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A number of studies have demonstrated that people often integrate information from multiple perceptual cues in a
statistically optimal manner when judging properties of surfaces in a scene. For example, subjects typically weight the
information based on each cue to a degree that is inversely proportional to the variance of the distribution of a scene
property given a cue’s value. We wanted to determine whether subjects similarly use information about the reliabilities of
arbitrary low-level visual features when making image-based discriminations, as in visual texture discrimination. To
investigate this question, we developed a modification of the classification image technique and conducted two experiments
that explored subjects’ discrimination strategies using this improved technique. We created a basis set consisting of 20 low-
level features and created stimuli by linearly combining the basis vectors. Subjects were trained to discriminate between two
prototype signals corrupted with Gaussian feature noise. When we analyzed subjects’ classification images over time, we
found that they modified their decision strategies in a manner consistent with optimal feature integration, giving greater
weight to reliable features and less weight to unreliable features. We conclude that optimal integration is not a characteristic
specific to conventional visual cues or to judgments involving three-dimensional scene properties. Rather, just as
researchers have previously demonstrated that people are sensitive to the reliabilities of conventionally defined cues when
judging the depth or slant of a surface, we demonstrate that they are likewise sensitive to the reliabilities of arbitrary low-
level features when making image-based discriminations.
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Introduction

Vision researchers have long realized that adult observ-
ers can be trained to improve their performance in simple
perceptual tasks. Improvements with practice in visual
acuity, hue perception, and velocity discrimination, for
example, have been documented for over a century (Gibson,
1953). Such perceptual improvements, when they occur as
a result of training, are called perceptual learning.
Despite its long history of research, the mechanisms of

perceptual learning remain poorly understood. Instances
of perceptual learning typically exhibit a number of
characteristics, including specificity for stimulus parame-
ters (e.g., spatial position and orientation of the stimulus),
the simplicity of the tasks learned, and the implicit nature
of the learning, that researchers have taken as evidence
that perceptual learning occurs at relatively early stages of
the perceptual system (Fahle & Poggio, 2002; Gilbert,
1994). Thus, many researchers interested in perceptual
learning have focused on isolating changes in the neural
response properties of early sensory areas following
perceptual learning. While this approach has yielded results
useful to understanding the neural changes underlying

certain types of non-visual perceptual learning such as
vibrotactile (Recanzone, Merzenich, & Jenkins, 1992) and
auditory (Recanzone, Schreiner, & Merzenich, 1993)
frequency discrimination, results in visual learning tasks
have been much more sparse (for reviews, see Das, 1997;
Gilbert, 1994) and difficult to interpret. Furthermore, it is
important to recognize that while this approach addresses
questions regarding what neural changes are associated
with learning, it does not answer the more central
question: What is learned in perceptual learning?
One approach that has proven to be fruitful in

illuminating the computational mechanisms underlying
perceptual discriminations is the ideal observer framework
(Geisler, 2003; Knill & Richards, 1996). This approach
characterizes a given perceptual task by specifying an
ideal observer, a theoretical decision-making agent
described in probabilistic terms, that performs the task
optimally given the available information. To determine
how human observers use information in the perceptual
task, researchers compare their performance with that of
the ideal observer across manipulations of the task that
systematically change the information available in the
stimulus. This approach has been particularly successful at
characterizing the ways in which observers integrate
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information across different perceptual modalities (e.g.,
Battaglia, Jacobs, & Aslin, 2003; Ernst & Banks, 2002;
Gepshtein, Burge, Ernst, & Banks, 2005), different visual
modules (e.g., Jacobs, 1999; Knill, 2003; Knill &
Saunders, 2003), or both (e.g., Atkins, Fiser, & Jacobs,
2001; Hillis, Ernst, Banks, & Landy, 2002) to make
perceptual judgments when multiple cues are available.
Briefly, in making quotidian perceptual judgments,
observers usually have access to a number of perceptual
cues. An observer attempting to determine the curvature of
a surface, for example, may have access to cues based on
visual texture, binocular disparity, and shading, as well as
to haptic cues obtained by manually exploring the surface.
To make an optimal judgment based on these cues, the
observer must combine the curvature estimates from these
different cues. Yuille and Bülthoff (1996) demonstrated
that, given certain mathematical assumptions, the optimal
strategy for combining estimates Ê1, I, Ên from a set of
class-conditionally independent cues (i.e., cues c1, I, cn
that are conditionally independent given the scene
parameter of interest so that P(c1, I, cnªE) = 9i

n P(ciªE))
Ê* = ~i5iÊi (where Ê* represents the optimal estimate
based on all available cues) such that the weight for each
cue is inversely proportional to the variance of the
distribution of the scene parameter given the cue’s value
(i.e., 5i ò 1/Ai

2). Researchers have found that, across a
variety of perceptual tasks, human observers seem to base
their perceptual judgments on just such a strategy. While
most of these cue integration studies have focused on
strategies used by observers in stationary environments,
several (Atkins et al., 2001; Ernst, Banks, & Bülthoff,
2000; Jacobs & Fine, 1999) have investigated how
observers change their cue integration strategies after
receiving training in virtual environments in which a
perceptual cue to a scene variable is artificially manipu-
lated to be less informative with respect to that variable.
In one of these studies, Ernst et al. (2000) manipulated
either the texture- or disparity-specified slant of a visually
presented surface to indicate a slant value that was
uncorrelated with the haptically defined orientation of
the surface. The authors found that after receiving training
in this environment, subjects’ perceptions of slant changed
such that, in a qualitatively similar fashion to the ideal
observer, they gave less weight to the slant estimate of the
now less reliable visual cue.
This ideal observer framework has thus been useful in

characterizing the mechanisms involved in learning to
make certain types of perceptual discriminations. How-
ever, not all perceptual learning tasks fit neatly into the
cue combination framework described above. Many
studies of perceptual learning, for example, have focused
on improvements in simple tasks involving Vernier acuity,
texture discrimination, line bisection, orientation discrim-
ination, and other image-based (i.e., rather than 3D scene-
parameter-based) discriminations. To characterize the
learning obtained in such tasks using the ideal observer
cue combination framework described above, we must

first deal with several conceptual and methodological
issues. The first of these issues concerns the seemingly
disparate nature of 3D cue combination tasks on the one
hand, and simple image-based discrimination tasks on the
other. Consider for example the slant discrimination task
described in the previous paragraph. In this case, the slant
of the surface is defined visually by two conventional and
well-understood cues to surface slant: texture foreshorten-
ing, and binocular disparity. In a texture discrimination
task, however, subjects are not trying to determine the
value of some surface parameter such as slant. Instead,
they must determine to which of two arbitrarily defined
categories a presented texture belongs. What are the cues
in this task? Of course, these textures will differ along
some set of image features and the subject can identify
and use these features as “cues” to the texture category.
But do such features function as cues in the same sense as
texture foreshortening and binocular disparity? The
current study was designed to address this question. We
were interested in determining whether the optimal
integration of cues described in cue combination studies
such as that of Ernst et al. (2000) is a special property of
the limited set of conventionally defined visual cues (e.g.,
texture compression and disparity gradient cues for slant)
or whether people are likewise sensitive and capable of
exploiting the relative reliabilities of arbitrarily defined
cues such as those of low-level features involved in
image-based discriminations.
To answer this question, we introduce an efficient

modification of the classification technique that allows
us to analyze over relatively fine time scales the changes
to the weights an observer gives to different features. We
then report the results of two experiments that exploit this
technique to examine how observers use information
about the reliabilities of low-level image features in
performing simple perceptual discrimination tasks. Using
our modified classification image technique, we inves-
tigate whether observers use information in a manner
consistent with optimal feature combination (i.e., in a
manner analogous to optimal cue combination). In both
experiments, subjects viewed and classified stimuli con-
sisting of noise-corrupted images. The stimuli used in
each experiment were generated within a 20-dimensional
feature space whose noise covariance structure was varied
across conditions. In Experiment 1, subjects were trained
to discriminate between two stimuli corrupted with white
Gaussian feature noise, and their classifications were
calculated over time. When we examined their classifica-
tion images, we found that, with practice, their classi-
fication images approached that of the ideal observer. In
addition, this improvement in their classification images
correlated highly with their increase in performance
efficiency, accounting for most of the variance in their
performance. In Experiment 2, the variance of the
corrupting noise was made anisotropic, such that some
features were noisier and thus less reliable in determining
the stimulus class than others. In the first half of the
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experiment, half of the features were made reliable and the
other half unreliable. In the second half of the experiment,
this relationship was reversed so that the features which had
heretofore been reliable were now unreliable and vice
versa. When we examined the classification images
calculated for each subject over time, we found that they
modified their decision strategies in a manner consistent
with optimal feature combination, giving higher weights to
reliable features and lower weights to unreliable features.
The results of Experiment 1 suggest that subjects’ learning
in these texture discrimination tasks consists primarily of
improvements in the optimality of their discriminant
functions, while the results of Experiment 2 suggest that
in learning these discriminant functions, subjects are able
to exploit information about the reliabilities of individual
features.

Estimating classification images:
A modified approach

Ahumada (1967, 2002) suggested a method for deter-
mining the template, or classification image, used by
human observers performing a binary perceptual discrim-
ination task. To discover this template T for an individual
observer, the researcher adds random pixel noise &(t) È N
(0, I) to the signal s(t) Z {s0, s1} presented on each trial t.
The researcher can then calculate the observer’s classi-
fication image by simply correlating the noise added on
each trial with the classification r(t) Z {j1, 1} indicated
by the observer. These classification images reveal the
stimulus components used by observers in making
perceptual discriminations. Over the past decade, this
classification image technique has proven quite useful;
researchers have used this technique (or variants thereof)
to determine the templates used by observers in a variety
of different tasks (e.g., Abbey & Eckstein, 2002; Ahumada,
1996; Levi & Klein, 2002; Lu & Liu, 2006), to compare
these observer classification images to those calculated for
an ideal observer (optimal templates), and to investigate
how these classification images change with learning (e.g.,
Beard & Ahumada, 1999; Gold, Sekuler, & Bennett,
2004). Despite these successes, the method does suffer
from some shortcomings.
Chief among these is the enormous dimensionality of

the stimulus space. Calculating the classification image for
a stimulus represented within a 128 � 128 pixel space, for
example, requires calculating 16,385 parameters (i.e.,
1282 regression coefficients plus a bias term). Conse-
quently, researchers require thousands of trials to obtain a
reasonable classification image for a single observer, and
the correlation of the resulting images with the optimal
templates is generally quite low due to the poor sampling
of the stimulus space and the concomitant paucity of data
points (Gold et al., 2004). Several researchers have

attempted to remedy this problem and to boost the
significance of such comparisons by restricting the final
analysis to select portions of the classification image (e.g.,
Gold et al., 2004) by averaging across regions of the
image (e.g., Abbey & Eckstein, 2002; Abbey, Eckstein, &
Bochud, 1999) or by using a combination of these
methods (e.g., Chauvin, Worsley, Schyns, Arguin, &
Gosselin, 2005). Such measures work by effectively
reducing the dimensionality of the stimulus space so that
instead of calculating regression coefficients for each
pixel, researchers calculate a much smaller number of
coefficients for various linear combinations of pixels.
Essentially, these researchers add the signal corrupting
noise in pixel space but perform their analyses in terms of
a lower dimensional basis space.
In the current study, we simplify this process by

specifying this lower dimensional basis space explicitly
and a priori.1 In addition to its simplicity, this approach
has several advantages over traditional methods. First, by
specifying the bases in advance, we can limit the added
noise & to the subspace spanned by these bases, ensuring
that (1) the noise is white and densely sampled in this
subspace, and (2) only features within the spanned
subspace contribute to the observer’s decisions (i.e.,
because all stimulus variance is contained within this
subspace). Second, because we specify the bases in
advance, we can select these bases in an intelligent way,
representing only those features that observers are likely
to find useful in making discriminations, such as those
features that contain information relevant to the task (i.e.,
features that vary across the stimulus classes).2 Finally,
this approach makes it possible to manipulate the variance
of the noise added to different features and thus to vary
the reliabilities of these features. This allows us to
investigate how observers combine information from
different features using methods similar to those that have
been used in studying perceptual cue combination.
Mathematically, our approach to classification images is

related to Ahumada’s (2002) approach as follows: let g(t)

represent the stimulus presented on trial t. Ahumada’s
technique generates these stimuli as

gðtÞ ¼ sðtÞ þ &ðtÞ; ð1Þ

where s(t) and &(t) are defined as above. If we explicitly
represent the use of pixels as bases using the matrix P,
whose columns consist of the n-dimensional set of
standard bases, we can rewrite Equation 1 in a more
general form as

gðtÞ ¼ P
�
sðtÞ þ &ðtÞ

�
: ð2Þ

This is possible because P is equivalent to the identity
matrix In. It should be clear, however, that by applying the
appropriate linear transformation T:P Y B to the stimuli
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s(t), we can exchange P for an arbitrary basis set B to
generate stimulus images in the space spanned by B. This
is represented by our generative model

gðtÞ ¼ kþ Bð2ðtÞ þ )ðtÞÞ; ð3Þ

where 2(t) Z {2A, 2B} represents a prototype stimulus s
expressed in terms of the basis set, and )(t) È N(0, I)
represents Gaussian noise added in the basis space. (Note
that when B = P, Equation 3 is equivalent to Equation 2,
with 2(t) = s(t), k = 0, and )(t) and &(t) distributed
identically.) The only new term is the constant vector k,
which is important here because it provides additional
flexibility in choosing the bases that make up B.3 In
particular, this constant term allows us to represent
constant (noiseless) features in pixel space that do not
exist in the space spanned by B. Figures 1 and 2
illustrate this generative model for a pair of example
stimuli. Here the task requires classifying a presented
stimulus as an instance of stimulus A (square) or stimulus
B (circle). All of the information relevant to this
discrimination lies in the difference image (the rightmost
image in Figure 1). The image shown to the left of this
difference image (third from left) represents the part of the
stimulus that remains constant across stimulus classes.
Representing this part of the stimulus as k allows us to
focus on selecting bases B that can adequately represent the
difference image. Figure 2 shows example stimuli g generated
for this task using the models described in Equation 2 (top of
Figure 2) and Equation 3 (bottom of Figure 2).
The method developed by Ahumada for calculating

classification images isVdespite its successful use by
many researchersVsomewhat inaccurate and can poten-
tially be quite inefficient. Ahumada’s method is based on
reverse correlation, a technique for determining the linear
response characteristics of a signal processing system. In
reverse correlation, a researcher feeds Gaussian white
noise into a system, records the system’s output, and then
characterizes the system’s linear response by correlating
the input and output signals. Unfortunately, however,
psychophysical experiments that use the classification
image technique rarely present pure noise to observers in
practice because this tends to result in unreliable
performance (for a counterexample, see Neri & Heeger,

2002). Instead, they typically corrupt one of two signals
(where one of the signals may be the null signal) with noise
and have the observer determine which of the two signals
was presented. As a result, the observer is actually exposed
to signals from two distributions with different means
rather than just one. Ahumada’s method for dealing with
this problem is to subtract the means from these two
distributions (Ahumada, 2002) and thereafter treat them as
a common distribution. At best, ignoring the signal and
considering only the noise makes for an inefficient estimate
of the observer’s decision template since it ignores
available information. At its worst, ignoring the signal
can lead to some rather strange results (consider, for
example, that subjects who perform at 50% correct and at
100% correct are indistinguishable using this method).
Since one of our goals in this study was to develop a

more efficient means of estimating classification images,
we calculated the maximum likelihood estimate for these
images using the full stimuli (signal + noise) under a
Bernoulli response likelihood model. Here, we show that
the classification image for the ideal observer (the optimal
template) can be expressed as the result of a logistic
regression. We assume that the ideal observer knows the
prior distributions P(Ci) and likelihood functions P(xªCi)
for both stimulus classes Ci, i Z {A, B}. Using Bayes’
rule, the probability that an image x belongs to class A is

PðCA kxÞ ¼ PðxkCAÞPðCAÞ
PðxÞ

¼ PðxkCAÞPðCAÞ
PðxkCAÞPðCAÞ þ PðxkCBÞPðCBÞ ; ð4Þ

With some simple algebra, we can convert this
expression into a logistic function of x.

P CAkxð Þ ¼ 1

1þ ejf ðxÞ ; ð5Þ

where

f xð Þ ¼ log
PðxkCAÞPðCAÞ
PðxkCBÞPðCBÞ

� �
: ð6Þ

To express the classification image as the result of a
logistic regression however, we must also demonstrate

Figure 1. An illustrative stimulus set consisting of “fuzzy” square and circle prototypes. From left to right: the square (k + B2A); the circle
(k + B2B); the constant image (k), which represents the parts of the image that are invariant across stimuli, and the square–circle
difference image (B[2A j 2B]).
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that f(x) in Equation 6 is linear in x. The stimuli presented
on each trial are drawn from a multivariate Gaussian
representing one of the two signal categories. Therefore,
we can express the likelihood terms in Equation 6 as

P xkCið Þ ¼ 2:ð Þjm
2 k�kj

1
2ej

1
2
xj2iÞT@j1 xj2ið Þ;ð ð7Þ

where 2i, i Z A, B is the mean (prototype) for class i, @ is
the common covariance matrix for both classes, and m is
the dimensionality of the stimulus space. Plugging these
likelihoods into Equation 6 yields

f xð Þ ¼ 1

2
xj2Bð ÞT�

j1
xj2Bð Þj xj2Að ÞT�j1 xj2Að Þ

h i

þ log
P CAð Þ
P CBð Þ

� �
:

Finally, by expanding the quadratic terms and simplifying,
we demonstrate that f(x) is indeed linear in x:

f ðxÞ ¼ wTxþ b; ð9Þ

with

w ¼�j1ð2Aj2BÞ; ð10Þ

and

b ¼ 1

2
ð2B þ 2AÞT�j1 2Bj2Að Þ þ log

PðCAÞ
PðCBÞ

� �
: ð11Þ

Equation 10 shows that in the case of white Gaussian
noise (i.e., when @ = A2I) the optimal template is
proportional to the difference between the signal
category prototypes. Note also the similarity of
Equation 10 to the result wi ò 1/Ai

2 from optimal cue
combination. We exploit this relationship in the design of
Experiment 2.

Experiment 1

In Experiment 1, we calculated response classification
images for observers learning to perform an image-based
perceptual discrimination task. We expected that our
subjects’ performances would improve over time and, based
on the results of Gold et al. (2004), that improvements in a
subject’s discrimination performance would be accompa-
nied by an increased fit between the observer’s classification
image and the ideal template. In addition, we expected that

Figure 2. Illustrations of the methods described in Equation 2 (top) and Equation 3 (bottom) for generating noise-corrupted versions of the
“fuzzy square” prototype (stimulus A) introduced in Figure 1.

(8)
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constructing our stimuli from a small set of bases would
allow us to calculate robust classification images using a
significantly smaller number of trials than are required by
the traditional approach of using image pixels as bases.

Methods
Subjects

Subjects were four students at the University of
Rochester with normal or corrected-to-normal vision. All
subjects were naive to the purposes of the study.

Stimuli

The stimuli were 256 � 256 pixel (8- � 8-) gray scale
images presented on a gray background whose luminance
of 16.5 cd/m2 matched the mean luminance of the images.
All of the stimuli were constructed as linear combinations
of the set of basis “features” illustrated in Figure 3.

The set of 20 basis features was constructed in the
following manner. We created 50 32 � 32 pixel images of
white gaussian noise which were band-pass filtered to
contain frequencies in the range of 1–3 cycles per image.
The resulting images were then iteratively adjusted using
gradient descent to yield a set of orthogonal, zero-mean
images that maximized smoothness (i.e., minimized the
sum of the Laplacian) across each image. The images were
added to the basis set one by one so that each basis provided
an additional orthogonality constraint on the subsequent
bases. In other words, at iteration i, image i was modified
via gradient descent to be maximally smooth and to be
orthogonal to images 1 through (i j 1). These orthogon-
ality constraints interacted with the smoothness constraint
to produce images that were localized in spatial frequency
content such that the first bases produced by our method
contained low frequencies and subsequently added bases
contained increasingly higher frequencies. We randomly
selected twenty of the 50 images to form the basis set that
we used to construct our stimuli.

Figure 3. The 20 basis features used to construct the stimuli in Experiments 1 and 2. Each of these images constitutes a column of the
matrix B in Equation 3. Mixing coefficients 2Ai

for the vector 2A representing Prototype A (see Figure 4) are indicated above each of the
bases (2Bi

= j2Ai
). White Gaussian noise (in the subspace spanned by B) is generated by independently sampling the noise coefficients

)i from a common Gaussian distribution.
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Finally, we wanted to make sure that the bases were
equally salient. The human visual system is known to
exhibit varying sensitivity to different stimuli depending
on their spatial frequency content. This differential
sensitivity across spatial frequencies is often characterized
through the contrast sensitivity function (CSF), which
describes the amount of contrast required at different
spatial frequencies to obtain a fixed sensitivity level. Thus,
as a final step, we normalized the twenty basis features for
saliency by setting the standard deviation of luminance
distributions in each of the basis images to 1, then
multiplied each image by the reciprocal of the contrast
sensitivity function value for its peak spatial frequency.4

A set of two prototypes was constructed from this basis
set as follows. First, a 20-dimensional vector was formed
by randomly setting each of its elements to either 1.0 or
j1.0. The result was an image centered within one of the
orthants of the space spanned by the basis features. This
vector represented prototype A. The vector representing
the second prototype, prototype B, was simply the
negative of the vector representing prototype A (2B =
j2A). To obtain images of the prototypes, these vectors
were multiplied by the matrix representing the 20 basis
features and a constant image was added, consisting of the
mean luminance plus an arbitrary image constructed in the
null space of the basis set (the addition of this arbitrary
image prevented the prototypes from appearing simply as
contrast-reversed versions of the same image). Finally, the
prototypes were upsampled to yield 256 � 256 pixel
images. We created only one set of prototypes and all
subjects saw the same set (Figure 4).
Test stimuli were created according to the generative

model described in Equation 3. On each trial, one of the
two prototypes (A or B) was selected at random and
combined with a noise mask )(t). The noise masks, like
the prototypes, were generated as a linear combination of
the basis features. However, for the noise masks, the
linear coefficients were sampled from a multivariate
Gaussian distribution )(t)ÈN(0, A2I). Values that deviated
more than 2A from the mean were resampled. The RMS
contrast of the signal and the noise mask were held
constant at 5.0% and 7.5%, respectively.

Procedure

Each trial began with the presentation of a fixation
square, which appeared for 300 ms. This was followed by

a test stimulus, which was also presented for 300 ms. Both
the fixation square and the test stimulus were centered on
the screen. One hundred fifty milliseconds after the test
stimulus had disappeared, the two prototypes were faded
in, laterally displaced 8- (256 pixels) from the center of
the screen. Subjects were instructed to decide which of the
two prototypes had appeared in the test stimulus and
responded by pressing the key corresponding to the
selected prototype. Subjects received immediate auditory
feedback after every trial indicating the correctness of
their response. In addition, after every 15 trials, a printed
message appeared on the screen indicating their (percent
correct) performance on the previous 15 trials. Each
subject performed 12 sessions of 300 trials each over
3 days, and the subject’s response, the signal identity,
and the noise mask were saved on each trial to allow
calculation of the subject’s classification image.

Results

Figures 5 and 6 and Table 1 summarize the results of
this experiment. We wanted to determine the following:

1. Can subjects learn to discriminate texture stimuli
generated in our basis space?

2. How well do improvements in discrimination
performance correlate with the optimality of an
observer’s classification image?

3. How efficient is our method? That is, how many
trials are required to estimate a subject’s classifica-
tion image?

To determine whether our observers learned in this task,
we correlated their sensitivity dVin each session with the
total number of trials completed at the end of that session.
The results of this correlation across the 12 sessions are

shown in Table 1. Three of the four subjects showed
significant improvement between the first and second
halves of training, indicating that subjects could indeed
learn to discriminate stimuli in our basis space. We
calculated classification images for each session using
logistic regression (see Equations 4–11).
Figure 5 shows classification images obtained over the

first and last quarter of trials for each of the three subjects
who showed learning. There are clear changes to the

Figure 4. The prototypes used in Experiments 1 and 2 presented in the same format as the example stimuli in Figure 1. From left to right:
prototype A (k + B2A), prototype B (k + B2B), the constant image (k), and the difference image (B[2A j 2B] = 2B2A).
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images as a result of learning. To quantify these changes,
we calculated the normalized-cross-correlation (wobs

T wideal/
ªªwobsªª ªªwidealªª) between the subject’s classification
image wobs and that of the ideal observer wideal across
time. Normalized-cross-correlation is often used to represent
the degree of “fit” between two templates (e.g., Gold et al.,
2004; Murray, 2002). The “fit” in this case is indicative of
the optimality of the template used by a particular subject,
and we thus refer to the square of the normalized cross-
correlation as the subject’s template efficiency (Figure 6,
dashed curve). We also calculated subjects’ discrimination
efficiencies [dVobs/dVideal]2 (Geisler, 2003) for each session to
compare the performances of subjects to that of the ideal
observer. Finally, we correlated each subject’s discrimina-

tion and template efficiencies across sessions to measure
how improvements in discrimination performance correlate
with improvements in the optimality of the subject’s
classification image. The resulting correlation coefficients
and significance statistics appear at the top of the plots in
Figure 6. The correlations are quite strong, indicating that
increases in subjects’ discrimination efficiencies are well
explained by the observed improvement in their templates.
This finding corroborates a qualitatively similar finding by
Gold et al. (2004).
Overall, the results of Experiment 1 demonstrate that

our method for obtaining and calculating classification
images represents a successful improvement over existing
methods for studying perceptual learning. Our use of
arbitrary basis features did not preclude learning. Limiting
the number of features, however, allowed us to calculate
subjects’ classification images over short time scales
(G300 trials) and thus to track changes in subjects’
templates throughout the course of learning. Additionally,
the results suggest that most of the variance in subjects’
discrimination performances (i.e., 66% to 81%)5 can be
accounted for by improvements in their classification
images, so that changes in subjects’ discrimination
strategies over time can largely be characterized by
calculating their classification images. Together, these

Figure 5. Classification images for each of the three subjects who showed learning in Experiment 1. The first column wobs1 displays the
subjects’ classification images calculated over the first three sessions; the second column wobs2 displays the classification images
calculated over their final three sessions; and the third column wideal displays the optimal template.

Subject r (df ) p

WHS r (10) = 0.7657 G0.005
RAW r (10) = 0.8518 G0.001
BVR r (10) = 0.8126 G0.005
SKL r (10) = 0.3745 90.05

Table 1. Correlation between sensitivity and trial number for
individual subjects.
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characteristics indicate that our method is suitable for
determining how observers change their discrimination
strategies as a perceptual task is modified.

Experiment 2

Experiment 2 was designed to determine whether
observers modify their templates in a manner consistent
with optimal feature combination (i.e., in a manner
analogous to optimal cue combination). We investigated
this question by manipulating the reliabilities of different
features with respect to discrimination judgments like
those made by subjects in Experiment 1. Changes made to
the relative reliabilities of different features result in

corresponding changes to the optimal decision template.
By calculating the classification images used by subjects
across such manipulations, we can determine whether
observers are sensitive to the reliabilities of individual
features and modify their templates accordingly. The idea,
illustrated in Figures 7B and 7C, is to change the optimal
template across two phases of the experiment by modify-
ing only the variance structure of the noise. If observers
use information about feature variance in performing
discrimination tasks, then we should observe a change in
their classification images between the first and the second
phases of the experiment. After the transition, observers’
templates should move away from that predicted by the
optimal template for the first set of reliable versus
unreliable features, and toward that predicted by the
optimal template for the second set. We expected that
subjects would take feature reliabilities into account when

Figure 6. Individual results for all 4 subjects who participated in Experiment 1. The horizontal axis of each plot indicates the trial number,
while the vertical axis represents both the subject’s discrimination efficiency (solid curve) and template efficiency (dashed curve). The
correlation coefficient for the fit between these two measures and the p-value representing the significance of this correlation is indicated
at the top of each subject’s plot.
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making discriminations, resulting in classification images
that give greater weight to reliable features and lower
weight to unreliable features.

Methods
Subjects

Subjects were four students at the University of
Rochester with normal or corrected-to-normal vision. All
subjects were naive to the purposes of the study.
Stimuli and procedure

The task for observers in this experiment was identical
to the task described in Experiment 1. Observers classified
a briefly presented stimulus as an instance of either
stimulus A or stimulus B. Prototypes A and B were also
identical to those used in Experiment 1, and the stimuli for
each trial were constructed according to the generative
model described in Equation 3, except that the noise
covariance matrix @ was not the identity matrix. Observ-
ers performed 24 sessions of 300 trials each over 6 days.
The procedure for Experiment 2 differed from that of

Experiment 1 in that Experiment 2 consisted of two
phases, each comprising 12 sessions. Before training, 10
of the 20 basis features were selected at random to be
“unreliable” features, so that each subject had a unique set
of reliable and unreliable features. We controlled the
reliability of an individual feature bi by manipulating its
variance Ai

2 in the noise covariance matrix @. Equation 10
establishes the relationship between the noise covariance
and the optimal template. Exploiting the facts that @ is a

diagonal matrix and that 2B = j2A, we can express the
individual elements of w as

wi ¼
22A i

A2
i

; ð12Þ

where Ai
2 represents the ith diagonal element of @. Note

that this is similar to the result obtained for optimal weighting
of independent cues in the literature on cue combination
(e.g., Landy, Maloney, Johnston, & Young, 1995; Yuille &
Bülthoff, 1996). The difference here is that instead of
simply weighting each feature in proportion to its reliability
(i.e., inverse variance), there is an added dependency on the
class means, such that observers must weight each feature
in proportion to its mean-difference-weighted reliability. In
the current study, we removed this dependency by choosing
the elements in 2A such that their magnitudes are all equal
(i.e.,ª2Ai

ª=ª2Aj
ªOi, j e m) so that the weights composing

the optimal template are indeed inversely proportional to
the variances of their associated features.6 Figure 7
illustrates this dependency for a simple stimulus space
consisting of two feature dimensions x1 and x2.
In the first half of training (sessions 1–12), the variance

of the noise added to the unreliable features was greater
than the variance of the noise added to the reliable features
(i.e., Aunreliable = 5 while Areliable = 1). In the second half of
the experiment, the roles of these two sets of features were
swapped such that the reliable features were made
unreliable and the unreliable features were made reliable.
Importantly, the set of reliable and unreliable features

Figure 7. A schematic illustration of the effect of variance structure on the optimal template (red arrows) for a two-dimensional stimulus
space. Dashed lines represent contours of equal likelihood (P(x1, x2ªCi) = k) for category A (red) and category B (green). The solid red
lines and arrows represent the optimal decision surface and its normal vector (i.e., the template for category A), respectively. (Left) Two
prototypes embedded in isotropic noise (@ = I2). (Center) The variance along dimension x2 is greater than that in x1. (Right) The variance
along x1 is greater than that in x2.
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were chosen randomly for each subject so that the pair of
covariance matrices for the first (@1) and second (@2)
halves of the experiment were unique to a subject.

Results

We wanted to determine whether subjects adjusted their
discrimination strategies in a manner consistent with
optimal feature combination when the variance of indi-
vidual features was modified. As in Experiment 1, we
calculated classification images for each of our subjects
and quantified the fit between these images and the
templates used by an ideal observer using normalized-

cross-correlation. In contrast to Experiment 1, however,
each subject made discriminations under two different
generative models using covariance matrices @1 and @2,
respectively. Thus, we defined two optimal templates for
each subject; one for the generative model used in
sessions 1–12 (wideal1, appropriate for @1) and one for
the generative models used in sessions 13–24 (wideal2,
appropriate for @2). Figure 8 plots the normalized-cross-
correlation between the calculated classification image
wobs and the templates wideal1 (solid lines) and wideal2

(dashed lines) for each of the four subjects as a function of
the number of trials. Figure 9 displays the visible change
in the classification images used by subjects between the
first and second halves of the experiment.
These plots demonstrate that subjects modified their

decision templates in accordance with our predictions,
employing templates that fit more closely with w1 when
the noise covariance structure was defined by @1 and
modifying their templates to more closely match w2

during the second half of the experiment, when the
covariance structure was defined by @2. To quantify these
results, we compared the average difference between the
template fits wfit2 j wfit1 (where wfiti represents the
normalized-cross-correlation between template wi and a

Figure 8. Normalized cross-correlation for each of the four subjects in Experiment 2. The plots depict the fits between each subject’s
classification image (wobs) and the optimal templates for the covariance structure of the noise used in the first (solid lines) and second
(dashed lines) halves of the experiment. The change in covariance structure occurred at trial 3601.

Subject t(df) p

DLG t(5) = j5.7661 G0.005
JDG t(5) = j3.3911 G0.05
MSB t(5) = j13.3369 G0.0001
MKW t(5) = j27.4861 G0.00001

Table 2. Significance statistics for results displayed in Figure 10.
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subject’s classification image) across the first and second
halves of the experiment using a t-test. These differences
are plotted in Figure 10 and the corresponding signifi-
cance statistics displayed in Table 2.
In summary, using the methods introduced in Experi-

ment 1 for obtaining and calculating classification images,
Experiment 2 examined whether human observers exploit
information about the reliabilities of individual features
when performing an image-based perceptual discrimina-
tion task. We manipulated the reliabilities of our features
by changing the covariance structure over time. Our results
show that subjects change their classification images to
track changes in the optimal template, suggesting that they
indeed use information about the reliabilities of individual
features, giving greater weight to more reliable features in a
manner analogous to optimal cue combination.

Discussion

Researchers have repeatedly demonstrated that, with
practice, observers can learn to significantly improve their
performance in many perceptual discrimination tasks. The

Figure 9. Classification images for each of the four subjects in Experiment 2. The first column displays the optimal template wideal1

calculated for the feature covariance @1 used in the first half of the experiment; the second column wobs1 displays the subjects’
classification images calculated over the first 12 sessions; the third column wobs2 displays the classification images calculated over their
final 12 sessions; and the final column displays the optimal template wideal2 calculated for the feature covariance @2 used in the second
half of the experiment.

Figure 10. The differences between the template fits (wfit2 j wfit1)
plotted in Figure 8 averaged over the first (open bars) and second
(closed bars) half of trials in Experiment 2.
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nature of this learning, however, is not well understood.
The two experiments described in this paper contribute to
our understanding of perceptual learning by studying how
observers improve their use of stimulus information as a
result of practice with a discrimination task.
First, we introduced a modification of the classification

image technique that through its improved efficiency
allows us to track the changes to observers’ templates as
the result either of learning or of experimental manipu-
lations. We investigated whether observers use information
in a manner consistent with optimal feature combination
(i.e., in a manner analogous to optimal cue combination).
In both Experiments, subjects viewed and classified stimuli
consisting of noise-corrupted images. The stimuli used in
each experiment were generated within a 20-dimensional
feature space whose noise covariance structure varied across
conditions. In Experiment 1, subjects were trained to
discriminate between two stimuli corrupted with white
Gaussian feature noise and their classifications were
calculated over time. Examination of their classification
images reveals that, with practice, their decision templates
approached that of the ideal observer. Moreover, this
improvement in their classification images correlated highly
with their increase in performance efficiency, accounting for
between 65% and 80% of the variance in their performance.
Consistent with the findings of Gold et al. (2004), these
results suggest that the learning demonstrated in these
perceptual discrimination tasks consists primarily of
observers improving their discriminant functions to more
closely match the optimal discriminant function.
But what does it mean to say that improvements in

perceptual discrimination tasks result primarily from the
learning of optimal discriminant functions? Discriminant
functions encode information about several distinct aspects
of the stimuli to be discriminated. The first of these is the
prior probability over stimulus categories. If one type of
signal is more likely than another, then an optimal observer
judging the category membership of an ambiguous stimulus
should assign a higher probability to the more likely
category. The second of these is the mean signals in each
categoryVthe category prototypes. The importance of this
aspect of the stimuli for the discriminant function is obvious.
Deciding which of two noise-masked signals was presented
is quite difficult if the observer cannot identify the signals in
the absence of a noise mask. In white noise, the optimal
discriminant surface between two signal categories is
perpendicular to the vector describing the difference
between the category prototypes. Most studies using
classification image techniques, by using white noise masks
and flat category priors exclusively, have primarily exam-
ined this aspect of perceptual discriminant functionsVask-
ing how well observers represent signal prototypes in
making perceptual discriminations. The third aspect of the
task encoded in discriminant functions is the structure of the
variance or noise in the features that define the stimuli. As
demonstrated in Equation 10 and in Figure 7, changes made
to the feature covariances can dramatically alter the optimal

template for a discrimination task. No previous work with
classification images had (to our knowledge) explored how
observers use information about noise structure. Thus, in
Experiment 2, we applied a framework previously used in
cue integration studies to determine how observers use
information about class-conditional variance across fea-
tures in a perceptual discrimination task. We were
particularly interested in determining whether observers
can integrate optimally across noisy features in a manner
consistent with optimal cue combination. Thus, emulating a
procedure used in many cue integration experiments, we
manipulated the reliabilities of different features by
increasing the variance in a subset of the features to make
these features unreliable. As described above, this manip-
ulation altered the optimal template for the resulting
discrimination tasks. In both Experiments 1 and 2, subjects’
classification images, with practice, approached the optimal
template, demonstrating that human observers are sensitive
to the variances of individual featuresVeven when these
features are chosen arbitrarilyVand that they use informa-
tion about these variances in making perceptual judgments.
In addition, that subjects in Experiment 2 changed their
templates in response to changes in the reliabilities of
features, giving greater weight to reliable features and less
weight to unreliable features, suggests that observers use
this information in a manner consistent with optimal cue
combination.
In summary, our results suggest that learning in image-

based perceptual discrimination tasks consists primarily of
changes that drive the discriminant function used by
human observers nearer to that used by the ideal observer.
Moreover, in learning these discriminant functions,
observers seem to be sensitive to the individual reliabil-
ities of arbitrary features, suggesting that optimal cue
integration in vision is not restricted to the combination of
estimates from a set of canonical visual modules (e.g.,
texture and disparity-based estimators for slant) in making
surface-based discriminations but is instead a more
general property of visual perception that generalizes to
simple image-based discrimination tasks. Although the
current study only investigated feature integration in a
single texture discrimination task, we believe that this task
is representative of many other simple discrimination
tasks. However, future research is needed determine
whether our results generalize to similar training in other
tasks (e.g., Vernier discrimination, motion direction
discrimination, orientation discrimination).
Finally, note that the current paper uses a normative

approach to modeling what observers learn through
practice with a perceptual discrimination task. This
approach focuses on the structure of the task that an
observer must solve, on the relevant information available
to the observer, and on the fundamental limits that these
factors place on the observer’s performance. In contrast to
process-level models of perceptual learning (e.g., Bejjanki,
Ma, Beck, & Pouget, 2007; Lu & Dosher, 1999; Otto,
Herzog, Fahle, & Zhaoping, 2006; Petrov, Dosher, &
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Lu, 2005; Teich&Qian, 2003; Zhaoping, Herzog, &Dayan,
2003) the normative approach used here is largely agnostic
with respect to either physiological or algorithmic imple-
mentation details (Marr, 1982). Our results demonstrate
that people can learn to use information about the
covariance structure of a set of arbitrary low-level visual
features. We leave the question of how this learning is
implemented in the brain as a problem for future work.
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Footnotes

1
Several researchers (e.g., Olman & Kersten, 2004; Li,

Levi, & Klein, 2004) have previously introduced lower-
dimensional methods for calculating classification images
(or classification objects). Note however that the
approaches used in these papers differ from the approach
used in the current paper in that they obtain this reduction
in dimensionality by assuming that observers have direct
access to geometric scene configurations rather than to the
photometric input (e.g., pixel intensities) that subjects
actually observe. In Li et al. (2004), the authors implicitly
assume that observers have direct access to an array
whose entries represent the positions of the elements
making up a Vernier stimulus and that they make
decisions based on this vector of positions rather than on
the pattern of luminances within the image. Similarly,
Olman and Kersten (2004) assume that observers have
direct access to variables describing the geometry of the
scene (e.g., foot spread, tail length, tail angle, neck
length). In these two studies, the stimuli are defined
directly in terms of scene variablesVthough subjects in
fact observe these variables through imagesVand the
resulting classification images are linear in the geomet-
rical object space, but not in image space. These
approaches may be more useful than image-based
approaches for investigating how observers make discrim-
inations in tasks involving representations of three-dimen-
sional scenes (as in Olman & Kersten, 2004) when
researchers have an adequate understanding of the internal
representations used by observers.

2
Simoncelli, Paninski, Pillow, and Schwartz (2004)

provide an extended discussion regarding the importance
of stimulus selection in the white noise characterization of
a signal processing system. Though they are concerned in
particular with characterizing the response properties of
neurons, their points apply equally well to the challenges
involved in characterizing the responses of human observ-
ers in a binary discrimination task. Olman and Kersten
(2004) provide a related discussion that proposes extending
noise characterization techniques to deal with more abstract
(i.e., non-photometric) stimulus representations.

3
The constant k is used to represent any constant

component of the image. In fact, because luminance
values cannot be negative, traditional approaches to
classification images implicitly include a k in the form
of a mean luminance image (e.g., a vector of identical
positive pixel luminance values).

4
Contrast sensitivity functions were not measured

directly for each subject. Instead, for the sake of
expediency, we used the model of human contrast
sensitivity proposed by Mannos and Sakrison (1974),
which describes the sensitivity of a human observer,
generically, as A(f) = 2.6(0.0192 + 0.114f)ej(0.114f)1.1.

5
These estimates of explained variance are obtained

using the correlation between the normalized cross
correlations (wobs

T wideal/ªªwobsªªªªwidealªª) and the sensi-
tivity ratio [dVobs/dVideal]2. Unlike in Figure 6, these values
were not squared. Squaring the sensitivity measure is
necessary for an information-theoretic interpretation of
efficiency, but removes information about some of the
correlation between observers’ template fits and sensitiv-
ities (e.g., classification images that point in the wrong
direction yield sensitivities below zero). The r2 values
resulting from this correlation are: 0.80 (BVR), 0.76
(RAW), 0.66 (WHS), and 0.81 (SKL).

6
In general, if the stimuli are not chosen arbitrarily,

ª2Ai
ªmª2Aj

ª. Note, however, that since 2B = j2A, such a
centering can be easily accomplished by appropriately
scaling the stimulus space.
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