variances,

Figure 3. The left column shows three versions of the two-dimensional binary classification task. The middle and right columns show the
posterior marginal distributions for parameters w1 and w2, respectively, for each task version. The point estimates of the parameter values
for the ML model with infinite data are given by the red dashed lines.
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meaning that the data constrain the values of these
parameters with significantly less precision.
To illustrate more clearly that the training data constrain

the parameters associated with unreliable features with
high precision, and constrain the parameters associated
with reliable features with low precision, Figure 4 plots
the likelihood function, p({data}ªw1, w2), for each
version of the task. For the first task version (left graph),
in which stimulus features X1 and X2 are equally reliable,
contours of equal likelihood are diagonally oriented
ellipses. For the second task version (middle graph), in
which X1 was an unreliable feature and X2 was reliable,
the likelihood function in the local region near its peak is
relatively steep along dimension w1 and flat along
dimension w2. In other words, the likelihood changes
quickly as the value of w1 is perturbed. However, it
changes slowly as the value of w2 is perturbed. For the
final task version (right graph), in which X1 was a reliable
feature and X2 was unreliable, the likelihood changes
slowly along w1 and quickly along w2.
Based on the results reported in this section, it seems

that classification tasks of the type studied here place
different constraints on parameters associated with reliable
and unreliable features. Will people be sensitive to these
task constraints? Our prediction is that the answer is yes.
That is, we expect that a model that is fit to human
subjects’ responses while learning to perform a similar
binary classification task will behave like the Bayesian
model. It will learn with high certainty that unreliable
features are indeed unreliable and, thus, should not be
used for classification. However, it will have much greater
uncertainty about how to quantify the extent to which
reliable features should be used. If so, then the model
suggests that people are sensitive to the task information
about the different precisions for parameters associated
with reliable and unreliable features. These predictions are
evaluated below.

Experimental data set

We summarize Experiment 2 of Michel and Jacobs
(2008) in this section. These investigators examined how

people learn to combine information from arbitrary visual
features when performing a set of perceptual discrimi-
nation tasks.
Visual stimuli were linear combinations of an under-

lying set of visual “basis” features or primitives (see Li,
Levi & Klein, 2004; Olman & Kersten, 2004, for related
approaches). These basis features are illustrated in Figure 5.
At first glance, these features should seem to be arbitrary
texture blobs. In fact, they are not completely arbitrary.
They were created using an optimization procedure that
yielded features that are orthogonal to each other (if
features are written as vectors of pixel values, then the
vectors are orthogonal to each other), relatively smooth (the
optimization procedure minimized the sum of the Lap-
lacian across each image), and equally salient (feature
luminance-contrast values were normalized based on a
feature’s spatial frequency content).
Subjects performed a binary classification task. The

prototype for each class was a linear combination of the
basis features. The linear coefficients for class A were
randomly set to either 1.0 or j1.0. The coefficients for
class B were the negative of the coefficients for class A. In
addition, a matrix K was added to each prototype where K
consisted of the background luminance plus an arbitrary
image constructed in the null space of the basis feature set
(the addition of this arbitrary matrix prevented the
prototypes from appearing as contrast-reversed versions
of the same image). In summary, a prototype was
computed using the following equation:

prototype ¼ K þ
X
i

ciFi; ð1Þ

where Fi is basis feature i and ci is its corresponding linear
coefficient.
Exemplars from a class were created by randomly

perturbing the linear coefficients {ci} defining the proto-
type for that class. This was done using the following
equation:

exemplar ¼ K þ
X
i

ðci þ (iÞFi; ð2Þ

Figure 4. The likelihood of the data, p({data}ªw1, w2), for each version of the two-dimensional binary classification task.
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where (i is a random sample from a normal distribution
with mean zero and variance Ai

2. This variance is referred
to as a feature’s noise variance. Importantly, each feature
had its own noise variance, and the magnitude of this
variance determined the reliability of a feature. Features
with small noise variances tended to have coefficient
values near one of the class prototypes. Therefore, these
features were highly diagnostic of whether an exemplar
belonged to class A or B. In contrast, features with large
noise variances tended to have coefficient values far from
the class prototypes. These features were less diagnostic
of an exemplar’s class membership. To avoid outliers, if a
feature’s coefficient value was more than two standard
deviations from the corresponding value for the prototype,
then this value was discarded and a new value was
sampled. Consequently, the exemplars from the two
classes were linearly separable.
Each trial of the experiment began with the presentation

of a fixation square, followed by an exemplar, referred to
as a test stimulus, followed by the prototypes of classes A
and B. Subjects were instructed to decide which of the two
prototypes had appeared in the test stimulus and
responded by pressing the key corresponding to the
selected prototype. Subjects received immediate auditory
feedback after every trial indicating the correctness of

their response. In addition, after every 15 trials, a printed
message appeared on the screen indicating their (percent
correct) performance on the previous 15 trials.
Each subject performed two classification tasks, Task 1

on days 1–3 (blocks 1–6) and Task 2 on days 4–6 (blocks
7–12). Importantly, the exemplars (but not the prototypes)
were manipulated across the two tasks. This was accom-
plished by modifying the feature noise variances. In Task
1, half the features were randomly chosen to serve as
reliable features for determining class membership. These
features had a small noise variance (A2 = 1). The
remaining features served as unreliable features and were
assigned a large noise variance (A2 = 25). In Task 2, the
roles of the two sets of features were swapped such that
the reliable features were made unreliable, and the
unreliable features were made reliable.
The authors predicted that people would learn to

integrate information from the basis features based on
the relative reliabilities of these features. Consequently,
they expected subjects to successfully track the reliable
versus unreliable features during the course of the experi-
ment. When performing Task 1, they expected subjects to
make their visual judgments on the basis of half the
featuresVthe reliable featuresVand ignore the remaining
features. When performing Task 2, they expected subjects

Figure 5. Set of 20 visual “basis” features or primitives.
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to flip their use of each feature. That is, they expected
subjects’ judgments to be based on the newly reliable
features (the features that were previously ignored) and to
ignore the newly unreliable features (the features that
were previously the basis of subjects’ judgments).
Subjects’ data were analyzed using logistic regression

in which the regression weights were estimated using
maximum likelihood estimation. It was found that subjects
successfully tracked the reliabilities of the visual basis
features by tracking the noise variances of these features,
and preferentially used the reliable features when per-
forming each task. The results suggest that an expanded
perspective on the standard model of cue combination
described in the Introduction section is warranted. The
model is applicable to tasks involving arbitrary perceptual
signals that need to be learned, not just conventional
perceptual cues that are highly familiar, to tasks involving
many information sources, not just two sources, and to
multi-task settings in which different cue combinations are
optimal for different tasks, not just single-task settings
(Michel, Brouwer, Jacobs, & Knill, 2010).

Simulation and analysis of ideal observers

We implemented computational models of the exper-
imental data collected from each subject. The modeling
results were qualitatively identical across subjects, and
thus, for the sake of brevity, this article focuses on models
of one subject’s data (subject MSB). This section
considers models that can be regarded as “ideal observers”
in the sense that the models are based on the true posterior
probabilities that a stimulus belonged to class A or B, as
opposed to the subject’s responses or estimates of the
correct class labels (the latter is considered in the next
section).
Computational models were logistic regressions. A

maximum likelihood model and a Bayesian model were
implemented. In the ML model with infinite data, denoted
MLIO

V, the parameters were set to values that maximized
the likelihood function based on a fictional data set
containing an infinite number of data items. As described
in the Two-dimensional binary classification task section,
parameter wi was set using the equation wi = (2i

A j 2i
B) /

Ai
2, where 2i

A and 2i
B are the values of feature Xi for the

prototypes of classes A and B, respectively, and Ai
2 is the

variance of feature Xi (Bishop, 2006).
The Bayesian model, denoted BMIO, used finite data

sets based on the subject’s experimental trials. Recall that
the experiment contained two tasks in which the sets of
reliable and unreliable features were swapped between
tasks. The trials devoted to each task were divided into 6
blocks of 600 trials each. A data item used when
estimating BMIO’s parameter values consisted of repre-
sentations of a test stimulus displayed on an experimental
trial along with a class label for that stimulus. A stimulus
was encoded by its representation in the space of visual

basis features (i.e., the 20 linear coefficients used to
construct the stimulus). The class label was set in a
stochastic manner using the probabilities from the ML
model with infinite data (i.e., the true posterior proba-
bilities p(y = 1ªxÔ) and p(y = 0ªxÔ)).
BMIO used the set of data items associated with a single

block of trials. Thus, it was simulated 12 times, once for
each experimental block. On each simulation, the model
inferred the joint distribution of its parameters using a
Markov chain Monte Carlo sampling method (see Appen-
dix A). Because the two classes of data items in a data set
were linearly separable in the space defined by the visual
basis features, there are many different logistic regressors
that could be fit to a data set. That is, the data did not
provide a strong constraint on the model’s distributions of
parameters. As a result, the sampling procedure of a
model with a vague prior distribution [e.g., p(wi) È N(0,
1002)] often did not converge within a reasonable number
of iterations. We used, therefore, a prior distribution on
each parameter with a small variance [p(wi) È N(0, 2)].2

Three Markov chains were run, and 100,000 samples were
collected from each chain (see Appendix A for details on
how the chains were initialized). The Gelman–Rubin scale
reduction factor was used to diagnose convergence
(Gelman, 1996).3 Based on this factor, the initial 10,000
samples from the first chain were discarded as burn-in. To
reduce correlations among nearby samples, this chain was
then thinned to every 10th sample. Thus, the posterior
joint distributions of BMIO were based on 9,000 samples.
The results are shown in Figure 6. The graphs on the

left and right of Figure 6 are based on the trials in blocks 6
and 12, the final blocks for Tasks 1 and 2, respectively.
The 20 sub-graphs within each graph correspond to the 20
parameters of a model. The point estimates of the
parameter values for MLIO

V are given by the red dashed
lines. The distributions are the posterior marginal distri-
butions calculated by BMIO.
Perhaps the most important outcome is that the

distributions of parameters associated with unreliable
features have relatively small variances, whereas the
distributions of parameters associated with reliable fea-
tures have large variances. Significantly, this outcome is
identical to the outcome reported above when studying the
two-dimensional binary classification task. It seems that in
both the experimental task of Michel and Jacobs (2008)
and the two-dimensional binary classification task, the
information in a finite set of training data strongly
constrains the set of possible parameter values associated
with unreliable features, but only weakly constrains the
possible parameter values associated with reliable features.
Recall that the experiment consisted of 12 blocks of

trials. Figure 7 shows the absolute values of the means
(left graph) and standard deviations (right graph) of
BMIO’s parameters across all experimental blocks. The
black lines correspond to parameters associated with
reliable features in Task 1 (unreliable in Task 2), and the
red lines correspond to parameters associated with
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unreliable features in Task 1 (reliable in Task 2). It seems
that there are enough trials within a single block for BMIO

to learn the reliabilities of the features.
In summary, this section has reported the results of a

Bayesian model that is an ideal observer in the sense that
it is based on the true posterior probabilities that a
stimulus belonged to class A or B. The most interesting
result is that the posterior marginal distributions of the
model’s parameters had small variances for parameters
associated with unreliable features, and large variances for
parameters associated with reliable features. In other
words, the information in the training data constrains the
values of parameters associated with unreliable features
with high precision but constrains the values of parameters

associated with reliable features with low precision. We
next report the data of a Bayesian model based on the
subject’s experimental data. That is, this model estimates
the subject’s response, or estimate of the class label, on
each experimental trial.

Analysis of the experimental subject

We implemented a Bayesian model, denoted BMsubj,
that used finite data sets based on the subject’s trials in an
experimental block. A data item consisted of representa-
tions of a test stimulus displayed on a trial along with the
subject’s response or estimate of the correct class label for

Figure 7. The absolute values of the means (left graph) and standard deviations of BMIO’s parameters across all experimental blocks.
Black lines correspond to parameters associated with reliable features in Stage 1 of the experiments (unreliable in Stage 2), and the red
lines correspond to parameters associated with unreliable features in Stage 1 (reliable in Stage 2).

Figure 6. The posterior marginal distributions of the parameters of BMIO. The graphs on the left and right are based on the trials in blocks 6
and 12, respectively. The 20 sub-graphs within each graph correspond to the 20 parameters of a model. The point estimates of the
parameter values for MLIO

V are given by the red dashed lines.
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that stimulus. The model used a vague prior distribution
[p(wi) È N(0, 1002)]. Three Markov chains were run, and
100,000 samples were collected from each chain (see
Appendix A for further details). The Gelman–Rubin scale
reduction factor was used to diagnose convergence
(Gelman, 1996). Based on this factor, the first 10,000
samples from the first chain were discarded as burn-in.
After examining the autocorrelation functions for the
samples, the first chain was then thinned to every 10th
sample to reduce correlations among nearby samples. The
remaining samples were used to estimate the posterior
joint distribution of BMsubj’s parameters.
Figure 8 shows the subject’s (percent correct) perfor-

mance (magenta line) and the distribution of BMsubj’s
performances (black dots and lines; a dot indicates the
mean and error bars denote one standard deviation around
the mean) on each experimental block. The distribution of
BMsubj’s performances on a block was obtained by
sampling from its joint distribution of parameters. Clearly,
BMsubj provides a good fit to the subject’s performances.
Figure 9 shows the relationship between the parameter

distributions for BMsubj and the point estimates of the
ideal observer MLIO

V. Define the “normalized dot prod-
uct” to be the quantity:

wY
T
subjw

Y
IO

¬wYsubj¬¬wYIO¬
; ð3Þ

where w
Y
subj is a sample of parameter values drawn from

the joint distribution of parameters for BMsubj and wYIO is
the parameter point estimates of MLIO

V. This quantity is
analogous to a correlation coefficient (Michel & Jacobs,
2008, referred to the square of this quantity as “template
efficiency”). It is near one when w

Y
subj and w

Y
IO are similar,

and near zero when w
Y
subj and w

Y
IO are unrelated. Figure 9

shows the median normalized dot product (error bars
show the 25th and 75th percentiles of the distribution of
normalized dot products) at each experimental block. The
black points and line show the data based on the ideal
observer MLIO

V for Task 1 of the experiment, whereas the
red points and line are based on the ideal observer for
Task 2. Clearly, the parameter values of BMsubj are closer
to the optimal point estimates based on Task 1’s stimulus
noise structure during the first half of the experiment.
They are closer to the optimal estimates based on Task 2’s
noise structure during the second half of the experiment.
Figure 10 shows the absolute values of the means (left

graph) and standard deviations (right graph) of the
parameter distributions for model BMsubj across all
experimental blocks. Black lines correspond to parameters
associated with reliable features in Task 1 (unreliable in
Task 2), and red lines correspond to parameters associated
with unreliable features in Task 1 (reliable in Task 2).

Figure 8. Subject’s (percent correct) performance (magenta line)
and the distribution of BMIO’s performances (black dots and line; a
dot indicates the mean and error bars denote one standard
deviation around the mean) on each experimental block.

Figure 9. The median normalized dot product (error bars show the
25th and 75th percentiles of the distribution of normalized dot
products) between BMsubj’s parameter values (or classification
image) and the point estimates of the ideal observer MLIO

V at
each experimental block. The black points and line show the data
based on the ideal observer for Stage 1 of the experiment, and
the red points and line show the data based on the ideal observer
for Stage 2.
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Although there is considerable noise in the mean data, the
overall trend is expected; the black lines in the left graph
tend to be at larger values in the first half of the
experiment, and the red lines are at larger values in the
second half. Importantly, the standard deviations are
larger for parameters associated with reliable features,
and smaller for parameters associated with unreliable
features.
Figure 11 shows the posterior marginal distributions

calculated by BMsubj. The graphs on the left and right are
based on the trials in blocks 6 and 12, the final blocks for
Tasks 1 and 2, respectively. The red lines show the
parameter point estimates from MLIO

V, the ideal observer

with infinite data described above (the red lines in
Figures 6 and 11 are identical although the scales of the
graphs are different).
It is informative to compare the distributions of BMsubj

and BMIO, the Bayesian models trained with the subject’s
responses and with the true posterior probabilities over
class labels, respectively. Recall that BMIO’s parameter
distributions associated with unreliable features have
small variances, and its distributions associated with
reliable features have large variances. Above, we reasoned
that this outcome follows from the nature of the
constraints imposed by the training data. If people are
sensitive to these constraints, then models that are fit to

Figure 10. The absolute values of the means (left graph) and standard deviations of BMsubj’s parameters across all experimental blocks.
Black lines correspond to parameters associated with reliable features in Stage 1 of the experiments (unreliable in Stage 2), and the red
lines correspond to parameters associated with unreliable features in Stage 1 (reliable in Stage 2).

Figure 11. The posterior marginal distributions of the parameters of BMsubj. The graphs on the left and right are based on the trials in
blocks 6 and 12, respectively. The 20 sub-graphs within each graph correspond to the 20 parameters of a model. The point estimates of
the parameter values for MLIO

V are given by the red dashed lines.
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human subjects’ responses will show similar behaviors.
The results of BMsubj displayed in Figure 11 verify that
this is indeed the case. The distributions of BMsubj, like
those of BMIO, have significantly larger variances for
parameters associated with reliable features.
Overall, the variances of BMsubj’s distributions are

smaller than those of BMIO. This can be explained by
the fact that the set of stimuli that the subject labeled as
class A and the set that he or she labeled as class B
overlapped (in the space defined by the visual basis
features), whereas the true classes did not. As a con-
sequence, the training data for BMsubj placed strong
constraints on BMsubj’s possible parameter values. The
constraints placed by the training data for BMIO were
comparatively weaker.
A second interesting result about BMsubj is illustrated in

Figure 11. BMsubj’s parameters typically have expected
values with correct signs. On both blocks 6 and 12, the
expected values of 8 of the 10 parameters associated with
reliable features have the same signs as the optimal point
estimates of the ideal observer MLIO

V. However, these
values are much smaller (in magnitude) than the optimal
point estimates. This result is surprising because the
(percent correct) performance of BMsubj would be signifi-
cantly improved if its parameter distributions were located
at larger values.4 There are at least two possible
explanations for this outcome (see Eckstein, Abbey,
Pham, & Shimozaki, 2004; Jacobs, 2009, for other
discussions of sub-optimal visual learning).
One possible explanation is that the subject was a

highly “regularized” learner. Within the fields of statistics
and machine learning, it is typically the case that biases or
constraints are added to a learning agent so that its
parameter values remain within a desirable region. In
probabilistic models, this is often achieved through the
use of prior distributions on the parameters that are
centered at zero and have small variances. Biased or
regularized agents tend to be less sensitive to the
idiosyncratic properties of the particular set of data items
that they receive. That is, they tend to learn about the
“signal” in their training data rather than the “noise”
(Bishop, 2006). If the subject was a regularized learner
constrained by a prior belief that visual features tend to be
unreliable (as if the subject had a prior distribution on its
parameters that was centered at zero and had a small
variance), then this would provide an explanation as to
why BMsubj’s posterior marginal parameter distributions
are located at small values.
A second possible explanation is that a modified version

of a logistic regressor is a better characterization of the
subject’s responses than the version we have studied so
far. In this modified version, the weighted sum of a
regressor’s inputs, S = ~iwixi, is mapped to the probability
that the subject judged a stimulus as belonging to class
A (y = 1) using a modified logistic function: p(y = 1ªxÔ) =
1 / (1 + ejS/") (the original logistic function is recovered
by setting " = 1). In this new model, the parameter " is

analogous to a variance parameter. If " is a small value
(e.g., " = 0.1), then the model will tend to always believe
that a stimulus belongs to class A with a probability of
either 1 or 0 (intermediate probabilities will be rare). In
this case, the model is essentially deterministic, and the
model is said to “exploit” its current knowledge. If " is a
large value (e.g., " = 10), the model will tend to always
believe that a stimulus belongs to class A with an
intermediate probability (extreme probabilities near 1 or
0 will be rare). It will appear to be at least partially
random. For example, if the model believes that the
probability that a stimulus belongs to class A is 0.6, then it
will judge the stimulus as belonging to class A with a
probability of 0.6 and will judge the stimulus as belonging
to class B with a probability of 0.4. In this case, the model
is said to “explore”. In the field of machine learning, there
is a lot of discussion about the advantages and disadvan-
tages of exploration and exploitation. Exploration is often
thought to be useful when a learner has incomplete
knowledge of its environment or when an environment is
non-stationary (Bellman, 1956; Sutton & Barto, 1998;
note that the exploitation/exploration trade-off is closely
related to a sub-optimal decision-making strategy known
as “probability matching” [e.g., Newell, Lagnado, &
Shanks, 2007]).
Importantly, there is a trade-off between the values of

the parameters {wi} and the parameter " in the modified
logistic function. Consider this new model where the
expected values of the parameter values are relatively
large in magnitude. In fact, suppose they are roughly
equal to the optimal point estimates of the ideal observer
MLIO

V. However, the parameter " in the new model is set
to a moderately large value, meaning that the model is
moderately random. This new model would show the
same (percent correct) performance as the original model
BMsubj (and as was shown by the subject). However, it
leads to different implications about the subject’s behav-
ior. According to the original model, the subject was sub-
optimal because he or she under-estimated the information
carried by each reliable feature about a stimulus category.
Based on the new model, the subject properly estimated
the information carried by each feature, but the subject’s
performance was sub-optimal because he or she did not
exploit this knowledge but rather engaged in exploratory
behavior. Future research will need to design experiments
to distinguish the predictions of these two models.

Summary and conclusions

In summary, we have studied the implications of feature
reliability for perceptual learning in the context of binary
classification tasks. We developed Bayesian ideal
observer models, first for a two-dimensional binary
classification task and then for a pattern discrimination
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task that was used in Experiment 2 of Michel and Jacobs
(2008). Our results indicate that the marginal posterior
distributions of parameters associated with unreliable
features have relatively small variances, whereas the
distributions of parameters associated with reliable fea-
tures have large variances. That is, in both classification
tasks, statistical information provided by the training data
(as quantified by the distributions p(wiª{data}) for all
parameters wi, where {data} refers to the finite set of
visual stimuli and their corresponding class labels used on
training trials) strongly constrains the set of possible
parameter values associated with unreliable features but
only weakly constrains the possible parameter values
associated with reliable features.
We then sought to determine if human observers

performing the pattern discrimination task were sensitive
to this statistical information. To this end, we applied the
Bayesian model to a human subject’s experimental data
(i.e., the visual stimuli that the subject was exposed to and
the subject’s responses to these stimuli). We found that the
subject was indeed sensitive to this type of task constraint.
In addition, we found that for reliable features, parameter
values inferred from the subject’s data were significantly
smaller (in magnitude) than the optimal point estimates of
the same parameters. Two possible explanations for this
result were provided. One possible explanation is that
people performing this task might be “regularized”
learners incorporating a strong bias toward small param-
eter values. Another possible explanation is that people
might be engaging in exploratory behavior, rather than
exploiting their potentially near-optimal knowledge
regarding the parameter values associated with visual
features.
An important aspect of the research reported here is that

it makes use of Bayesian methods that, we believe, have
important advantages over other approaches such as
maximum likelihood estimation methods (Gelman, Carlin,
Stern, & Rubin, 1995). For the study of human visual
perception, where it is important to characterize the
ambiguities of visual stimuli and the perceptual uncer-
tainties underlying observers’ actions, Bayesian methods
are becoming essential research tools (e.g., Kersten,
Mamassian, & Yuille, 2004; Knill & Richards, 1996;
Kuss, Jäkel, & Wichmann, 2005; Najemnik & Geisler,
2005; Yuille & Kersten, 2006). Bayesian inference
computes full posterior distributions over parameters of a
model, as opposed to single point estimates that are
obtained through maximum likelihood estimation of the
same parameters. Full posterior distributions provide more
information about these parameters than point estimates,
such as the expected values and variances of parameters,
correlations between parameters, and the shape of the
distributions over parameters. Bayesian methods also
allow the use of prior information or expectations regard-
ing parameters. For instance, if it is known a priori that a
parameter is unlikely to have a large value, this informa-
tion can be incorporated by placing an appropriately

chosen prior distribution (one that has a small mass over
large values) over that parameter. The use of prior
information makes inference more robust and less variable
by constraining the set of possible values that parameters
can take.
In this article, we performed Bayesian inference using a

Markov chain Monte Carlo sampling procedure. However,
there is no reason to believe that the results reported here
depend on the use of this specific procedure. Similar
results would occur with other Bayesian inference
procedures, such as the use of Laplace approximations,
variational approximations, or the expectation propagation
algorithm (Gelman et al., 1995; Jordan, Ghahramani,
Jaakkola & Saul, 1999; Minka, 2001). Non-parametric
sampling procedures, such as bootstrapping (Efron &
Tibshirani, 1993), would also yield similar results (albeit
with the necessity of alternative mathematical assump-
tions and possibly greater computational expense; see
Hastie, Tibshirani, & Friedman, 2009).
Classical methods in both statistics (e.g., linear discrim-

inant analysis) and machine learning (e.g., perceptrons)
typically perform binary classification tasks by forming
discriminant functions that are positive for stimuli in one
class and negative for stimuli in the other class. When
used to model human performance, these methods
implicitly assume that a subject uses a single, determin-
istic discriminant function for making classification
decisions. Because we have used Bayesian methods, we
have taken a different approach by thinking of a subject’s
weights or parameters, and thus a subject’s discriminant
function, as random variables. That is, we have assumed
that subjects maintained full distributions over discrim-
inant functions. In future research, it might prove useful to
think of other perceptual and cognitive variables as
random variables too. Although we used a Bayesian
logistic regression model here, the Bayesian approach
can be applied to many other models attempting to explain
other perceptual or cognitive phenomena.

Appendix A

This appendix provides details about the simulations
that were not included in the main body of the text. We
simulated logistic regressors in which the distributions of
the regressors’ weights or parameters were inferred using
a Markov chain Monte Carlo (MCMC) sampler due to
Holmes and Held (2006), henceforth referred to as H&H.
Let the ith data item consist of a vector of covariate

variables, denoted xÔi, and a scalar response variable,
denoted yi. In addition, let wY denote a logistic regressor’s
parameters. H&H introduced a latent variable, denoted zi,
such that

zi ¼ xÔ
T
i w
Y þ (i; ðA1Þ
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where (i is a sample from a standard logistic distribution.
The response variable yi is related to the latent variable zi
by the following equation:

yi ¼
1 if zi 9 0

0 otherwise

8<
:

9=
;: ðA2Þ

Let the prior distribution for the parameter vector w
Y

be
a Gaussian distribution, denoted N(m

Y
, A2I), with mean

vector m
Y

and covariance matrix A2I. In this case, it is
difficult to construct an efficient Gibbs sampler because
the full conditional distribution of wY is not Gaussian.
(This problem does not arise in probit regression where
the noise variable (i is distributed according to a Gaussian
distribution.) H&H solved this problem by introducing an
additional latent variable, denoted 1i, and by making the
noise variable dependent on this new latent variable as
follows:

(ik1i ÈNð0;1iÞ

1i ¼ ð2=iÞ2

=i ÈKS

; ðA3Þ

where KS is the Kolmogorov–Smirnov distribution.
Importantly, the conditional distribution of (i given 1i is
Gaussian, whereas the marginal distribution of (i is
logistic (Andrews & Mallows, 1974).
H&H used the following equations in their Gibbs

sampler:

zikw
Y
; xÔi; yi È LogisticðxÔT

i w
Y
; 1; yiÞ

wYk zY; 1
Y
ÈNð2Y;VÞ

2Y ¼ VðAj2mY þ XTW zYÞ

V ¼ ðAj2I þ XTWXÞj1

W ¼ diagð1j1
1 ;I; 1j1

n Þ:

ðA4Þ

Here Logistic(xÔi
Tw
Y
, 1, yi) is a truncated logistic distribu-

tion with mean xÔi
Tw
Y
, scale 1, and the side of the

distribution that is truncated is determined by yi: if yi =
1, the distribution is truncated below 0; otherwise, it is
truncated above 0. In these equations, X is a matrix whose
ith row is the covariate variable xÔi, and zY and 1

Y
are

vectors containing the variables {zi} and {1i}, respec-
tively. H&H used a rejection sampling method to sample
from the conditional distribution of 1i because this
distribution does not have a standard form.

For the two-dimensional binary classification task, the
Bayesian model (BMIO) produced a single chain of
100,000 samples. The variables {1i} were initialized to
1, and the variables {zi} were initialized to values sampled
from a truncated logistic distribution with mean parameter
0 and scale parameter 1 (the side of truncation depended
on yi). The first 10,000 samples of the chain were
discarded as burn-in, and the remaining samples were
then thinned to every 10th sample.
For the experimental data set, BMIO and BMsubj each

produced three chains of 100,000 samples for each
experimental block. In Chain 1, the variables {1i} were
initialized to 1, and the variables {zi} were initialized to
values sampled from a truncated logistic distribution with
mean parameter 0 and scale parameter 1. In Chain 2, the
variables {1i} were initialized to values sampled from a
uniform distribution on the interval [0.5, 1.5], and the
variables {zi} were initialized to values sampled from a
truncated logistic distribution whose mean was sampled
from a uniform distribution on the interval [0, 1] and
whose scale was set to 5. Chain 3 was initialized in the
same manner as Chain 2. Relative to Chain 2, however, it
reversed the update order of the variables {zi} and {1i}.
The first 10,000 samples of Chain 1 were discarded as
burn-in, and the remaining samples were thinned to every
10th sample.
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Footnotes

1
In our research, we also considered models containing

lapse parameters (Wichmann & Hill, 2001). These models
are useful when subjects’ responses seem to be random
(stimulus-independent) guesses on significant numbers of
trials. However, we found that the subjects in Michel and
Jacobs (2008) had small lapse rates, and thus, we omit
models with lapse parameters from this article.

2
For a binary classification task with linearly separable

classes, a maximum likelihood estimator of a logistic
regressor’s weights is not well defined because the like-
lihood function can always be increased by increasing the
magnitudes of the weights. To circumvent this problem,
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practitioners typically seek weights that maximize the
likelihood function and are not too large in magnitude
(so-called maximum penalized likelihood estimation). In a
Bayesian setting, this corresponds to placing a relatively
restrictive prior distribution on the logistic weights.

3
Roughly, the Gelman–Rubin scale reduction factor is a

mathematical tool designed to detect when multiple
chains, each initialized in its own way, are showing
similar statistical properties, meaning that the chains have
converged to the same distribution. The time period prior
to convergence is referred to as “burn-in”, and the chains’
samples during burn-in are discarded.

4
The subject’s performance (and, thus, BMsubj’s per-

formance) was sub-optimal. To better understand why, we
did the following. We fit a logistic regressor to the
subject’s responses using maximum likelihood estimation.
It could be that the vector of parameter estimates is too
small in magnitude, points in the wrong direction, or both.
We scaled the magnitude of this vector, maintaining its
direction, and measured the performance of a logistic
regressor whose parameter values were set to this scaled
vector. By increasing the magnitude of the vector, a
logistic regressor could increase its performance from
about 77% correct to 83% correct on block 6, and from
83% correct to 90% correct on block 12. The remaining
error is due to the fact that this vector points in the wrong
direction.
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