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Listeners are exquisitely sensitive to fine-grained acoustic detail within phonetic categories
for sounds and words. Here we show that this sensitivity is optimal given the probabilistic
nature of speech cues. We manipulated the probability distribution of one probabilistic
cue, voice onset time (VOT), which differentiates word initial labial stops in English (e.g.,

“beach” and “peach”). Participants categorized words from distributions of VOT with wide
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or narrow variances. Uncertainty about word identity was measured by four-alternative
forced-choice judgments and by the probability of looks to pictures. Both measures closely
reflected the posterior probability of the word given the likelihood distributions of VOT,
suggesting that listeners are sensitive to these distributions.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

The goal of speech perception can be characterized as
finding the most likely intended message given a noisy
acoustic signal. Any two minimally different speech cate-
gories (e.g., words, syllables, phones or features) may vary
along several dimensions, with each dimension character-
ized by one or more acoustic-phonetic cues. These cues are
highly variable due to a variety of speaker-specific (e.g.,
Johnson, L Peterson & Barney, 1952adefoged, & Lindau,
1993; Perkell, Zandipour, Matthies, & Lane, 2002; Peterson
& Barney, 1952) and context-specific factors (e.g., Fougeron
& Keating, 1997; Moon & Lindbloom, 1994; Wouters & Ma-
con, 2002), are variable even when individual words are
produced by a single speaker in a consistent context in a
laboratory setting, and this variability seems to be roughly
normally distributed (Allen, Miller, & DeSteno, 2003; New-
man, Clouse, & Burnham, 2001). Thus when perceiving
speech, listeners are dependent on inherently probabilistic
evidence (acoustic-phonetic cues produced by the speak-
er) to make judgements about events in the world (in-
tended categories of the speaker). The goal of the current
paper was to assess whether listeners behave as “ideal
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observers” when using probabilistic acoustic information
to recognize words.

Ideal observer models are increasingly being applied to
perception in many domains and at multiple levels (e.g.,
Anderson, 1990; Barlow, 1957; Geisler, 1989; Griffiths &
Tenenbaum, 2006; Todorov, 2004). In these models, deci-
sions about perceptual information are guided by several
basic principles that guarantee that decisions will be opti-
mal. The first principle is to acknowledge that the world
provides only probabilistic information, which is inher-
ently ambiguous at any given time. A second principle is
that decisions should be made using all the available infor-
mation. In order to take full advantage of probabilistic
information these models use the entire probability distri-
bution for each information source and each source is
weighted according to its precision. The prediction for
speech perception is that listeners should be sensitive to
the entire probability distribution of acoustic-phonetic
cues for a word and the precision or amount of certainty
about a word that a particular cue provides should be in-
versely proportional to the variance of that cue for that
word.

The probability distribution of an acoustic-phonetic cue
for a particular word or speech category is the number of
times each value of the cue has occurred as a member of
that category. Fig. 1A shows hypothetical probability


mailto:mclayards@bcs.rochester.edu
http://www.sciencedirect.com/science/journal/00100277
http://www.elsevier.com/locate/COGNIT

M. Clayards et al./Cognition 108 (2008) 804-809 805

05
04r

03F

Cafegory
A

Likelihood

02r

Calegory

01

B 0

1.0 T T

081
06}
04r

02r

0 ; . .
-30 20 10 0O

Prob. Response "A"

10 20 30 40 50 60 70 80
VOT (msec)

Fig. 1. (A) Probability distributions of tokens that listeners categorized in
the narrow condition (dark lines) and wide condition (light lines). (B)
Optimal response curves calculated from the probability distributions
using Eq. (1) for the narrow condition (dark lines) and wide condition
(light lines).

distributions for categories differing along a particular
acoustic-phonetic dimension, voice onset time (VOT).
The darker lines correspond to categories which are pro-
duced more consistently and thus have narrower distribu-
tions; the lighter lines to categories produced less
consistently with wider distributions. Both pairs of distri-
butions represent situations where an acoustic-phonetic
cue (VOT) is available to distinguish between two catego-
ries (A and B). The means of the distributions are the same
distance apart but the variances differ. If listeners are act-
ing as ideal observers, the increased overlap in the distri-
butions with greater variance (lighter lines) will result in
increased uncertainty (decreased precision) about which
category they are hearing.

To formalize this prediction, we define the task of the
listener as determining for a particular token, stimX, the
probability it came from category A (P(categoryA|stimX)).
The optimal solution is given by (1) where P(stimX|catego-
ryA) is the probability distribution of cue X for category A.

P(stimX|categoryA)
(stimX |categoryA) + P(stimX|categoryB)
(1)

Eq. (1) is a simplification of Bayes’ rule that ignores the role
of prior probabilities for each category (i.e., all categories
are equally likely), a point we return to later. In the optimal
solution, then, the posterior probability of a particular cat-
egory given an acoustic-phonetic cue (P(categoryA|stimX))
is proportional to how often that cue value has occurred
with that category in the past (P(stimX|categoryA)), relative
to how often it has occurred with any category
(P(stimX|categoryA) + P(stimX|categoryB)). The optimal
solution for each of the pairs of distributions in Fig. 1A is
illustrated in Fig. 1B. Note that for both solutions the cate-
gory boundary (point where the function crosses 0.5) is in

P(categoryA|stimX) = P

the same place along the x-axis, but the slopes of the cate-
gorization functions differ, reflecting the increased uncer-
tainty in the case of the wide distributions. If listeners
are making decisions using the entire probability distribu-
tions, we predict different categorization slopes for differ-
ent amounts of category variance (overlap). Furthermore
the ideal observer model makes a quantitative prediction
about the amount of uncertainty (slope of the categoriza-
tion function) given the amount of overlap (variance of
the probability distributions). This describes the minimal
amount of uncertainty for an ideal observer. We also ex-
pect some amount of additional uncertainty for actual
observers in both situations due to internal and external
noise in estimating the probability distributions. This addi-
tional uncertainty should not depend on the specific distri-
butions of the cues and should be the same for observers
categorizing both pairs of distributions.

Fine grained sensitivity to acoustic-phonetic cues is re-
quired for listeners to track the distributions of acoustic—
phonetic cues. Early models of speech perception treated
within-category variance as noise. Mechanisms such as
categorical perception were thought to define ideal bound-
aries along a continuum, with all exemplars within those
boundaries treated as identical category members (Liber-
man, Harris, Hoffman, & Griffith, 1957; Liberman, 1996).
However, considerable evidence has accumulated that lis-
teners are sensitive to within-category differences. For
example, differences in: reaction time (Pisoni & Tash,
1974), category goodness ratings (Miller & Volaitis,
1989), degree of semantic priming (Andruski, Blumstein,
& Burton, 1994), patterns of eye movements (McMurray,
Tanenhaus, & Aslin, 2002), and neural patterns of activity
(Blumstein, Myers, & Rissman, 2005) have all been docu-
mented for within-category VOT differences. In addition
both infants and adult listeners use distributional informa-
tion to find the number of categories along a continuum
(Maye & Gerken, 2000; Maye, Weiss, & Aslin, 2008; Maye,
Weker, & Gerken, 2002) and the optimal boundary be-
tween categories (Clarke & Luce, 2005). These results are
consistent with an ideal observer model. What has thus
far not been shown, however, is that listeners are sensitive
to the entire probability distribution of an acoustic-pho-
netic cue, and in particular the variances as predicted by
Eq. (1).

We tested this hypothesis by manipulating the proba-
bility distributions of tokens along a VOT continuum in a
category judgement task. In English, VOT (the time be-
tween the release burst and the onset of voicing in the vo-
wel) is the dominant cue to voicing (Lisker & Abrahmson,
1964) in word initial position. Short VOTs correspond to
words such as “beach” and long VOTs to words such as
“peach”. The stimuli were tokens from two probability dis-
tributions (shown in Fig. 1A) centered around 0 and 50 ms
(the prototypical category means for “beach” and “peach”
in American English). For one group of participants, stimuli
came from a pair of distributions with relatively wide var-
iance (14 ms), and for another group, stimuli came from a
pair of distributions with relatively narrow variance
(8 ms). Importantly both pairs of distributions contain
the same number of tokens overall and the same category
means. Participants categorized the stimuli by clicking on
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the picture they thought was appropriate (e.g., a peach).
Each trial was both a test and a training trial; there were
not separate training and testing phases. Using Eq. (1),
we predicted the probability that listeners would choose
the peach for each step along the VOT continuum (Fig. 1B).
In the categorization task described above (but without
the distributional manipulation), McMurray et al. (2002)
found that looks to the competitor object (the beach when
the listener chose the peach) increased with increasing dis-
tance from the category boundary. If the proportion of time
listeners spend looking at each object reflects how strongly
they are considering that object as a potential referent,
then according to our model, proportion of looks should re-
flect the posterior probability of each object given a partic-
ular VOT value. Fig. 4A shows the posterior probability of
each category (calculated from (1) as before) for the less
likely object (i.e., the competitor) for each VOT value given
our distributions. Posterior probability increases for VOT
values closer to the category boundary, similar to the in-
crease in looks to the competitor object in McMurray
et al. Importantly, our model makes two new predictions.
The first is that the increase in posterior probability is
not linear, but rather varies little around the category
mean and then increases rapidly near the category bound-
ary. The second is that the posterior probability is a func-
tion of the uncertainty in the distributions. For
distributions with greater overlap (light lines), posterior
probability increases more quickly than for distributions
with less overlap (dark lines). If the proportion of looks
to each object reflects the posterior probability, we expect
to see different patterns for listeners who are categorizing
stimuli from distributions with different variances.

2. Methods

Participants were 24 monolingual native English-speak-
ing students from the University of Rochester with no
known hearing problems (12 each in the wide and narrow
conditions). Participants were tested individually in a quiet
room. Sessions lasted approximately 1 h. Participants were
given the opportunity to take breaks and were paid $7.50.

3. Materials

Auditory stimuli were synthesized using the Klatt-
works! interface to the 1988 Klatt synthesizer (Klatt,
1980). VOT was manipulated in twelve 10 ms steps from
—30 to 80 ms. Negative VOT values were created by adding
voicing before the stop burst. Positive VOT values were cre-
ated by replacing successive frames of voicing after the stop
burst with aspiration. All other parameters were held con-
stant across words and were modeled on natural stimuli.
Three continua were created with endpoints corresponding
to “beach”-“peach”, “beak”-“peak” and “bees”-“peas”. Each
group of listeners heard 228 tokens, 76 from each of the
three continua. The number of tokens of each step is shown
in Table 1. Six filler items were also synthesized: “lake”,

” o«

“rake”, “lace”, “race”, “lei” and “ray”.

1 Available from Bob McMurray: bob-mcmurray@uiowa.edu.

4. Procedure

Participants were seated in front of a computer screen
at a comfortable viewing distance and wore an SR Eyelink
II head mounted eye-tracker with a sampling rate of
250 Hz. Auditory stimuli were presented over Sennheiser
HD 570 head phones at a comfortable listening level. The
session began with 12 familiarization trials in which
participants saw the pictures and their corresponding
written labels once each. No auditory stimuli were pre-
sented during familiarization.

Each experimental trial began with a display containing
four pictures, two test items and two filler items, one in
each quadrant (Fig. 2). One of the auditory stimuli was
presented and participants chose the picture they thought
most appropriate by clicking on it with the mouse. Eye
movements were monitored from the onset of the auditory
stimulus until participants made a response.

Each participant heard an equal number of test and fil-
ler items. For a particular display all alternatives were
equally likely. Trials were randomly ordered. Filler items
were included to provide some variety in the task and to
make the design less obvious to the listeners.

5. Results

Categorization functions were fit for each participant in
the two cue-variability conditions using a fitting algorithm
designed for psychometric functions (Wichmann & Hill,
2001)2. Participants were excluded and replaced if their fit-
ted category boundaries were more than 15 ms different
from the 25 ms boundary used in the distribution (two
participants were replaced in the wide condition). Fig. 3A
and B show individual categorization functions for listeners
in the narrow (mean RMSE=0.07) and wide (mean
RMSE = 0.05) conditions. As predicted, categorization func-
tions in the wide condition had shallower slopes?
(mean = 6.2, sd =0.89) than functions in the narrow condi-
tion (mean = 3.5, sd = 0.76). This difference was significant
(¢(22) = —-2.4, p=0.02). The slopes of the functions in each
condition were compared to the optimal function given
the distributions. Fig. 3C shows the optimal function given
the narrow distributions (solid line) and the empirically
obtained function (dashed line) using the average slope of
listeners in the narrow condition. Fig. 3D shows the optimal
function and empirically obtained function for the wide
condition. As predicted, listeners are less certain than the
optimal observer given either of the distributions.

While the source of this additional uncertainty is
unknown, and may differ from listener to listener, it should

2 The function fit was f(x) = (1 —7 — 2) HE‘% + y where a corresponds
to the boundary (50% point), b to the slope (variance of the cumulative
distribution). The last two variables, y and 2, are the lapse rates (upper and
lower asymptotes) and are included to model stimulus independent errors
(lapses) which are known to bias fits if not accounted for (Swanson & Birch,
1991). These parameters were constrained to be less than 5% which is
thought to be the range of lapsing in psychophysical paradigms (Wichmann
& Hill, 2001).

3 Slope in this case is beta from Wichmann and Hill (2001). This is not the
same as the derivative at the 50% point of the function. As slope gets
steeper beta decreases while the derivative increases.
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Table 1
Number of repetitions of each VOT value in the narrow and wide variance conditions
VOT -30 -20 -10 0 10 20 30 40 50 60 70 80
Narrow 0 3 27 54 27 3 3 27 54 27 3 0
Wide 3 12 27 30 27 15 15 27 30 27 12 3

. . ) 1

not vary for the two Fondmgns. We quantlﬁled the amount p(CategoryAlstimX) — __ 2)
of additional uncertainty using the observation of Feldman 1 + e-gstimX+
a;ld Griffiths (2007) that given the categorization function the slope (g) is given by (3). The equation in (3) assumes
() that both categories have the same variance (6Zoy45)

Fig. 2. Example display screen containing the items “beach”, “peach”,
“lace” and “race”. Locations of items were randomized across trials.
Actual displays were in color.

and any additional uncertainty can be described as a
Gaussian distribution with zero mean and some variance

(a%)-

:uCategoryA - luCategm'yB
slope = 5
CategoryA,B + O-N

3)

Using (3), the g% values for both groups (Narrow = 10.7,
Wide = 10.8) were very similar, suggesting that the same
additional source of uncertainty affected responses in both
groups and was independent of the distributions
themselves.

We also examined eye movements (Allopenna, Magnu-
son, & Tanenhaus, 1998). From the posterior probability
functions in Fig. 4A, we predicted that the largest differ-
ence in looks to the competitor object (i.e., “peach” for
short VOTs and “beach” for long VOTs) between the two
groups would be at 20 and 30 ms, a smaller difference at
10 and 40 ms, and no difference at other VOT values.
Because there were so few trials at VOT values of —20,
20, 30 and 70 ms (see Table 1), we could not analyze eye
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Fig. 3. Fitted response curves for individual participants in (A) narrow condition and (B) wide condition. Optimal response curves (solid lines) and curves
from average slope of individuals (dashed lines) for participants in (C) narrow condition and (D) wide condition.
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Fig. 4. Relationship between posterior probability and looks to the competitor object for each VOT. (A) Posterior probabilities of the competitor words
calculated using Eq. (1) for the narrow (dark lines) and wide (light lines) distributions. (B) Proportion of looks to the competitor object for the narrow group
(shaded bars) and wide group (open bars) for all VOT values with sufficient trials to analyze. Error bars indicate SEM. p < .05.

movements for these values. Fig. 4B shows the proportion
of looks for the remaining VOT values. A repeated mea-
sures analysis of variance (ANOVA) was performed sepa-
rately for the “b” (-10,0,10) and “p” (40,50,60) sides of
the continuum. On the “b” side there was a significant ef-
fect of VOT (F(2,44)=9.09, p <.0001), a significant effect
of condition (F(1,22)=5.2, p<.05), and no interaction
(F(2,44)=1.08,p = 0.42). On the “p” side there was a signif-
icant effect of VOT (F(2,44) = 13.4, p <.0001), no effect of
condition (F(1,22)=3.5, p=.07), but a significant interac-
tion (F(2,44) = 4.60, p < 0.05). As predicted, the largest ef-
fects were at 10 and 40 ms. Planned t-tests showed that
the effect of group was significant both for 10 ms
(¢(22)=2.10, p <.05) and for 40 ms (t(22) = —2.22, p <.05)
but not for any other VOT values. The size of the effect
was slightly larger on the “p” side of the continuum. Natu-
ral VOT values are more variable for the “p” than for the
“b” category (Lisker & Abrahmson, 1964) and a production
study using the words from the present study found the
same pattern. This asymmetry may have made listeners
more sensitive to our manipulation for the “p” category.

6. Discussion

We evaluated an ideal observer model, which used the
probability distribution of an acoustic-phonetic cue (VOT)
to estimate the probability that a token was an example of
a particular category (e.g., “peach”). Our results provide
two kinds of evidence in support of this model. First, the

average categorization slopes for the two conditions were
well predicted by the distributions of the cues, given some
additional source of uncertainty constant across both con-
ditions. Second, participants’ uncertainty about their deci-
sion (as indexed by looks to the competitor object) also
followed the pattern predicted by the distribution of cues.
Any ideal observer model makes specific assumptions
about the task (goals) of the observer. We described the
goal in terms of categories and the evidence in terms of
probabilistic acoustic-phonetic cues, and we excluded all
other sources of information. We assumed that the catego-
ries listeners were identifying were lexical items. However,
our data are also consistent with feature level categories
(e.g., voiced and voiceless), phoneme level categories
(e.g., /b/ and [p/) or syllable level categories (e.g., /bi/ and
/pi/). In this study it is not possible to know at which level
listeners tracked these distributions or to what degree they
would generalize to other examples (e.g., other voiced
stops or words containing /bi/ and /pi/). It remains an
important theoretical and empirical question to determine
over which categories listeners calculate distributions.
Describing the evidence in terms of probabilistic cues is
also important. It is a powerful characterization because
any acoustic variable can be incorporated, so long as it is
informative. Moreover, the informativeness of the cue is
defined by its distribution for each category. In the ex-
treme, a cue with completely overlapping distributions
for each category would be uninformative. Thus we have
a principled way to make a quantitative prediction about
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the contribution of any acoustic variable to word
recognition.

Our model considered only the role of information
available in the probability distributions of acoustic-pho-
netic cues. For the purposes of our categorization task, this
may be all the information that is available. For speech per-
ception in general, however, the signal is much richer and
listeners may use other information in making their deci-
sions. A more complete model would incorporate all avail-
able information, including information from the
situational and linguistic contexts. Any of this information
could affect the prior probability of a particular category,
thereby creating a bias towards one category over another.
Norris and McQueen (2008) present a Bayesian model of
continuous speech that incorporates these assumptions
and is consistent with our results from isolated words.

It is also important to note that many sources of vari-
ability (e.g., from speaker or context) were excluded from
this experiment. Important questions for future research
will be how listeners cope with this additional variability,
if they can make use of the context it occurs in and
whether they will also behave optimally under the more
variable circumstances found in natural language.

In summary, the close relationship between posterior
probability and both response choice and probability of
looks to an object suggests that these two measures reflect
listener’s estimates of posterior probability. Furthermore,
it suggests that listeners are acting in a manner consistent
with the probability distributions they have heard when
using acoustic information to recognize words.
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