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This article focuses on key mechanisms of Bayesian information processing, and
provides numerous examples illustrating Bayesian approaches to the study of
human cognition. We start by providing an overview of Bayesian modeling and
Bayesian networks. We then describe three types of information processing
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INTRODUCTION

Computational modeling of human cognition has
focused on a series of different formalisms over

recent decades. In the 1970s, production systems
were considered a methodology that would unite
the studies of human and machine intelligence. In
the 1980s and 1990s, connectionist networks were
thought to be a key to understanding how cognitive
information processing is performed by biological
nervous systems. These formalisms continue to yield
valuable insights into the processes of cognition. Since
the 1990s, however, probabilistic models based on
Bayes’ rule have become increasingly popular, per-
haps even dominant in the field of cognitive science.
Importantly, Bayesian modeling provides a unifying
framework that has made important contributions
to our understanding of nearly all areas of cognition,
including perception, language, motor control,
reasoning, learning, memory, and development.

In this article, we describe some advantages
offered by Bayesian modeling relative to previous
formalisms. In particular, Bayesian models allow
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immense representational latitude and complexity,
and use normative Bayesian mathematics to process
those representations. This representational complex-
ity contrasts with the relative simplicity of nodes in a
connectionist network, or if-then rules in a production
system. In this article, we focus on key mechanisms
of Bayesian information processing, and we provide
examples illustrating Bayesian approaches to human
cognition. The article is organized as follows. We
start by providing an overview of Bayesian model-
ing and Bayesian networks. Next, we describe three
types of information processing operations found in
both Bayesian networks and human cognition. We
then discuss the important role of prior knowledge in
Bayesian models. Finally, we describe how Bayesian
models naturally address active learning, which is a
behavior that other formalisms may not address so
transparently.

BAYESIAN MODELING
Are people rational? This is a complex question
whose answer depends on many factors, including
the task under consideration and the definition
of the word ‘rational’. A common observation of
cognitive scientists is that we live in an uncertain
world, and rational behavior depends on the ability
to process information effectively despite ambiguity
or uncertainty. Cognitive scientists, therefore, need
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methods for characterizing information and the
uncertainty in that information. Fortunately, such
methods are available—probability theory provides a
calculus for representing and manipulating uncertain
information. An advantage of Bayesian models
relative to many other types of models is that they
are probabilistic.

Probability theory does not provide just any
calculus for representing and manipulating uncer-
tain information, it provides an optimal calculus.1

Consequently, an advantage of Bayesian modeling is
that it gives cognitive scientists a tool for defining
rationality. Using Bayes’ rule, Bayesian models opti-
mally combine information based on prior beliefs with
information based on observations or data. Using
Bayesian decision theory, Bayesian models can use
these combinations to choose actions that maximize
the task performance. Owing to these optimal proper-
ties, Bayesian models perform a task as well as the task
can be performed, meaning that the performance of
a Bayesian model on a task defines rational behavior
for that task.

Of course, the performance of a model depends
on how it represents prior beliefs, observations, and
task goals. That is, the representational assumptions
of a model influence its performance. It is important
to keep in mind that any task can be modeled
in multiple ways, each using a different set of
assumptions. One model may assume the use of certain
dimensional perceptual representations which are
combined linearly into a probabilistic choice, whereas
another model may assume featural representations
combined conjunctively into a probabilistic choice.
But for any specific probabilistic formalization of a
task, a Bayesian model specifies optimal performance
given the set of assumptions made by the model.

This fact leads to an additional advantage of
Bayesian modeling relative to many other approaches,
namely that the assumptions underlying Bayesian
models are often explicitly stated as well-defined
mathematical expressions and, thus, easy to exam-
ine, evaluate, and modify. Indeed, a key reason for
using the Bayesian modeling formalism is that, rel-
ative to many other computational formalisms, it
allows cognitive scientists to more easily study the
advantages and disadvantages of different assump-
tions. (Admittedly, this property is also possessed by
other formalisms, especially in the mathematical psy-
chology tradition, that have rigorous mathematical or
probabilistic interpretations; see, e.g., Busemeyer and
Diederich,2 and many examples in Scarborough and
Sternberg.3 But such mathematically explicit models
form only a subset of the spectrum of computational
models in cognitive science; cf. Refs 4 and 5.) Through

this study, scientists can ask questions about the nature
or structure of a task (Marr6 referred to the analysis
of the structure of a task as a ‘computational theory’),
such as: What are the variables that need to be taken
into account, the problems that need to be solved, and
the goals that need to be achieved in order to perform
a task?; Which of these problems or goals are easy or
hard?; and Which assumptions are useful, necessary,
and/or sufficient for performance of the task?

Let us assume that the performance of a
person on a task is measured, a Bayesian model is
applied to the same task, and the performances of
the person and the model are equal. This provides
important information to a cognitive scientist because
it provides the scientist with an explanation for the
person’s behavior—the person is behaving optimally
because he or she is using and combining all relevant
information about the task in an optimal manner. In
addition, this result supports (but does not prove) the
hypothesis that the assumptions used by the model
about prior beliefs, observations, and task goals may
also be used by the person.

Alternatively, suppose that the performance of
the model exceeds that of the person. This result
also provides useful information. It indicates that the
person is not using all relevant information or not
combining this information in an optimal way. That
is, it suggests that there are cognitive ‘bottlenecks’
preventing the person from performing better.
Further experimentation can attempt to identify these
bottlenecks, and training can try to ameliorate or
remove these bottlenecks. Possible bottlenecks might
include cognitive capacity limitations such as limits
on the size of working memory or on the quantity of
attentional resources. Bottlenecks might also include
computational limitations. Bayesian models often
perform complex computations in high-dimensional
spaces. It may be that people are incapable of
these complex computations and, thus, incapable of
performing Bayesian calculations. Later in this article,
we will address the possibility that people are not truly
Bayesian, but only approximately Bayesian.

If a cognitive scientist hypothesizes that a
person’s performance on a task is suboptimal because
of a particular bottleneck, then the scientist can
develop a new model that also contains the posited
bottleneck. For instance, if a scientist believes that a
person performs suboptimally because of an inability
to consider stimuli that occurred far in the past, the
scientist can study a model that only uses recent
inputs. Identical performances by the new model and
the person lend support to the idea that the person,
like the model, is only using recent inputs.
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Finally, suppose that the performance of the
person exceeds that of the model—that is, the person’s
performance exceeds the optimal performance defined
by the model—then once again this is a useful result. It
suggests that the person is using information sources
or assumptions that are not currently part of the
model. For instance, if a model only considers the
previous word when predicting the next word in a
sentence, then a person who outperforms the model is
likely using more information (e.g., several previous
words) when he or she makes a prediction. A cognitive
scientist may consider a new model with additional
inputs. As before, identical performances by the new
model and the person lend support to the idea that
the person, like the model, is using these additional
inputs.

In some sense, the Bayesian approach to the
study of human cognition might seem odd. It is based
on an analysis of what level of task performance
is achievable given a set of assumptions. However,
it does not make a strong statement about how a
person achieves that task performance—which men-
tal representations and algorithms the person uses
while performing a task. Bayesian models are not
intended to provide mechanistic or process accounts
of cognition.6,7 For cognitive scientists interested in
mechanistic accounts, a Bayesian model often sug-
gests possible hypotheses about representations and
algorithms that a person might use while performing
a task, but these hypotheses need to be evaluated by
other means. Similarly, if a person performs subop-
timally relative to a Bayesian model, the model may
suggest hypotheses as to which underlying mecha-
nisms are at fault, but these hypotheses are only start-
ing points for further investigation. Consequently,
Bayesian modeling complements, but does not sup-
plant, the use of experimental and other theoretical
methodologies.

For all the reasons outlined here, Bayesian
modeling has become increasingly important in the
field of cognitive science.6–16 Rather than describing
particular Bayesian models in depth, a main focus
of this article is on information processing opera-
tions—inference, parameter learning, and structure
learning—found in Bayesian models and human cog-
nition. Before turning to these operations, however,
we first describe Bayesian networks, a formalism
that makes these operations particularly easy to
understand.

BAYESIAN NETWORKS
When a theorist develops a mental model of a
cognitive domain, it is necessary to first identify

the variables that must be taken into account. The
domain can then be characterized through the joint
probability distribution of these variables. Many
different information processing operations can be
carried out by manipulating this distribution.

Although conceptually appealing, joint distri-
butions are often impractical to work with directly
because real-world domains contain many potentially
relevant variables, meaning that joint distributions can
be high-dimensional. If a domain contains 100 vari-
ables, then the joint distribution is 100-dimensional.
Hopefully, it is the case that some variables are inde-
pendent (or conditionally independent given the values
of other variables) and, thus, the joint distribution can
be factored into a product of a small number of
conditional distributions where each conditional dis-
tribution is relatively low-dimensional. If so, then it is
more computationally efficient to work with the small
set of low-dimensional conditional distributions than
with the high-dimensional joint distribution.

Bayesian networks have become popular in
artificial intelligence and cognitive science because
they graphically express the factorization of a joint
distribution.17–19 A network contains nodes, edges,
and probability distributions. Each node corresponds
to a variable. Each edge corresponds to a relationship
between variables. Edges go from ‘parent’ variables
to ‘child’ variables, thereby indicating that the values
of the parent variables directly influence the values
of the child variables. Each conditional probability
distribution provides the probability of a child variable
taking a particular value given the values of its parent
variables. The joint distribution of all variables is
equal to the product of the conditional distributions.
For example, we assume that the joint distribution of
variables A, B, C, D, E, F, and G can be factored as
follows:

p(A, B, C, D, E, F, G) = p(A)p(B)p(C|A)p(D|A, B)

p(E|B)p(F|C)p(G|D, E) (1)

Then the Bayesian network in Figure 1 represents this
joint distribution.

The parameters of a Bayesian network are the
parameters underlying the conditional probability dis-
tributions. For example, suppose that the variables of
the network in Figure 1 are real-valued, and suppose
that each variable is distributed according to a nor-
mal distribution whose mean is equal to the weighted
sum of its parent’s values (plus a bias weight) and
whose variance is a fixed constant [In other words,
the conditional distribution of X given the values
of its parents is a Normal distribution whose mean is∑

i∈pa(X) wXiVi + wXb and whose variance is σ 2
X where
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p(C | A) p(D | A, B) p(E | B)

p(F | C) p(G | D, E)

FIGURE 1 | Bayesian network representing the joint probability
distribution of variables A, B, C, D, E, F, and G. A node represents the
value of the variable it contains. Arrows impinging on a node indicate
what other variables the value of the node depends on. The conditional
probability besides each node expresses mathematically what the
arrows express graphically.

X is a variable, i indexes the variables that are parents
of X, Vi is the value of variable i, wXi is a weight relat-
ing the value of variable i to X, and wXb is a bias weight
for X. In Figure 1, for instance, A ∼ N(wAb, σ 2

A), C ∼
N(wCAA + wCb, σ 2

C), and D ∼ N(wDAA + wDBB +
wDb, σ 2

D).] Then the weights would be the net-
work’s parameters.

INFERENCE

If the values of some variables are observed, then these
data can be used to update our beliefs about other
variables. This process is referred to as ‘inference’,
and can be carried out using Bayes’ rule. For example,
suppose that the values of F and G are observed,
and we would like to update our beliefs about the
unobserved values A, B, C, D, and E. Using Bayes’
rule:

p(A, B, C, D, E|F, G)

= p(F, G|A, B, C, D, E)p(A, B, C, D, E)
p(F, G)

(2)

where p(A, B, C, D, E) is the prior probability of
A, B, C, D, and E, p(A, B, C, D, E|F, G) is the posterior
probability of these variables given data F and G,
p(F, G|A, B, C, D, E) is the probability of the observed
data (called the likelihood function of A, B, C, D, and
E), and p(F, G) is a normalization term referred to as
the evidence.

Inference often requires marginalization. Sup-
pose we are only interested in updating our beliefs
about A and B (i.e., we do not care about the values

Rain

Wet grass

Sprinkler

p(W | S, R)

p(S|C) p(R|C)

Cloudyp(C)

FIGURE 2 | Bayesian network characterizing a domain with four
binary variables indicating whether it is cloudy, the sprinkler was
recently on, it recently rained, and the grass is wet.

of C, D, and E), this can be achieved by ‘integrating
out’ the irrelevant variables:

p(A, B|F, G) =
∫∫∫

p(A, B, C, D, E|F, G)dCdDdE

(3)

In some cases, inference can be carried out in
a computationally efficient manner using a local
message-passing algorithm.18 In other cases, inference
is computationally expensive, and approximation
techniques, such as Markov chain Monte Carlo
sampling, may be needed.20

Is Bayesian inference relevant to human cogni-
tion? We think that the answer is yes. To motivate
this answer, we first consider a pattern of causal rea-
soning referred to as ‘explaining away’. Explaining
away is an instance of the ‘logic of exoneration’ (e.g.,
if one suspect confesses to a crime, then unaffiliated
suspects are exonerated). In general, increasing the
believability of some hypotheses necessarily decreases
the believability of others.

The Bayesian network illustrated in Figure 2
characterizes a domain with four binary variables
indicating whether it is cloudy, whether the sprinkler
was recently on, whether it recently rained, and
whether the grass is wet.18,19 If the weather is cloudy
(denoted C = 1), then there is a low probability
that the sprinkler was recently on (S = 1) and a
high probability that it recently rained (R = 1). If
the weather is not cloudy, then there is a moderate
probability that the sprinkler was recently on and a
low probability that it recently rained. Finally, if the
sprinkler was recently on, rain fell, or both, then there
is a high probability that the grass is wet (W = 1).

You walk outside and discover that the grass is
wet and that the sprinkler is on. What, if anything,
can you conclude about whether it rained recently? An
intuitive pattern of reasoning, and one that seems to
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be exhibited by people, is to conclude that the water
from the sprinkler wet the grass and, thus, there is
no good evidence suggesting that it rained recently.
This pattern is called explaining away because the
observation that the sprinkler is on explains the fact
that the grass is wet, meaning that there is no reason
to hypothesize another cause, such as recent rain, for
why the grass is wet. This type of causal reasoning
naturally emerges from Bayes’ rule. Without going
into the mathematical details, a comparison of the
probability of recent rain given that the grass is wet,
p(R = 1|W = 1), with the probability of recent rain
given that the grass is wet and that the sprinkler
is on, p(R = 1|W = 1, S = 1), would show that the
latter value is significantly smaller. Thus, Bayes’ rule
performs explaining away.

Explaining away illustrates an important advan-
tage of Bayesian statistics, namely, that Bayesian
models maintain and update probabilities for all pos-
sible values of their variables. Because probability
distributions must sum or integrate to one, if some
values become more likely, then other values must
become less likely. This is true even for variables
whose values are not directly specified in a data set.
In the example above, the variables S and R are nega-
tively correlated given the value of C. (If it is raining,
it is unlikely that a sprinkler will be on. Similarly, if a
sprinkler is on, it is unlikely to be raining.) Therefore,
if a Bayesian observer discovers that the grass is wet
and that the sprinkler is on, the observer can rea-
sonably accept the hypothesis that the water from the
sprinkler wet the grass. In doing so, the observer simul-
taneously rejects the hypothesis that it rained recently
and the rain water wet the grass, despite the fact that
the observer did not directly obtain any information
about whether it rained. Thus, a Bayesian observer
can simultaneously maintain and update probabilities
for multiple competing hypotheses.

Our scenario with sprinklers, rain, and wet grass
provides a simple example of Bayesian inference, but
cognitive scientists have studied more complicated
examples. Often these examples involve prediction
and, thus, inference and prediction are closely related.

Calvert et al.21 found that auditory cortex in
normal hearing individuals became activated when
these individuals viewed facial movements associated
with speech (e.g., lipreading) in the absence of auditory
speech sounds. It is as if the individuals used their
visual percepts to predict or infer what their auditory
percepts would have been if auditory stimuli were
present; that is, they computed p(auditory percept |
visual percept).

Pirog Revill et al.22 used brain imaging to show
that people predicted the semantic properties of a

word while lexical competition was in process and
before the word was fully recognized. For example,
the speech input /can/ is consistent with the words
can, candy, and candle and, thus, can, candy, and
candle are active lexical competitors when /can/ is
heard. These investigators found that a neural region
typically associated with visual motion processing
became more activated when motion words were
heard than when nonmotion words were heard.
Importantly, when nonmotion words were heard, the
activation of this region was modulated by whether
there was a lexical competitor that was a motion
word rather than another nonmotion word. It is as
if the individuals used the on-going speech input to
predict the meaning of the current word as the speech
unfolded over time; i.e., they computed p(semantic
features | on-going speech percept).

Blakemore et al.23 used inference to explain
why individuals cannot tickle themselves. A ‘forward
model’ is a mental model that predicts the sensory
consequences of a movement based on a motor
command. These investigators hypothesized that when
a movement is self-produced, its sensory consequences
can be accurately predicted by a forward model; i.e.,
a person computes p(sensory consequences | motor
movement), and this prediction is used to attenuate
the sensory effects of the movement. In this way, the
sensory effects of self-tickling are dulled.

Although now there is much experimental
evidence for perceptual inference, the functional role
of inference is not always obvious. For example, why
is it important to predict an auditory percept based on
a visual percept? In the section below titled Parameter
Learning, we review the hypothesis that inference may
play an important role in learning.

The examples above provide evidence that
people infer the values of unobserved variables based
on the values of observed variables. However, they do
not show that this inference is quantitatively consistent
with the use of Bayes’ rule. Evidence suggesting
that people’s inferences are indeed quantitatively
consistent with Bayes’ rule comes from the study of
sensory integration. The Bayesian network in Figure 3
characterizes a mental model of an observer who
both sees and touches the objects in an environment.
The nodes labeled ‘scene variables’ are the observer’s
internal variables for representing all conceivable
three-dimensional scenes. As a matter of notation, let
S denote the scene variables. Based on the values of the
scene variables, haptic feature variables, denoted FH,
and visual feature variables, denoted FV, are assigned
values. For instance, a scene with a coffee mug gives
rise to both haptic features, such as curvature and
smoothness, and visual features, such as curvature
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FIGURE 3 | Bayesian network characterizing a
domain in which an observer both sees and touches
the objects in an environment. At the top of the
hierarchy, the values of scene variables determine
the probabilities of distal haptic and visual features.
The distal haptic and visual features in turn
determine the probabilities of values of proximal
haptic and visual input (sensory) variables.

Scene
variables

Haptic
input

variables

Visual
input

variables

Haptic
feature

variables

Visual
feature

variables
p(FH | S) p(FV | S)

p(ΙH | FH) p(ΙV | FV)

p(S)

and color. The haptic features influence the values
of the haptic input variables, denoted IH, when the
observer touches the mug. Similarly, the visual features
influence the values of the visual input variables,
denoted IV, when the observer views the mug.

The values of the input variables are ‘visible’
because the observer directly obtains these values as
percepts arising through touch and sight. However,
the feature and scene variables are not directly
observable and, thus, are regarded as hidden or
latent. The distribution of the latent variables may be
computed by the observer from the values of the visible
variables using Bayesian inference. For instance, based
on the values of the haptic and visual input variables,
the observer may want to infer the properties of the
scene. That is, the observer may want to compute
p(S|IH, IV).

To illustrate how an observer might compute
this distribution, we consider a specific instance of
sensory integration. We suppose that an observer both
sees and grasps a coffee mug, and wants to infer the
depth of the mug (i.e., the distance from the front of
the mug to its rear). Also we can suppose that the
observer’s belief about the depth of the mug given
its visual input has a normal distribution, denoted
N(µv, σ 2

v ). Similarly, the observer’s belief about the
depth given its haptic input has a normal distribution,
denoted N(µh, σ 2

h ). Then, given certain mathematical
assumptions, it is easy to show (as derived in many
publications; e.g., Ref 24) that the belief about the
depth, given both inputs, has a normal distribution
whose mean is a linear combination of µv and µh:

µv,h = σ−2
v

σ−2
v + σ−2

h

µv + σ−2
h

σ−2
v + σ−2

h

µh (4)

and whose variance is given by:

1

σ 2
v,h

= 1
σ 2

v
+ 1

σ 2
h

(5)

At an intuitive level, this form of sensory
integration is appealing for several reasons. First,
the variance of the depth distribution based on both
inputs σ 2

v,h is always less than the variances based
on the individual inputs σ 2

v and σ 2
h , meaning that

depth estimates based on both inputs are more precise
than estimates based on individual inputs. Second, this
form of sensory integration uses information to the
extent that this information is reliable or precise. This
idea is illustrated in Figure 4. In the top panel, the
distributions of depth given visual inputs and haptic
inputs have equal variances (σ 2

v = σ 2
h ). That is, the

inputs are equally precise indicators of depth. The
mean of the depth distribution based on both inputs
is, therefore, an equally weighted average of the means
based on the individual inputs. In the bottom panel,
however, the variance of the distribution based on
vision is smaller than the variance based on haptics
(σ 2

v < σ 2
h ), meaning that vision is a more precise

indicator of depth. In this case, the mean of depth
based on both inputs is also a weighted average of the
means based on the individual inputs, but now the
weight assigned to the visual mean is large and the
weight assigned to the haptic mean is small.

Do human observers perform sensory integra-
tion in a manner consistent with this statistically
optimal and intuitively appealing framework? Sev-
eral studies have now shown that, in many cases,
the answer is yes. Ernst and Banks25 recorded sub-
jects’ judgments of the height of a block when they
saw the block, when they grasped the block, and
when they both saw and grasped the block. These
investigators found that the framework accurately
predicted subjects’ multisensory judgments based on
their unisensory judgments. This was true when visual
signals were corrupted by small amounts of noise, in
which case the visual signal was more reliable, and also
when visual signals were corrupted by large amounts
of noise, in which case the haptic signal was more
reliable. Knill and Saunders26 used the framework
to predict subjects’ judgments of surface slant when

Volume 2, January /February 2011  2010 John Wiley & Sons, L td. 13



Overview wires.wiley.com/cogsci

P
ro

ba
bi

lit
y

P
ro

ba
bi

lit
y

Depth

Depth

Probability of
depth given
visual signal

Probability of
depth given
haptic signal

Probability of
depth given
visual signal

Probability of
depth given
haptic signal

Optimal depth
estimate given
both signals

Optimal depth
estimate given
both signals

FIGURE 4 | Bayesian model of sensory integration. (Top) A situation
in which visual and haptic percepts are equally good indicators of
depth. (Bottom) A situation in which the visual percept is a more
reliable indicator of depth.

surfaces were defined by visual stereo and texture cues
based on their slant judgments when surfaces were
defined by just the stereo cue or just the texture cue.
It was found that the framework provided accurate
predictions when surface slants were small, mean-
ing that stereo was a more reliable cue, and when
slants were large, meaning that texture was a more
reliable cue. Other studies showing that people’s mul-
tisensory percepts are consistent with the framework
include Alais and Burr,27 Battaglia et al.,28 Ghahra-
mani et al.,29 Jacobs,30 Körding and Wolpert,31 Landy
et al.,32 Maloney and Landy,33 and Young et al.34

PARAMETER LEARNING

Parameter learning occurs when one of the conditional
distributions inside a Bayesian network is adapted.
For example, in the Bayesian network on sensory
integration in Figure 3, let us suppose that an
observer’s probability distribution of visual inputs,
given its internal representation of the visual features,
is a normal distribution whose mean is equal to
a weighted sum of the values of the visual feature
variables. If we use Bayes’ rule to update the posterior
distribution of the weight values based on new data,
then this would be an instance of parameter learning.

Do people perform parameter learning in
the same manner as Bayesian networks? Various
aspects of human learning are captured by Bayesian
models. Perhaps the simplest example is a behavioral

phenomenon known as ‘backward blocking’.35

Suppose that in Stage 1 of an experiment, a person
is repeatedly exposed to two cues, denoted C1 and
C2, followed by an outcome O. The person will
learn that each cue is at least partly predictive of
the outcome. That is, the person will act as if there
is a moderate association between C1 and O and
also between C2 and O. In Stage 2, the person is
repeatedly exposed to C1 followed by O (C2 does not
appear in Stage 2). After Stage 2, the person will act
as if there is a strong association between C1 and O.
This is expected because the person has consistently
seen C1 followed by O. However, the person will also
act as if there is only a weak association between C2
and O. This is surprising because it suggests that the
person has retrospectively revalued C2 by diminishing
its associative strength despite the fact that C2 did
not appear in Stage 2 of the experiment.

Backward blocking and explaining away
(described earlier in the article) are similar phe-
nomena. In both cases, an unobserved variable is
revalued because an observed variable co-occurs with
an outcome. Explaining away is regarded as a form
of inference because it takes place on a short time
scale—the unobserved variable is revalued after a
single co-occurrence of an observed variable and an
outcome. In contrast, backward blocking is regarded
as a form of learning because it might take place on a
relatively longer time scale of multiple co-occurrences
of an observed variable and an outcome (although it
can also happen in very few exposures). Ultimately,
the distinction between inference, as in explaining
away, and learning, as in backward blocking, evap-
orates: Both inference and learning are modeled via
Bayes’ rule, but applied to variables with different
meaning to the theorist.

It is challenging for non-Bayesian models to
account for backward blocking. For example, accord-
ing to the well-known Rescorla–Wagner model,36 a
learner’s knowledge consists of a single weight value,
referred to as an associative strength, for each cue.
Learning consists of changing a cue’s weight value
after observing a new occurrence of the cue and out-
come. Because a cue’s weight value changes only on
trials in which the cue occurs, the learning rule cannot
account for backward blocking which seems to require
a change in C2’s weight value during Stage 2 despite
the fact that C2 did not occur during Stage 2 (for
references to non-Bayesian models that might address
backward blocking, see Ref 37).

In contrast, Bayesian learning can account
for backward blocking because a learner entertains
simultaneously all possible combinations of weight
values, with a degree of believability for each
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combination.37–40 That is, the learner maintains
a posterior probability distribution over weight
combinations, given the data experienced so far. In
the context of the backward blocking experiment,
this distribution is denoted p(w1, w2|{data}). Bayesian
rules can account for backward blocking as follows.
After the first stage of training, in which the learner
has seen cases of C1 and C2 together indicating the
outcome, the learner has some degree of belief in
a variety of weight combinations, including weight
values of w1 = 0.5, w2 = 0.5 (both C1 and C2 are
partially predictive of O), w1 = 1, w2 = 0 (C1 is fully
predictive of O but C2 carries no information about
O), and w1 = 0, w2 = 1 (C2 is fully predictive of O
but C1 carries no information about O). In Stage 2,
C1 alone is repeatedly paired with O and, thus,
belief increases in both the combination w1 = 0.5,
w2 = 0.5 and w1 = 1, w2 = 0. Because total belief
across all weight combinations must sum to one, belief
in w1 = 0, w2 = 1 consequently drops. The learner,
therefore, decreases the associative strength between
C2 and O, thereby exhibiting backward blocking.

Backward blocking is representative of only one
type of learning situation, referred to as discriminative
learning. In this situation, a learner’s data consist of
instances of cues and outcomes. The learner needs
to accurately estimate the conditional probability
distribution over outcomes given particular values
of the cues. This conditional distribution is called
a discriminative model, and it allows a learner to
predict the likely outcomes based on the given cue
values. Notice that the learner is not learning the
distribution of cues. In contrast, in a generative
learning situation, the learner learns the joint
distribution of cues and outcomes. A generative
model has latent variables to describe how underlying
states generate the distribution of cues and outcomes
simultaneously.41 In general, learning with latent
variables is a computationally difficult problem. It is
often approached by using inference to determine the
probability distributions of the latent variables given
the values of the observed variables (e.g., cues and
outcomes). These distributions over latent variables
are useful because they allow a learner to adapt its
parameter values underlying conditional distributions
of observed variables given values of latent variables.

Consider the problem of visual learning in
multisensory environments. Recall that the Bayesian
network in Figure 3 represents the mental model of
an observer that both sees and touches objects in a
scene. Also recall that the input variables (IV and
IH) are ‘visible’ because the observer obtains the
values of these variables when he or she touches
and views objects. However, the feature (FV and FH)

and scene variables (S) are not directly observable
and, thus, are regarded as hidden or latent. Visual
learning takes place when, for example, the observer
adapts the parameter values underlying p(IV|FV), the
conditional probability distribution associated with
its visual input variables. To adapt these values, the
observer needs information indicating how the values
should be modified because FV is an unobserved
variable. How can the observer’s visual system obtain
this information?

Suppose that the observer touches and sees an
object. The observer can infer the distribution of
the visual feature variables FV in two ways: She
or he can calculate the conditional distribution of
these variables given the values of both haptic and
visual input variables p(FV|IH, IV) or given only the
values of the visual input variables p(FV|IV). The first
distribution is based on more information and, thus,
it can be used as a ‘teaching signal’. That is, the
observer can adapt its visual system so that p(FV|IV) is
closer to p(FV|IH, IV). This example illustrates the fact
that multisensory environments are useful for visual
learning because nonvisual percepts can be used by
Bayes’ rule to infer distributions that can be used by
people when adapting their visual systems.42

The idea that inference provides important
information used during parameter learning lies at
the heart of the expectation-maximization (EM)
algorithm, an optimization procedure for maximizing
likelihood functions.43 Consider the Bayesian network
shown in Figure 5. The nodes in the top row
correspond to latent variables whose values are
unobserved, whereas the nodes in the bottom row
correspond to visible variables whose values are
observed. Data sets consist of multiple data items
where an item is a set of values of the visible variables.
According to the network, data items are generated as
follows. For each data item, the values of the latent
variables are sampled from their prior distributions,
and then the values of the visible variables are sampled
from their conditional distributions given the values
of the latent variables.

Latent
variables

Visible
variables

FIGURE 5 | Bayesian network characterizing a domain in which a
large number of visible variables are dependent on a small number of
unobserved latent variables.
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During learning, a learner uses a data set
to estimate the parameter values of the Bayesian
network. Importantly, learning seems to require
solving the following chicken-and-egg problem: In
order to learn the parameter values of the conditional
distributions, it seems necessary to know the values
of the latent variables. But in order to infer the values
of the latent variables, it seems necessary to know
the parameter values of the conditional distributions.
This chicken-and-egg problem is solved by the EM
algorithm. The algorithm is an iterative algorithm
with two steps at each iteration. During the E-step,
it uses the values of the visible variables and the
current estimates of the parameter values of the
conditional distributions to compute the expected
values of the latent variables. During the M-step,
it uses the values of the visible variables and the
expected values of the latent variables to re-estimate
the parameter values of the conditional distributions
as the values that maximize the likelihood of the
data. (The reader should note that the EM algorithm
is not a fully Bayesian algorithm because it finds
point estimates of the parameter values as opposed
to probability distributions over parameter values.
Nonetheless, the algorithm has played an important
role in the literature and, thus, we include it here.)

Specific instances of the use of the EM algorithm
to learn the parameter values for the Bayesian network
in Figure 5 are commonplace in the cognitive science
literature.44 In principal component analysis, data
typically exist in a high-dimensional space (i.e.,
there are many visible variables), and the learner
accounts for the data by hypothesizing that data
items are a linear projection from a lower-dimensional
space (i.e., there are relatively few latent variables).
Orthogonal axes of the lower-dimensional space
are discovered by analyzing the data’s directions of
maximum variance in the high-dimensional space.a

Factor analysis is similar to principal component
analysis, though the learner does not necessarily seek
to characterize the lower-dimensional space through
orthogonal axes. Instead, the learner seeks to discover
latent variables that account for correlations among
the visible variables. Mixture models in which the
mixture components are normal distributions also
fit in this framework. Here, the number of latent
variables equals the number of possible clusters or
categories of data items. The learner assumes that
each item was generated by a single latent variable
indicating the item’s cluster or category membership.

STRUCTURE LEARNING
Parameter learning is not the only type of learning that
can take place in a Bayesian network. Another type of

learning that can occur is referred to as ‘structure
learning’. In the examples of Bayesian networks
discussed above, the structure of a network was fixed,
where the structure refers to a network’s set of nodes
(or set of random variables) and set of directed edges
between nodes. Given certain assumptions, however,
it is possible to learn a probability distribution over
possible structures of a network from data.

Why are assumptions needed for structure
learning? It is because the space of possible structures
grows extremely fast. If there are n random variables,
then the number of possible structures grows super-
exponentially in n [see Ref 45; specifically, the rate
of growth is O(n!2n!/(2!(n−2)!))]. Consequently, it is
generally not computationally possible to search the
full space of possible structures.

Because the full space of structures cannot be
searched, it is common to define a small ‘dictionary’
of plausible structures. A researcher may decide that
there are n plausible structures worth considering for
a given domain. The researcher may then perform
‘model comparison’ by comparing the ability of each
structure or model to provide an account of the
data. Let {M1, . . . , Mn} denote a set of plausible
models. Then the researcher computes the posterior
probability of each model given the data using Bayes’
rule:

p(Mi|{data}) ∝ p({data}|Mi)p(Mi) (6)

The likelihood term p({data}|Mi) can be calculated by
including the parameter values for a model, denoted θ ,
and then by marginalizing over all possible parameter
values:

p({data}|Mi) =
∫

p({data}|Mi, θ)p(θ |Mi)dθ (7)

The distribution of the data is provided by a weighted
average of each model’s account of the data46:

p({data}) =
n∑

i=1

p({data}|Mi)p(Mi) (8)

This approach is referred to as ‘model averaging’.
Körding et al.47 presented a model-averaging

approach to sensory integration. Consider an envi-
ronment containing both visual and auditory stimuli,
and an observer that needs to locate events in space.
A problem for the observer is to determine whether
a visual stimulus and an auditory stimulus originate
from the same environmental event, in which case the
locations indicated by these stimuli should be inte-
grated, or if the visual and auditory stimuli originate
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from two different events, in which case the locations
indicated by these stimuli should not be integrated.
Körding et al.47 defined two plausible Bayesian net-
works, one corresponding to stimuli that originate
from the same event and the other corresponding
to stimuli that originate from different events. Using
a weighted average of the predictions of these two
networks, the overall system was able to quantita-
tively predict human subjects’ responses in a variety
of auditory–visual localization experiments.

As a second example, Griffiths et al.48 used
model averaging to account for human category
learning. They noted that most computational models
in the literature are either instances of prototype
theory, in which a single structure characterizes the
statistics of each category, or exemplar theory, in
which a different structure characterizes the statistics
of every exemplar. Rather than choose between
these two extremes, they used an approach (known
as Dirichlet process mixture models) that can be
implemented using a model that starts with one
structure, but then adds additional structures as
needed during the course of learning. The end result
is that the data indicate a probability distribution
over how many structures the model will have. For
some data sets, the model may tend to use very few
structures, whereas it may tend to use a large number
of structures for other data sets. Thus, the model
resembles neither a prototype theory nor an exemplar
theory, but rather a hybrid that possesses many of the
best features of both types of theories.

Because model averaging can be computation-
ally expensive, some researchers have pursued a less
expensive approach: they parameterize a family of
plausible structures, and then search for the parameter
values with the highest posterior probability. (The
reader should note that this approach is not strictly
Bayesian because it uses point estimates of the
parameter values instead of using the full posterior
probability distribution over parameter values.) This
approach essentially turns the structure learning
problem into a parameter learning problem. It is
typically implemented through the use of hierarchical
Bayesian networks in which distributions of param-
eters at the top of the hierarchy govern distributions
of parameters at lower levels of the hierarchy.

Perhaps the most successful example of the use
of this strategy comes from Kemp and Tenenbaum.49

These authors defined a hierarchy in which the
top level determined the form of a model, where
there were eight possible forms (not necessarily
mutually exclusive): partitions, chains, orders, rings,
hierarchies, trees, grids, and cylinders. The next level
determined the structure of a particular form. For

example, if a Bayesian network was to have a tree
form, then this level determined the particular tree
structure that the network would have. It was found
that the system consistently discovered forms and
structures that, intuitively, seem reasonable for a
domain. For example, using a database of votes
cast by Supreme Court justices, it was found that
a chain structure with ‘liberal’ justices at one end
and ‘conservative’ justices at the other end fit the
data best. Similarly, based on the features of a large
number of animals, it was found that a tree structure
with categories and subcategories closely resembling
the Linnaean taxonomy of species fit the data best.

Although structure learning is computationally
expensive, it can be extremely powerful because it
gives a system enormous representational flexibility.
A system can use the data to determine a probability
distribution over structures for representing that data.
This representational flexibility is a key feature of
Bayesian systems that is difficult to duplicate in other
types of computational formalisms.

PRIOR KNOWLEDGE
Bayesian inference and learning begin with a model of
observable variables (i.e., the likelihood function) and
prior knowledge expressed as relative beliefs across
different model structures and as the distribution
of beliefs over parameter values within specific
structures. The prior knowledge defines the space of all
possible knowable representations, and the degree to
which each representation is believed. The structure of
the model of observable variables and the constraints
imposed by prior knowledge strongly influence the
inferences and learning that result from Bayes’ rule.

Strong prior knowledge can facilitate large
changes in belief from small amounts of data. For
example, let us assume we have prior knowledge that
a coin is a trick coin that either comes up heads almost
all the time or comes up tails almost all the time.
In other words, the prior belief is that intermediate
biases, such as 30% heads, etc., are not possible. We
flip the coin once and find it comes up heads. From this
single bit of data, we infer strong posterior belief that
the coin is the type that comes up heads almost always.

The ability of people to learn from small
amounts of data can be addressed in a Bayesian
framework by strong constraints on the prior beliefs.
Let us assume, for example, that we do not yet know
the meaning of the word ‘dog’. If we are shown a
labeled example of a dog, what should we infer is
the meaning of ‘dog’? Children learn the extension of
the word in only a few examples but, in principle,
the word could refer to many sets of objects. Does
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the word refer to all furry things? To all things with
a tail? To all four legged things that are smaller
than a pony but bigger than a mouse? A model of
word learning proposed by Xu and Tenenbaum50 is
able to learn word-extension mappings very quickly,
in close correspondence to human learning, largely
by virtue of strong constraints on prior beliefs
regarding the space of possible extensions of words.
The Bayesian learning model has a prior distribution
that emphasizes hierarchically structured extensions
(e.g., dalmatians within dogs within animals) based
on perceptual similarity. It also includes a bias toward
extensions that are perceptually distinctive. Because
of the limited number of word meanings consistent
with the prior beliefs, only a few examples are needed
to sharply narrow the possible meaning of a word.

A powerful tool for Bayesian modeling is the
use of hierarchical generative models to specify prior
beliefs. The highest level of the prior specifies a generic
theory of the domain to be learned, brought to bear by
the learner. The theory generates all possible specific
model structures for the domain, and the priors within
structures.51,52 Learning simultaneously updates
beliefs within and across model structures. The power
of the approach is that instead of the hypothesis space
being a heuristic intuited by the theorist, its assump-
tions are made explicit and attributed to the learner’s
theory regarding the domain. An example of a gener-
ative hierarchical prior was described earlier, for rep-
resenting structural relations among objects.49 That
model uses a generative grammar as a theory for con-
structing the space of all possible structural relations
among objects. The generative grammar specifies iter-
ative rules for relational graph construction, such as
varieties of node splitting and edge construction. Each
rule has a probability of application, thereby implicitly
defining prior probabilities on the universe of all pos-
sible relational graphs. Another example comes from
Goodman et al.,53 who used a probabilistic generative
grammar to define a prior on the space of all possible
disjunctive-normal-form concepts. The prior implic-
itly favors simpler concepts, because more complex
concepts require application of additional generative
steps, each of which can happen only with small
probability. They showed that learning by the model
captures many aspects of human concept learning.

Intuitively, it seems obvious that people bring
prior knowledge to bear when learning new
information. But instead of the theorist merely posit-
ing a prior and checking whether it can account
for human learning, is there a way that the prior
can be assayed more directly? One intriguing pos-
sibility is suggested by Kalish et al.54 They showed
that as chains of people are successively taught an

input–output relationship from the previous learner’s
examples, the noise in the transmission and learning
processes quickly caused the learned relationship to
devolve to the prior. In other words, because of the
accumulating uncertainty introduced by each succes-
sive learner, the prior beliefs came to dominate the
acquired representation.

ACTIVE LEARNING: A NATURAL ROLE
FOR BAYESIAN MODELS

Until this point in the article, we have emphasized
the representational richness afforded by the Bayesian
approach, with the only ‘process’ being the application
of Bayes’ rule in inference and learning. But another
rich extension afforded by explicit representation of
hypothesis spaces is models of active learning. In active
learning, the learner can intervene upon the environ-
ment to select the next datum sampled. For example,
experimental scientists select the next experiment they
run to extract useful information from the world. This
active probing of the environment is distinct from all
the examples of learning mentioned previously in the
article, which assumed the learner was a passive recip-
ient of data chosen externally, like a sponge stuck to a
rock, passively absorbing particles that happen to be
sprayed over it by external forces.

One possible goal for active learning is maximal
reduction in the uncertainty of beliefs. The learner
should probe the environment in such a way that
the information revealed is expected to shift beliefs
to a relatively narrow range of hypotheses. Nelson55

described a variety of candidate goals for an active
learner. The point is that all of these goals rely on
there being a space of hypotheses with a distribution
of beliefs. Many aspects of human active learning have
been addressed by models of uncertainty reduction.
For example, the seemingly illogical choices made
by people in the Wason card selection task have been
shown to be optimal under certain reasonable priors.56

The interventions people make to learn about causal
networks can be modeled as optimal information
gain.57 And active choice in associative learning
tasks can be addressed with different combinations
of models, priors, and goals.38

CONCLUSIONS

As discussed above, Bayesian models can use a wide
variety of assumptions about the representation of
prior beliefs, observations, and task goals. Bayesian
modeling has been useful to cognitive scientists
because it allows these scientists to explore different
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sets of assumptions and their implications for ratio-
nal behavior on a task. This helps cognitive scientists
understand the nature of a task. When it is found that
a Bayesian model closely mimics human cognition on
a task, we have a useful explanation of how it is that
complex cognition may be possible and why it works
as it does, i.e., because it is normatively rational for
that type of representational assumption and task.

We have emphasized three types of infor-
mation processing operations in this article—infer-
ence, parameter learning, and structure learning—that
result from applying Bayes’ rule in different set-
tings because these types of operations occur in both
Bayesian models and human cognition. Does the fact
that human behavior often seems to be suboptimal
suggest that our emphasis on Bayesian operations is
misplaced? We think that the answer is no, and there
are at least two ways of justifying this answer.

First, some researchers have begun to claim that
human behavior may appear to be suboptimal, but
that this appearance is misleading. In fact, if cogni-
tive limitations are taken into account, then human
behavior is near-optimal.58 For example, Daw et al.59

argued that computational constraints may mean that
people cannot use Bayes’ rule to infer distributions
over unobserved variables due to the complexity of
the required calculations and, thus, people need to
resort to approximate inference methods. Among the
infinite variety of possible approximations, people
use the ‘best’ approximations within some class of
tractable approximations, where best can be defined
in various reasonable ways. The use of these best
approximations may help explain suboptimal behav-
iors. This type of approach to modeling suboptimal
behaviors is currently in its infancy, though recent
models show promise.60–63

Second, a complementary approach to the chal-
lenge of modeling suboptimal behavior is to change the
level of analysis. Although it may be natural to suppose
that individual persons perform Bayesian inference
and learning, it is also just as plausible, in principle,
that higher and lower levels of organization carry out
inference and learning. For example, single neurons
can be modeled as carrying out Bayesian inference and
learning.64 At the other extreme, it is not unreasonable
to model corporations as inferential and learning enti-
ties, perhaps even using Bayesian formalisms. When
the behavior being modeled is relatively simple, then

the Bayesian computations required for the model
are also relatively simple. For example, a Bayesian
model of a single neuron might be tractable with a
highly accurate approximation. The model remains
Bayesian, with all its explanatory appeal. To cap-
ture the behavior of complex systems of neurons,
what is needed is a way for these locally Bayesian
agents to communicate with each other. Kruschke65

described one reasonable heuristic for hierarchies of
locally Bayesian agents to interact. The framework
has been applied to an intermediate level of analysis,
in which functional components of learning are purely
Bayesian, although the system as a whole may exhibit
what appears to be non-Bayesian behavior because of
limitations on communications between components.
Sanborn and Silva62 described a way to reinterpret
Kruschke’s65 scheme in terms of approximate mes-
sage passing in a globally Bayesian model. Thus, what
may be approximately Bayesian at one level of analysis
may be Bayesian at a different level of analysis.

In summary, Bayesian models of inference and
learning provide a rich domain for formulating the-
ories of cognition. Any representational scheme is
allowed, so long as it specifies prior beliefs and observ-
able data in terms of probability distributions. Then
the engine of Bayes’ rule derives predictions for per-
ception, cognition, and learning in complex situations.
Moreover, by maintaining explicit representations of
beliefs over plausible hypotheses, the models also
permit predictions for active learning and active
information foraging. By analyzing the structures
of tasks—including the relationships between model
assumptions and optimal task performances—cogni-
tive scientists better understand what people’s minds
are trying to accomplish and what assumptions peo-
ple may be making when thinking and acting in the
world.

NOTES
aThe statements here are slightly misleading. In prac-
tice, principal components are not typically identified
via the EM algorithm because practitioners do not
consider principal component analysis from a prob-
abilistic viewpoint. However, if principal component
analysis is given a probabilistic interpretation,66,67

then the statements here are accurate.
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