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Although real-world environments are often
multisensory, visual scientists typically study visual
learning in unisensory environments containing visual
signals only. Here, we use deep or artificial neural
networks to address the question, Can multisensory
training aid visual learning? We examine a network’s
internal representations of objects based on visual
signals in two conditions: (a) when the network is
initially trained with both visual and haptic signals, and
(b) when it is initially trained with visual signals only. Our
results demonstrate that a network trained in a visual-
haptic environment (in which visual, but not haptic,
signals are orientation-dependent) tends to learn visual
representations containing useful abstractions, such as
the categorical structure of objects, and also learns
representations that are less sensitive to imaging
parameters, such as viewpoint or orientation, that are
irrelevant for object recognition or classification tasks.
We conclude that researchers studying perceptual
learning in vision-only contexts may be overestimating
the difficulties associated with important perceptual
learning problems. Although multisensory perception
has its own challenges, perceptual learning can become
easier when it is considered in a multisensory setting.

Introduction

Real-world environments are multisensory—they
provide observers with visual, auditory, haptic (active
touch), olfactory, and other signals conveying infor-
mation about their underlying structures. Despite this,
visual scientists typically study visual learning in
environments that do not include signals from other
modalities. Although this approach may simplify the
study of some aspects of visual learning, it ignores
other aspects that are likely to be essential to a
comprehensive understanding. Indeed, more than 300
years ago, Bishop George Berkeley (1709/1910) spec-

ulated that infants acquire aspects of visual perception
by correlating visual sensations with sensations arising
from motor movements. A famous quote from
Berkeley’s book is ‘‘touch educates vision.’’ More
recently, Piaget (1952) used similar ideas to explain
how children learn to interpret and attach meaning to
retinal images based on their motor interactions with
physical objects.

In this paper, we use a neural network known as a b
variational autoencoder (b-VAE) to address the ques-
tion, Can multisensory training aid visual learning? An
advantage of b-VAEs is that it is easy to adjust their
information capacities, meaning that the internal
representations they acquire can be weakly, moderate-
ly, or strongly constrained. We use b-VAEs to study the
internal representations that a learning system pos-
sesses when it is exposed to visual signals regarding the
shapes of objects. These representations are studied in
two conditions: (a) when the network is initially trained
with both visual and haptic signals, and (b) when it is
initially trained with visual signals only.

We find that visual-haptic training can lead to more
abstract object representations that include, for example,
information regarding the categorical structure of objects.
Visual-haptic training can also lead to representations
that are more viewpoint insensitive. We conclude that
researchers studying perceptual learning in vision-only
contexts may be overestimating the difficulties associated
with important perceptual learning problems. Although
multisensory perception has its own challenges, percep-
tual learning can become easier when it is considered in a
multisensory setting (Shams & Seitz, 2008).

Background

It is only recently that vision scientists have begun to
experimentally evaluate the idea that ‘‘touch educates
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vision.’’ Held et al. (2011) tested treatable, congenitally
blind individuals. After sight restoration, it was found
that these individuals were unable to visually match an
object to a haptically sensed sample, though this ability
developed within days suggesting that visual-haptic
matching requires visual-haptic experience. Other
researchers have studied the affects of visual-haptic
experience on visual perception when vision and
haptics are discrepant or when visual information is
highly ambiguous. Ernst, Banks, and Bülthoff (2000)
and Atkins, Fiser, and Jacobs (2001) found that
subjects’ estimates of visual depth relied more heavily
on a visual cue (e.g., texture) when the cue was
congruent with a haptic signal versus when it was
incongruent with this signal. Atkins, Jacobs, and Knill
(2003) reported that subjects recalibrate their interpre-
tations of a visual stereo cue so that depth-from-stereo
percepts are in greater agreement with depth-from-
haptic percepts when visual and haptic signals are
discrepant. Adams, Graf, and Ernst (2004) and Adams,
Kerrigan, and Graf (2010) showed that visual-haptic
experience can modify the visual system’s ‘‘light-from-
above’’ assumption used when observing images in
which shading information to depth is ambiguous.
Within the literature on artificial intelligence, there are
relatively few articles studying how touch can educate
vision. An exception is the work of Pinto, Gandhi,
Han, Park, and Gupta (2016) showing that physical
interactions (e.g., grasping, pushing, poking) can aid
the acquisition of meaningful visual representations in
a robot system.1

To date, the scientific literature on the affects of
visual-haptic experience on visual learning is limited.2

As indicated in the previous paragraph, experimental
studies reported in this literature have focused on depth
perception. Moreover, the literature lacks broad
theoretical studies of what might be achieved by a
learning system trained in a visual-haptic environment.
The current paper aims to address this gap.

It does so through a set of computational investi-
gations using artificial neural networks. Over the past
several decades, researchers in the fields of cognitive
science and neuroscience have used neural networks to
provide insights into many aspects of human cognition,
including perception, memory, language, reasoning,
decision making, and action selection. Despite this
history of success, the reasons as to why they often
provide useful accounts of human perceptual and
cognitive processing are poorly understood. For
instance, there are many types of networks—networks
can differ in terms of types of units, patterns of
connectivity, training procedures, and many other
factors—but researchers do not have a good under-
standing as to which types provide better versus worse
accounts of human behavior. Similarly, many artificial
neural networks lack biological detail, resembling

biological neural networks only in seemingly coarse-
scale ways. Despite this, several researchers have
recently argued that these networks provide useful
insights into neural processing, particularly within the
visual system (Kriegeskorte, 2015; Wenliang & Seitz,
2018; Yamins & DiCarlo, 2016). Readers interested in
the relationships between artificial and biological
neural networks may see Churchland and Sejnowski
(2017), Kriegeskorte and Golan (2019), Marblestone,
Wayne, and Kording (2016), and Yamins and DiCarlo
(2016).

The neural network models used in the research
reported here have at least two properties that make
them relevant to human perception. First, visual
features in the models were extracted using a network
with alternating layers of convolutional and pooling
units (followed by fully connected layers) whose
processing is reminiscent of processing in visual cortical
areas. Previous researchers have found that processing
in networks using convolution and pooling resembles
biological visual processing in intriguing ways (Krie-
geskorte, 2015; Wenliang & Seitz, 2018; Yamins &
DiCarlo, 2016). Second, the models make explicit use
of efficient data compression to learn compact repre-
sentations of perceptual data items. Within the vision
sciences, analyses of behavioral and neural responses
from the perspective of coding efficiency have yielded
important insights into perceptual processing (Barlow,
1961; Simoncelli & Olshausen, 2001; Sims, 2018).

In particular, our models make use of variational
autoencoders (VAEs), neural networks that learn
efficient data representations in an unsupervised
manner (Kingma & Welling, 2014; Rezende, Mo-
hamed, & Wierstra, 2014). b-VAEs are nonlinear
models that are effective at learning latent (or hidden)
variables underlying observed data. Relative to other
nonlinear models that learn latent variables, an
advantage of b-VAEs is that it is easy to adjust their
information capacities, meaning that the latent repre-
sentations they acquire can be weakly, moderately, or
strongly constrained.

A VAE consists of two parts, an encoder that learns
to map an input pattern to a compressed hidden or
latent representation, and a decoder that learns to map
the latent representation to an output pattern that
approximates the input pattern. To achieve close
approximations for novel test patterns, VAEs must
acquire latent representations that contain information
about the statistical regularities of the training patterns.

During training, VAEs adjust their parameter values
to minimize the following objective function:

Lðh;/; x; zÞ ¼ Eq/ðzjxÞ½log phðxjzÞ�
�bDKLðq/ðzjxÞ k pðzÞÞ ð1Þ

where / and h denote the parameters of the encoder
and decoder, respectively, x is a vector of input feature
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values, and z is a vector of latent feature values. The
right side of this equation has two terms. The first term
is the expected log probability of input x given latent
representation z. It is often referred to as the
reconstruction error. If, for example, each input feature
has a normal distribution (given z), then this term is the
sum of squared error between the true input feature
values and their estimated or reconstructed values. The
second term is the Kullback-Leibler (KL) distance
between the posterior distribution of latent represen-
tation z (after observing x), denoted q/(zjx), and its
prior distribution, denoted p(z). This term acts as a
regularizer. It ameliorates potential overfitting (e.g.,
rote memorization of training data including the noise
in these data), constraining the latent representation
acquired during training by biasing the posterior
distribution of this representation toward its prior
distribution.

For VAEs, the coefficient b is set to one. b-VAEs are
a variant of VAEs in which b can be set to any
nonnegative value (Higgins et al., 2016). Consequently,
a researcher can control the extent to which a b-VAE’s
acquired latent representation is regularized or con-
strained through the choice of b. Interestingly, both
VAEs and b-VAEs can be characterized using rate-
distortion theory (Alemi et al., 2018; Burgess et al.,
2018), a branch of information theory that seeks to
understand lossy compression in communication
channels by quantifying relationships between rate (or
information capacity) and distortion (or reconstruction
error). Rate-distortion theory has been shown to
provide good accounts of aspects of human visual
perception (Bates, Lerch, Sims, & Jacobs, 2019; Sims,
2016; Sims, Jacobs, & Knill, 2012).

The connection between b-VAEs and rate-distortion
theory plays a pivotal role in the results discussed
below. Intuitively, when b is set to a large value, a b-
VAE is highly constrained, thereby resembling a
communication channel with low rate or capacity.
Critically, the optimal outputs of a low-rate channel are
typically summaries or abstractions of its inputs. This
occurs because the channel has a low rate, and thus it
cannot reconstruct all the fine-scale details of its inputs.
The best it can do is to reconstruct its inputs’ abstract
or coarse-scale features.

Consider, for example, a scenario in which each
input belongs to either category A or B. When receiving
an input from category A, the optimal output of a low-
rate channel will resemble the prototype for category A,
and when receiving an input from B, the output will
resemble B’s prototype. That is, the optimal channel’s
outputs will reflect the categorical structure of its
inputs. As demonstrated below, b-VAEs have a similar
property. When sufficiently constrained (i.e., when b is
set to a large value), b-VAEs learn the abstract or
categorical structures of their training data.

Visual and haptic feature values

In our simulations, the visual and haptic feature
values were derived from the See-and-Grasp data set.3

This data set is based on novel objects known as
Fribbles (Barry, Griffith, De Rossi, & Hermans, 2014;
Hayward & Williams, 2000; Tarr, 2003; Williams,
1997). Fribbles are 3D, multipart, naturalistic objects
with a categorical structure. The See-and-Grasp data
set contains 891 Fribbles organized into three Fribble
families, with four species in two of the families and
three species in the remaining family, and 81 Fribbles in
each species. Each Fribble contains a part known as its
main body. Fribbles in the same family have a common
main body. In addition to a main body, each Fribble
has four slots, and one of three possible parts is
attached at each slot. Fribbles in the same species use
the same set of possible parts (four slots with three
possible parts per slot ¼ 81 Fribbles per species).

Columns 1–2, 3–4, and 5–6 of Figure 1 show sample
images of Fribbles from the first, second, and third
families, respectively, and from original and left-right
flipped viewpoints or orientations. All objects were
visually rendered from a 3/4-view so that object parts
are visible and object shapes are easily perceived.

Each image consisted of 400 3 400 pixel values. The
visual feature values for an image were generated in
three steps. First, an image was resized and used as an
input to a VGG deep neural network (Simonyan &
Zisserman, 2015; we used the version of VGG-16
available in the Keras neural network library [Chollet,
2017]). The activation values of the hidden units at the
last layer of this network’s convolutional base were
extracted. The output shape at this layer is 7 3 73 512
meaning that there were 25,008 activation values per
image. We used VGG because it shows good perfor-
mance, having secured the first and second places in the
2014 ImageNet Challenge localization and classifica-
tion tracks. In addition, its representations capture
important aspects of people’s image similarity ratings,
often better than alternative deep neural networks
(Peterson, Abbott, & Griffiths, 2018).

Next, we performed principal component analysis
(PCA) on the VGG activation values for the entire set
of images, and projected these values onto the 200
components on which the activation values showed the
highest variance. These 200 components accounted for
more than 97% of the variance in the activation data.
Consequently, each image was represented by 200
visual feature values. Finally, each feature was nor-
malized so that its values had a mean of zero and a
variance of one.

To represent Fribbles in the haptic domain, the See-
and-Grasp data set used the GraspIt! grasp simulator
developed in the robotics community (Miller & Allen,
2004). GraspIt! contains a simulator of a human hand.
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When calculating the haptic features of a Fribble, the
input to GraspIt! was the 3D shape model for the
Fribble. Its output was a set of 16 joint angles of the
fingers of the simulated human hand obtained when the
hand ‘‘grasped’’ the object (the joint angles characterize
the shape of the hand as the hand is grasping a
Fribble). Grasps—or closings of the fingers around an
object—were performed using GraspIt!’s AutoGrasp
function. Figure 2 shows the simulated hand grasping
an object at three orientations. In the See-and-Grasp
data set, each object was grasped 24 times, each time
from a different orientation (different orientations were
generated by rotating an object eight times [each time
by 458] around the width, length, and depth axes). The
use of multiple grasps can be regarded as an
approximation to active haptic exploration. Conse-

quently, a Fribble was haptically represented by a
vector with 384 elements (16 joint angles per grasp3 24
grasps).

In our simulations, we performed PCA on the haptic
vectors for the entire set of Fribbles, and projected the
vector elements onto the 200 components on which the
haptic data showed the highest variance. These 200
components accounted for more than 99% of the
variance in the haptic data. Consequently, each Fribble
was represented by 200 haptic feature values. Each
feature was then normalized so that its values had a
mean of zero and a variance of one.

The data set used here has several advantages and
disadvantages. Our primary reason for using it is that it
includes both visual and haptic features for naturalistic
objects with naturalistic organizations. One such

Figure 1. Columns 1–2, 3–4, and 5–6 show images (at original and flipped orientations) of Fribbles from the first, second, and third

families, respectively.

Figure 2. GraspIt! simulates a human hand. Here the hand is grasping an object at three different orientations. Reprinted from

Erdogan, Yildirim, and Jacobs (2015).
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organization is the objects’ categorical structure:
objects are exemplars from categories. Another orga-
nization is that objects are part-based where objects
share a discrete set of easily identifiable parts. As
discussed below, our simulation results evaluate the
‘‘goodness’’ of models’ acquired object representations
based on how well these representations reflect objects’
categorical and part-based organizations. To our
knowledge, this is the only publicly available data set
with these desirable properties.

Of course, the data set has disadvantages too. First,
because there are 891 objects and each object was
visually rendered from two orientations, the data set
has 1,782 data items. That is, the data set is small,
especially by the standards of artificial intelligence
researchers who often use data sets with millions of
items. Second, although objects are naturalistic, they
are not natural. For example, the results reported here
were obtained with objects with discrete parts. Differ-
ent results might be found with other types of objects
such as ‘‘blobby’’ amoeboids. Third, data items reflect
an admittedly extreme situation. We aim to evaluate
the usefulness of multisensory training for visual
learning in the most favorable conditions because if
multisensory training is not beneficial in these condi-
tions, then it will not be beneficial in other conditions.
Consequently, data items come from a situation in
which visual signals are relatively impoverished,
whereas haptic signals are rich. In particular, the visual
feature values for a data item come from a single static
image, and thus are orientation-dependent. The haptic
feature values, in contrast, come from multiple grasps
at multiple orientations, and thus are orientation-
independent. This situation arises when a person looks
at an object and grasps the object multiple times from
multiple orientations. Although biased, this is a natural
situation, experienced by many people on many
occasions. Nonetheless, different results would be
found with other types of situations. Future work will
need to investigate other situations.

Simulation Details

We simulated two b-VAE models, referred to as
Model V-H (top row of Figure 3) and Model V (bottom
row).4 Model V-H was trained with both visual and
haptic feature values, whereas Model V was trained
with visual feature values only. At first glance, it may
seem intuitive that Model V-H should outperform
Model V—after all, it is trained with more sensory
information. However, this is not a foregone conclu-
sion. First, Model V-H is trained with both visual and
haptic features but, as discussed below, it is tested with
visual features only. It may be that the difference

between training and test conditions leads to poor
performance by Model V-H during test. In addition,
there is an interaction between a model’s information
capacity and its performance. As demonstrated below,
Model V-H can take advantage of its extra sensory
information, but the advantages of multisensory
training are often greatest when the model’s capacity is
constrained.

Models were implemented using the Keras software
package (Chollet, 2017).5 Simulations used b values of
0.01, 1.0, 2.5, 5.0, 10.0, and 20.0. Hidden units of a
model used the hyperbolic tangent (tanh) activation
function. Units comprising the latent representation
and the output units used a linear activation function.
The prior distribution of the latent representation was a
unit normal distribution (mean equals the zero vector;
covariance equals the identity matrix).

Figure 3. Models V-H (top) and V (bottom). Unfilled circles are

individual neural units, sequences of three filled circles are

ellipses indicating that some units are omitted from an

illustration, and arrows denote a full set of connections

between units.

Journal of Vision (2019) 19(11):1, 1–12 Jacobs & Xu 5

Downloaded from jov.arvojournals.org on 09/04/2019



Training lasted 2,000 epochs. During training,
optimization of the weight values was performed using
stochastic gradient descent (batch size¼ 64 data items;
learning rate ¼ 0.01). Training and testing were
conducted using 10-fold cross-validation (Hastie, Tib-
shirani, & Friedman, 2009). That is, the set of 1,782
data items was randomly divided into 10 subsets (with
the constraint that each subset contained roughly the
same number of Fribbles from each species). On each
fold, nine subsets were used for training and the
remaining subset was used for testing. This was
repeated for 10 folds such that each subset was used
exactly once for testing.

Simulation results

Visualizations of latent representations

To gain insight into the latent representations of
data items acquired during training, we visualized (the
mean values of) these representations in two dimen-
sions using t-distributed stochastic neighbor embedding
(t-SNE), a nonlinear dimensionality-reduction tech-
nique that is often useful for visualizing high-dimen-
sional data (van der Maaten & Hinton, 2008).6 We used
the latent representations obtained on the training data
items. However, haptic feature values of items were set
to zero for Model V-H. In other words, we visualized
the latent representations based solely on visual feature
values for both Model V-H and Model V.

The results for the first fold are shown in Figure 4.
The top and bottom portions show the results for
Models V-H and V, respectively. In the top row of each
portion, data items are colored based on the Fribble
family of each item (thus, there are three colors). The
six plots in a row show the results corresponding to the
six values of b (in increasing order from b¼ 0.01 on the
left to b ¼ 20.0 on the right).

The results are revealing. Consider, for example, the
top row for Model V-H. The plots in this row clearly
show that, as the model was more constrained (i.e.,
moving in the row from left to right), the model learned
that there are 11 species of Fribbles (as indicated by the
11 clusters in the top right plot). In other words, the
model learned about the categorical structure of the
Fribbles. Impressively, it learned about this categorical
structure despite the fact that it was never explicitly
given training information regarding this structure. In
contrast, Model V learned about the cross-product of
Fribbles species membership and visual orientation,
but only when the model was relatively unconstrained
(see top left plot in bottom portion of Figure 4 that has
22 clusters [11 species 3 2 orientations]). Relative to
Model V, it seems as if Model V-H learned about

species membership in an orientation-insensitive man-
ner, though only when the model was constrained.

The hypothesis that Model V-H learned an orienta-
tion-insensitive latent representation is strengthened
when one considers the bottom rows of each portion of
the figure. In these rows, items are colored based on the
visual orientation of each item (thus, there are two
colors). Consider, for example, the right-most plot of
the bottom row for Model V-H. Clusters in this plot for
the two visual orientations show extensive overlap
suggesting that Model V-H learned similar latent
representations for Fribbles regardless of whether
Fribbles were visually rendered from original or flipped
orientations. This occurred when the model was
relatively constrained, but not when it was uncon-
strained. In contrast, Model V never learned an
orientation-insensitive latent representation. The find-
ing that Model V-H learned orientation-insensitive
representations presumably arose because this model
received as input orientation-dependent visual features
that were paired with orientation-independent haptic
features. A more direct test of the orientation sensitivity
of the models is presented below.

Visual and haptic reconstructions

Using the test items in each fold of the cross-
validation procedure, we calculated the sum of squared
error (SSE) of each model’s visual reconstructions
based solely on items’ visual feature values (for Model
V-H, haptic feature values were set to zero). The results
are shown in the left graph of Figure 5. Model V had
smaller errors than Model V-H, especially when it was
relatively unconstrained (i.e., trained with small values
of b), indicating that Model V learned more about the
fine-scale visual structure of items.7 The superior SSE
performance of Model V was expected because Model
V-H was trained to learn item’s visual and haptic
structures, whereas Model V was trained to learn only
the visual structure, and because Model V-H was
trained with haptic feature values but was tested in the
absence of these values.

We also evaluated whether Model V-H could
reconstruct items’ haptic feature values based solely on
their visual feature values. As illustrated in the right
graph of Figure 5, its haptic reconstructions were only
moderately worse than its visual reconstructions. This
is interesting because it has been hypothesized that
people are able to make cross-modal sensory predic-
tions, at least at a coarse level of detail. For example,
Smith and Goodale (2015) showed human subjects
images of objects while subjects were in an fMRI
scanner. They found that they could decode the
categories of viewed objects at above-chance levels
from the voxel activations of subjects’ early regions of
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somatosensory cortex, though it was not possible to
decode the specific objects that were viewed. This result
suggests that subjects used objects’ visual feature values
to predict their tactile or haptic feature values, and that
these predicted haptic feature values were sufficient to
estimate objects’ categories.

Classifications of objects’ structures

To further understand models’ learning perfor-
mances, we examined how well their mean latent

representations could predict different aspects of
Fribbles’ underlying structures. Four classification
tasks were considered:

� Classify the family of the Fribble associated with
each data item. There are three Fribble families.
� Classify the species of the Fribble associated with
each data item. There are 11 Fribble species.
� Classify the identity of the Fribble associated with
each data item. There are 891 different Fribbles.
� Classify the parts comprising the Fribble associat-
ed with each data item. Ignoring a Fribbles main

Figure 4. t-SNE visualizations of (the mean values of) the latent representations of Models V-H (top rows) and V (bottom rows). Data

were collected during the first fold of the 10-fold cross-validation procedure. Data items were training items that contained visual

feature values only (for Model V-H, haptic feature values were set to zero). The six columns show visualizations when b was set to

0.01, 1.0, 2.5, 5.0, 10.0, and 20.0, respectively. The colors in rows 1 and 3 indicate the Fribble family membership of data items. The

colors in rows 2 and 4 indicate whether the visual image of a data item was in original or flipped orientation.
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body (which defines a Fribble’s family), each
Fribble is composed of four parts. Across all
species, there are 132 possible parts, and thus this
task consisted of 132 binary classification sub-
tasks.8

Tasks were performed using a linear support vector
machine (SVM). To generate inputs for this SVM, we
performed PCA on the set of mean latent representa-
tions of data items, and projected these representations
onto the 40 principal components on which the
representation values had the largest variance. Data
items were visual feature values of test items from the
cross-validation training procedure (as above, haptic
feature values were set to zero for Model V-H so that
Model V-H and Model V performances are based
solely on visual feature values).

Classification performances on the four tasks are
shown in the four graphs of Figure 6. Taken as a whole,
Model V-H clearly outperformed Model V. Model V
often performed best when it was relatively uncon-
strained. It seems that when it was moderately or highly
constrained, it may have learned abstract latent
representations, but the abstractions codified in these
representations did not necessarily correspond to the
underlying organizations of the Fribbles. In contrast,
Model V-H learned abstract latent representations that
better corresponded to Fribbles’ underlying organiza-
tions.

Orientation insensitivity

The visualizations of latent representations discussed
above (Figure 4) suggested that Model V-H, but not

Model V, learned representations that were relatively
insensitive to an object’s orientation in an image. To
more directly address this issue, we did the following.
For each test item, we calculated a model’s latent
representation based solely on the item’s visual feature
values (as above, haptic feature values were set to zero).
Call this the target representation. We also calculated
the latent representations for every other item (re-
gardless of whether the other item was a training item
or a test item). Call these the probe representations.
Next, we correlated the target representation with each
of the probe representations, and found the data items
corresponding to the probes with the five highest
correlations. Call this set the most similar data items.
Lastly, if the most-similar data items included an item
depicting the same object as the test item but with a
different orientation, then the test item was regarded as
being correctly represented.

The results are shown in Figure 7. When b ¼ 2.5,
Model V-H learned latent representations that were
fully orientation insensitive. For other moderate and
large values of b, this model learned latent representa-
tions that were largely orientation insensitive. In
contrast, Model V never learned orientation-insensitive
latent representations.

Discussion

In the field of machine learning, it is typically
thought that a learning system will perform best when
training and test data items have the same statistical
properties. For example, a system that will be tested
with visual images should be trained with visual images.

Figure 5. (Left) Sum of squared errors (SSEs) for visual reconstructions based on visual feature values of test items as a function of the

value of b. Blue and red bars are for Models V-H and V, respectively. Error bars (often too small to see) indicate the standard errors of

the means across the 10 folds of the cross-validation procedure. (Right) SSEs for haptic reconstructions based on visual feature values

of test items for Model V-H. Data for Model V are not shown because this model does not know about haptic feature values.
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Here, we have explored an exception to this rule. We

have found that a system tested with images obtains

important benefits when it is trained in a multisensory

environment containing both visual and haptic sensory

features (Model V-H) relative to when it is trained in a

unisensory environment containing visual features only

(Model V). In particular, our results demonstrate that a

system trained in a visual-haptic environment (in which

visual, but not haptic, signals are orientation-depen-

dent) tends to learn visual representations containing

useful abstractions, such as the categorical structure of

objects, and also learns representations that are less

sensitive to imaging parameters, such as viewpoint or

orientation, that are irrelevant for object recognition or

classification tasks.

Our results are pertinent to both cognitive scientists
with interests in human visual perception and computer
scientists with interests in computer vision. Both sets of
scientists often study perceptual learning in unisensory
environments containing visual features only. Conse-
quently, these scientists may be overestimating the
difficulties associated with important perceptual learn-
ing problems. Although multisensory perception has its
own challenges, our results demonstrate that perceptual
learning can become easier when it is considered in a
multisensory context (Shams & Seitz, 2008).

In this paper, we have been careful not to claim that
Model V-H, the system trained in a multisensory
environment, is strictly better for visual learning than
Model V, the system trained in a unisensory environ-
ment. Indeed, there is an interaction between the

Figure 6. Classification performances (proportion correct) based on visual feature values of test items as a function of the value of b.
Classification tasks are Fribble family membership (top left), Fribble species membership (top right), individual Fribble identity

(bottom left), and parts of a Fribble (bottom right). Blue and red bars are for Models V-H and V, respectively. Error bars indicate the

standard errors of the means.
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information capacity of a system, the nature of the
sensory information that the system receives, and the
detail of visual information that a system learns. Many
of our results indicate that Model V is better at learning
fine-scale, two-dimensional properties of visual images
when it has a large information capacity, whereas
Model V-H is better at learning coarse-scale, three-
dimensional properties of objects depicted in images
when it has a small information capacity. If so, this
suggests that agents (biological or artificial) should
contain multiple learning systems, varying in capacity
(from low to high capacity) and sensory input (from
unisensory to multisensory). This would allow an agent
to learn a hierarchy of visual representations ranging
from representations that codify fine-scale image
features to those that codify coarse-scale abstractions.
Our results demonstrate that information from multi-
ple sensory modalities can guide learning systems
toward useful visual abstractions.

Keywords: visual learning, multisensory perception,
computational modeling
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Footnotes

1 Illustrating the rarity with which AI researchers
have studied how touch can educate vision, Pinto et
al. (2016) wrote: ‘‘While there has been significant
work in the vision and robotics community to
develop vision algorithms for performing robotic
tasks such as grasping, to the best of our knowledge
this is the first effort that reverses the pipeline and
uses robotic tasks for learning visual representa-
tions’’ (p. 2).

2 Readers interested in the effects of visual-auditory
experience on visual learning should see Shams and
Seitz (2008).

3 An early version of this data set was described in
Yildirim and Jacobs (2013); see also Erdogan, Chen,
Garcea, Mahon, and Jacobs (2016), and Erdogan,
Yildirim, and Jacobs (2015). The current version is
available at https://zenodo.org/record/3266251#.
XRuZ4pNKhYc (https://doi.org/10.5281/zenodo.
3266251).

4 Strictly speaking, the networks shown in Figure 3
are not fully accurate. In both models, the latent
representation consisted of 800 random variables
independently sampled from normal distributions. Let
zi denote the i

th latent variable, and let li and r2
i denote

its mean and variance, respectively. The output of the
encoder portion of a model consisted of 800 activation
values corresponding to flig800i¼1 and 800 activation
values corresponding toflog r2

i g
800
i¼1. The fzig

800
i¼1 served

as inputs to the decoder portion of a model.
5 Sample code can be found at https://zenodo.org/

record/3266341#.XRuyLpNKhYc (https://doi.org/10.
5281/zenodo.3266341)

6 Although t-SNE can be ‘‘brittle’’, all the results
reported here were obtained using the ‘‘scikit-learn’’
implementation (Pedregosa et al., 2011) with its default
parameter settings.

7 Rendering the visual reconstructions as images is
not easily accomplished due to difficulties with
inverting the nonlinear VGG network (i.e., mapping
from VGG features to images). As a sanity check, we
repeated our experiments using visual features ob-
tained by applying PCA directly to images. SSE
performances were qualitatively similar to those
plotted in Figure 5. Images obtained from the visual
reconstructions were also as expected. For example,
images generated from Model V’s reconstructions at

Figure 7. Orientation-insensitivity performances (proportion

correct) based on visual feature values of test items as a

function of the value of b (see text for explanation). Blue and

red bars are for Models V-H and V, respectively (red bars are

barely visible due to near-zero values). Error bars indicate the

standard errors of the means.
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high capacity were very similar to original images,
whereas images generated from Model V-H’s recon-
structions at low capacity resembled blurry averages
of original images.

8 If a part did not exist in a set of test items, then the
subtask corresponding to this part was omitted.
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