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Abstract

We study the claim that multisensory environments are useful for visual learning because non-

visual percepts can be processed to produce error signals that people can use to adapt their visual sys-

tems. This hypothesis is motivated by a Bayesian network framework. The framework is useful

because it ties together three observations that have appeared in the literature: (a) signals from non-

visual modalities can ‘‘teach’’ the visual system; (b) signals from nonvisual modalities can facilitate

learning in the visual system; and (c) visual signals can become associated with (or be predicted by)

signals from nonvisual modalities. Experimental data consistent with each of these observations are

reviewed.
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1. Introduction

The importance of using naturalistic environments to study human perception has been

emphasized by many researchers (Findlay & Gilchrist, 2003; Hayhoe & Ballard, 2005;

Land, 2003). Naturalistic environments contain complex sensory patterns, and our percep-

tual systems evolved and developed to allow us to sense and interpret these patterns. Until

recently, it has been difficult for scientists to conduct carefully controlled experiments with

naturalistic stimuli. However, new technologies, such as advanced computer graphics chips

and virtual reality environments, are allowing researchers to investigate human perception

in more realistic settings than has been possible in the past.

This trend is clearly evident in the study of visual learning. Many recent studies focus on

how people improve at interpreting visual stimuli when these stimuli are part of multisensory
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experimental environments. Because these environments are multisensory, they resemble

naturalistic environments in important ways. Participants in these experiments can view

objects, and they can often hear or touch these objects too. An important question that

researchers are actively studying is how people take advantage of multisensory stimuli for

the purposes of visual learning.

This article argues that multisensory environments are useful for visual learning because

nonvisual percepts can be processed to produce feedback or error signals that the brain can

use to adapt the visual system. To motivate this hypothesis, we describe a probabilistic

framework, based on Bayesian networks, for thinking about visual learning in multisensory

environments. This framework is useful because it ties together three important observations

that have appeared in the scientific literature: (a) signals from nonvisual modalities can

‘‘teach’’ the visual system; (b) signals from nonvisual modalities can facilitate learning in

the visual system; and (c) visual signals can become associated with (or be predicted by)

signals from nonvisual modalities. In the next section, we describe the probabilistic frame-

work. Following this, we describe experimental research consistent with the observations.

2. Bayesian network approach

We describe a probabilistic framework for thinking about visual learning in multisensory

environments. This framework is based on a formalism known as Bayesian networks (Nea-

politan, 2004; Pearl, 1988; Russell & Norvig, 2003). In general, a Bayesian network is a

way of characterizing a joint probability distribution of several random variables. The net-

work contains nodes, edges, and probability distributions. Each node corresponds to a vari-

able. Each edge corresponds to a relationship between variables. Edges go from ‘‘parent’’

variables to ‘‘child’’ variables, thereby indicating that the values of the parent variables

directly influence the values of the child variables. Each conditional probability distribution

gives the probability of a child variable taking a particular value given the values of its par-

ent variables. The joint probability distribution of all variables is equal to the product of the

conditional probability distributions. For example, suppose that the joint distribution of vari-

ables A, B, C, D, E, F, and G can be factored as follows:

pðA;B;C;D;E;F;GÞ ¼ pðAÞpðBÞpðCjAÞpðDjA;BÞpðEjBÞpðFjCÞpðGjD;EÞ:

Then the Bayesian network in Fig. 1 represents this joint distribution.

Bayesian networks can represent the relationships between scene, feature, and input vari-

ables. Consider, for example, an environment with a coffee mug sitting on a desk, and an

observer who views and touches the mug and desk. A schematic illustration of a Bayesian

network appropriate for this situation is shown in Fig. 2. The nodes labeled ‘‘scene vari-

ables’’ describe the environmental scene. As a matter of notation, let S denote the scene

variables. Based on the values of the scene variables, haptic feature variables, denoted FH,

and visual feature variables, denoted FV, are assigned values. For instance, a coffee mug

gives rise to both haptic features, such as curvature and smoothness, and visual features,
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such as curvature and color. The haptic features influence the values of the haptic input vari-

ables, denoted IH, when the observer touches the mug. Similarly, the visual features influ-

ence the values of the visual input variables, denoted IV, when the observer views the mug.

The input variables are ‘‘visible’’ because the observer obtains the values of these vari-

ables when he or she touches and views the scene. However, the feature and scene variables

are not directly observable and are thus regarded as hidden or latent. The distribution of the

latent variables must be computed by the observer from the values of the visible variables

using Bayes’ rule, an operation known as ‘‘inference.’’ For example, after touching and view-

ing a scene, the observer might want to infer the properties of the scene by calculating the

conditional distribution of the scene variables given the values of the haptic and visual inputs:

pðSjIH; IVÞ ¼
ZZ

pðS;FH;FVjIH; IVÞdFHdFV:

An advantage of Bayesian networks is that it is often computationally efficient to perform

inference using a local message-passing algorithm (Pearl, 1988).

Visual perception is based on the posterior probability of the scene variables given the

visual input variables p(S | IV) and therefore visual learning takes place when the observer

adapts p(S | IV). To adapt this distribution, the observer needs feedback or error signals indi-

cating how the distribution should be modified. How can the observer’s visual system obtain

these signals?

Fig. 1. An example of a Bayesian network.

Fig. 2. A schematic of a Bayesian network appropriate for an observer that sees and touches its environment.
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We consider three cases. In the first case, suppose that the observer touches and sees the

coffee mug, and the observer has reason to believe that its haptic percept is highly reliable

but its visual percept is highly unreliable (perhaps it is very noisy). The observer can infer

the distribution of the scene variables in two ways: It can calculate the conditional distribu-

tion of these variables given the values of the haptic input variables p(S | IH) or given the

values of the visual input variables p(S | IV). Because the observer regards its haptic percept

as reliable and its visual percept as unreliable, it should regard p(S | IH) as more informative.

Consequently, it can use p(S | IH) as a ‘‘teaching’’ signal and adapt its visual system (e.g.,

the distributions p(FV | IV) and p(S | FV)) so that p(S | IV) is closer to p(S | IH).

In the second case, the observer also touches and sees the coffee mug, but now it regards

both its haptic and visual percepts as reliable. Again, the observer can infer the distribution

of the scene variables in two ways: It can calculate the conditional distribution of these vari-

ables given the values of both haptic and visual input variables p(S | IH, IV) or given the val-

ues of the visual input variables p(S | IV). The first distribution is based on more

information, and thus it can be used as a teaching signal. That is, the observer can adapt its

visual system so that p(S | IV) is closer to p(S | IH, IV).

In the third case, consider an observer who touches the mug with his or her eyes closed or

while looking at another object. In this case, the haptic input IH can be used to predict the

visual input IV corresponding to the mug (via the distribution p(IV | IH)). Roughly speaking,

it is as though the observer knows something about what the mug would look like based on

the haptic percept. Of course, this prediction process can also occur when the visual input of

the mug is available (i.e., while looking at the mug), and the difference between IV and the

predicted IV can serve as an error signal used for visual learning. In addition to playing a

role in learning, predicted visual quantities can be useful for other aspects of visual percep-

tion such as for guiding eye movements and attention, for generating top-down expectations

about visual variables, and for visual imagery.

These three cases illustrate the main argument of this article, namely that multisensory

environments are useful for visual learning because nonvisual percepts can be processed to

produce feedback or error signals that people can use to adapt their visual systems. An

important aspect of these cases is that they imply that observers know about the statistical

relationships between different sensory modalities.

In summary, we have shown here that the Bayesian network framework is consistent with

the ideas that signals from nonvisual modalities can ‘‘teach’’ the visual system (case 1),

signals from nonvisual modalities can facilitate learning in the visual system (case 2), and

signals from nonvisual modalities can be used to predict signals in the visual system (case

3). In the remainder of this article, we review experimental evidence from the scientific

literature consistent with these ideas.

3. Nonvisual modalities teach the visual system

The idea that people learn how to visually perceive the world by comparing their visual

percepts with percepts obtained from other modalities is an old one. Historically, it may
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have been first proposed by Berkeley (1709 ⁄ 1910) who hypothesized that visual perception

of depth results from associations between visual cues and sensations of touch and motor

movements. A famous quote from Berkeley’s book is ‘‘touch educates vision.’’ More

recently, Piaget (1952) used similar ideas to explain how children learn to interpret and

attach meaning to retinal images based on their motor interactions with physical objects.

Empirical data supporting the general notion that motor interactions play a role in visual

learning comes from prism adaptation studies in which subjects adapted to visual distortions

produced by distorting lenses. Adaptation often occurs when subjects are allowed to interact

with the environment (Held & Hein, 1958, 1963). In many studies, subjects only become

aware of the visual distortion through their motor interactions (Welch, 1978).

Experimental data indicating that nonvisual modalities provide specific training signals

that the visual system uses during learning has recently been obtained through the use of vir-

tual reality environments. Atkins, Fiser, and Jacobs (2001) showed subjects vertically ori-

ented cylinders whose horizontal cross-sections were either circular (the cylinder was

equally deep as wide) or elliptical (a cylinder may have been either more deep than wide or

less deep than wide). Visually, cylinders were defined by motion and texture cues. Impor-

tantly, a computer graphics ‘‘trick’’ was used that allowed independent control of the visual

motion and texture cues. For example, a display may have contained a motion cue indicating

that a cylinder was of one shape (e.g., circular cross-section), whereas the texture cue indi-

cated that the same cylinder was of a slightly different shape (e.g., elliptical cross-section).

In addition to seeing cylinders, subjects also grasped cylinders using a virtual reality force-

feedback device. Half the subjects were initially trained in motion-relevant condi-

tions—meaning that haptic and visual motion cues to shape were consistent, whereas the

visual texture cue indicated an uncorrelated shape—and then trained in texture-relevant con-

ditions—haptic and visual texture cues to shape were consistent, whereas the visual motion

cue indicated an uncorrelated shape. The remaining subjects were trained in the reverse

order. On visual test trials, it was found that subjects used the visual motion cue more after

motion-relevant training than after texture-relevant training, and they used the visual texture

cue more after texture-relevant training than after motion-relevant training. These data sug-

gest that haptic information was used to determine which visual cue was more reliable, and

thus which visual cue should be relied on more when making visual judgments of shape and

depth. Other articles reporting experiments in which haptic percepts provided specific train-

ing signals used during visual learning include Adams, Graf, and Ernst (2004), Ernst, Banks,

and Bülthoff (2000), and Atkins, Jacobs, and Knill (2003).

4. Signals from nonvisual modalities facilitate visual learning

The study discussed above shows that the consistency between visual cues and a nonvisu-

al cue can serve as the basis for learning the relative reliabilities of visual cues. In this case,

the cross-modal signal provides critical teaching input for the interpretation of conflicting

visual cues. But visual learning can benefit from cross-modal information even when there

is no conflict between visual cues. Recent studies have shown that learning of visual motion
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detection and discrimination is facilitated when visual motion displays are accompanied by

auditory motion during training (Kim, Seitz, & Shams, 2008; Seitz, Kim, & Shams, 2006).

Although sound is not necessary for this kind of learning, it does nevertheless accelerate the

course and increase the magnitude of learning when presented concurrently with visual

stimuli during training. A group of observers was trained with random-dot kinematograms

in a two-interval forced-choice (2-IFC) paradigm where the task was to detect the interval

in which coherent motion was presented (Kim et al., 2008). Another group of participants

was trained with exactly the same visual stimuli; however, the visual coherent motion was

paired with auditory motion in the same direction (and the interval containing visual noise

was paired with auditory noise). The two groups were tested on trials in which sound was

completely absent. Despite the absence of sound during test trials, the group that was trained

with auditory–visual stimuli learned faster and asymptoted at a higher level of performance.

It is unlikely that this superior learning results from a higher arousal level during training

due to the presence of sound because training with incongruent auditory–visual stimuli

(moving in opposite directions) did not result in facilitated learning.

Although this study demonstrates facilitation of visual learning by sound on a low-level

visual task, a similar type of facilitation has also been recently reported on a higher-level

object recognition task (Lehmann & Murray, 2005; Murray et al., 2004). Subjects were

presented with images of objects and were asked to report whether the image was novel

(presented for the first time) or repeated (Murray et al., 2004). There were two presentations

of each image in each block. The first presentation of some images was paired with the

sound of the corresponding object (e.g., the image of a bell may have been paired with the

sound of a bell), but the second presentation of all images was always in silence. Observers

were more accurate at recognizing images of objects that were initially presented with sound

compared to those that were initially presented without sound. This study shows that visual

learning based on a single exposure to an image can benefit from cross-modal interactions.

5. Learning to predict visual signals from nonvisual signals

Associations between visual and nonvisual signals are ubiquitous in nature. When we

see lightening, we expect to hear thunder; when a ball is about to hit the floor, we expect

to hear and see a bounce; when we turn a light switch on, we expect to hear a click and

see a change in brightness. These are all associations we have learned by experience. Peo-

ple are also capable of learning arbitrary cross-modal associations; for example, they can

learn to read a foreign language text. However, the constraints, efficiency, and mechanisms

of this type of learning are not well understood. A few recent studies have investigated this

learning. In one study, observers were asked to perform an oddity detection task in visual,

haptic, or visual–haptic stimuli in a 3-IFC paradigm (Ernst, 2007). During training, the

luminance of the visual stimulus and the stiffness of the tactile stimulus were correlated.

After training, observers’ discrimination thresholds in the correlated trials and uncorrelated

trials differed, indicating that they had learned the arbitrary correlation between luminance

and stiffness.
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The results of another recent study suggest that cross-modal associations can be learned

even in the absence of a task. In this study (Seitz, Kim, van Wassenhove, & Shams, 2007),

participants passively viewed a rapid stream of unfamiliar shapes concurrently presented

with a rapid stream of unfamiliar sounds. Participants were not asked to perform a task and

were not even aware that they were going to be tested afterwards. Unbeknownst to the par-

ticipants, some statistical regularities (in the form of pairs and quartets) were embedded

within the visual stream, within the auditory stream, as well as across the two streams during

exposure. After the brief passive exposure phase, they were asked to judge the familiarity of

stimulus ensembles (pairs or quartets) in a 2-IFC task. In addition to learning visual associa-

tions and auditory associations, the observers also learned auditory–visual associations, and

these three types of learning appeared to be independent of each other.

These and other studies (Davies, Davies, & Bennett, 1982; Ernst, 2007; Howells, 1944)

suggest that cross-modal associations can be learned efficiently and automatically. Once an

association is learned, it can facilitate the detection and recognition of each sensory compo-

nent through predictive or inference mechanisms (Friston, 2005; von Kriegstein & Giraud,

2006; Noppeney, Josephs, Hocking, Price, & Friston, 2008; den Ouden, Friston, Daw,

McIntosh, & Stephan, 2009). For example, the sound of a bouncing ball would predict the

location and time of the visual contact between ball and floor and, if that does not match the

visual observation, it would result in an error signal that can then be used for visual learning

(case 3 discussed above). If the visual and nonvisual modalities are calibrated with each

other, visual learning can then be enhanced when the nonvisual modality teaches vision

(case 1) or facilitates learning in vision (case 2).

6. Discussion

In our literature review, we identified three forms of visual learning that can benefit from

nonvisual sensory stimulation: (a) cross-modal input can provide teaching signals for learn-

ing the relative reliabilities of visual cues when the cues provide conflicting information;

(b) correlated cross-modal input can also accelerate and enhance visual learning for any sin-

gle visual cue; and (c) through learned associations between visual and nonvisual signals, a

richer multisensory representation is acquired, and this representation can enhance visual

processing and learning. The classification of these phenomena into three categories does

not imply that these forms of learning are independent of each other. To the contrary, we

believe that these forms are highly interdependent and synergistic. For example, for (a) and

(b) to occur, the statistical relationships between vision and one or more nonvisual

modalities needs to be established first (i.e., [c] needs to take place). Furthermore, feedback

provided by a nonvisual modality can only be interpreted correctly by the visual system (as

in [b]) if processing of the two modalities is calibrated or in synch with each other (i.e.,

result of [a]).

Although these three forms of learning appear very different from each other, we

argue that they all fit within the same Bayesian network framework. For all three classes

of phenomena, a computational viewpoint suggests that cross-modal signals can be
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processed to provide feedback and error information that can be used by the visual sys-

tem for learning.

Evidence for multisensory learning has been accumulating in recent years, and the next

step in this research program will be to understand the computational and neural mecha-

nisms of the underlying learning processes. Although it is difficult to distinguish between

mechanisms of learning and memory, research on visual learning and visual memory have,

unfortunately, remained mostly segregated in the scientific literature. In discussing the facil-

itatory effects of sound on visual learning, we presented studies employing a visual percep-

tual learning paradigm (Kim et al., 2008; Seitz et al., 2006) and studies employing a

memory task (Lehmann & Murray, 2005; Murray et al., 2004). This is an example of how

studies from these two fields provide converging evidence for cross-modal facilitatory

effects, and how findings of memory studies can inform learning research and vice versa.

It is not clear whether the multisensory benefits discussed here are specific to cross-modal

stimuli or whether any additional sensory cue can provide similar benefits. For example, it

is not known if more visual learning about a visual motion cue will take place when visual

motion is correlated with a signal from another modality (e.g., an auditory signal) versus

when it is correlated with another visual signal (e.g., a visual stereo signal). Our Bayesian

network framework suggests that any signal that can provide additional feedback and error

information can lead to the learning benefits discussed here, and thus these effects should

generalize to any cue including within-modality cues. On the other hand, one could also

imagine that cross-modal signals are special in that they are corrupted by independent noise

processes, rendering them more informative than within-modality cues, which may be cor-

rupted by dependent noise processes. Whether cross-modal benefits to learning are special

is an empirical question that should be addressed by future research.
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