
A

E
M
c
p
A
a
p
r
©

K
E

1

d
(
t
m
f

U
T

D

a

e

0
d

Neurobiology of Aging 32 (2011) 1742–1755

Brain ERP components predict which individuals progress to
Alzheimer’s disease and which do not

Robert M. Chapman ∗, John W. McCrary, Margaret N. Gardner, Tiffany C. Sandoval 1,
Maria D. Guillily 2, Lindsey A. Reilly 3, Elizabeth DeGrush 4

Department of Brain and Cognitive Sciences and Center for Visual Science at the University of Rochester, Rochester, NY 14627, USA

Received 2 April 2009; received in revised form 22 October 2009; accepted 13 November 2009
Available online 14 December 2009

bstract

Predicting which individuals will progress to Alzheimer’s disease (AD) is important in both clinical and research settings. We used brain
vent-Related Potentials (ERPs) obtained in a perceptual/cognitive paradigm with various processing demands to predict which individual
ild Cognitive Impairment (MCI) subjects will develop AD versus which will not. ERP components, including P3, memory “storage”

omponent, and other earlier and later components, were identified and measured by Principal Components Analysis. When measured for
articular task conditions, a weighted set of eight ERP component conditions performed well in discriminant analysis at predicting later
D progression with good accuracy, sensitivity, and specificity. The predictions for most individuals (79%) had high posterior probabilities

nd were accurate (88%). This method, supported by a cross-validation where the prediction accuracy was 70–78%, features the posterior
robability for each individual as a method of determining the likelihood of progression to AD. Empirically obtained prediction accuracies

ose to 94% when the computed posterior probabilities for individuals were 0.90 or higher (which was found for 40% of our MCI sample).

2009 Elsevier Inc. All rights reserved.

eywords: Event-Related Potentials (ERP); Biomarker; Neurophysiology; Mild Cognitive Impairment (MCI); Alzheimer’s disease (AD); Diagnosis; Prediction;
EG; Principal Components Analysis (PCA); Discriminant analysis; Posterior probability; Early detection
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. Introduction

There is a pressing need for a reliable method of early
etection in the study and treatment of Alzheimer’s disease
AD), an age-related neurological illness with early cogni-

ive and behavioral disruption particularly in the domain of

emory. Specifically, the discovery of a biological marker
or early detection of AD is vital. Brain Event-Related Poten-
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ials (ERPs) may have the power to predict AD progression
n individuals with impaired mental functioning that does
ot reach the severity of clinically defined AD, a disorder
nown as Mild Cognitive Impairment (MCI) (Petersen et al.,
999, 2001). Amnestic MCI is defined as memory difficulties
ithout impairment in other cognitive domains or impact on

ctivities of daily living and is considered a transitional state
etween normal aging and AD (Petersen, 2004). Because not
ll patients with MCI progress to AD, this group is of great
nterest for research on predicting individuals who progress
ersus those who do not. Brayne (2007) discussed the need
or early detection and prediction and lamented that research
esults refer to groups, not individuals. Our research has
eveloped methods with cognitive ERPs that are sufficiently
obust to predict MCI individuals who will develop AD with

ssociated probability of progression for each individual.

Brain ERP components related to memory (Düzel et al.,
999; Farah et al., 1988; Missonnier et al., 2003, 2004), vision
Begleiter et al., 1993, 1995; Friedman et al., 1981), and stim-
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lus expectations (Donchin, 1981; Hagen et al., 2006) may
e useful in understanding the cognitive deterioration seen
n some MCI patients as they progress to AD. ERP compo-
ents have been used to discriminate between normal aging
nd AD (Chapman et al., 2007), and it has been reported
hat ERPs may have important predictive power in measur-
ng degeneration from MCI to AD (Missonnier et al., 2005,
007; Olichney et al., 2002, 2008). In this article, an ERP
omponent structure that was previously identified and mea-
ured by Principal Components Analysis (PCA) and tested
o be discriminatory of AD from normal aging (Chapman et
l., 2007) was applied to MCI subjects to determine if ERP
easures can be combined in a formal weighted fashion to

redict progression to AD in MCI individuals.
The method and results presented in this paper generate

nd feature the posterior probabilities of group membership
or each individual, a facet of predicting AD progression that
e have not seen explored. Although it is often convenient

o consider a diagnosis to be a binary decision between the
xistence of a disease in a patient or not, this may not capture
he progressive nature of a dementia such as Alzheimer’s
isease. The posterior probability can be used to indicate the
ikelihood of an individual developing AD (as demonstrated
ere) and perhaps might represent a measure of progression
rom a healthy, stable state to a demented state. Knowing
ith a probability which individuals will develop AD at a

ater date would allow early therapeutic and pharmacologic
nterventions.

. Methods

.1. Study subjects

We used 43 elderly individuals diagnosed with Mild Cog-
itive Impairment (MCI) (Table 1). These subjects were
ecruited from the Geriatric Neurology and Psychiatry Clinic
t the University of Rochester and other affiliated Univer-
ity of Rochester clinics. All MCI subjects were evaluated
y memory-disorders physicians and met current consen-
us criteria for the amnestic subtype of MCI (“a-MCI”)
Petersen et al., 1999, 2001; Petersen, 2004). (In this article,

e will use the term “MCI” to refer to amnestic MCI.) Each
CI subject was subsequently determined to either have

rogressed to clinically defined AD (through the NINCDS-
DRDA criteria (McKhann et al., 1984) and DSM-IV-TR

(

i

able 1
ubject demographics. Values appear as mean (SD). The age and education inform
ffect, or group by gender interaction for the age and education demographics. Thr
ot provide education information.

roup Gender

ild Cognitive Impairment (MCI) (n = 43)
Progress (n = 15) Three females, 12 males
Stable (n = 28) Fifteen females, 13 males

a Mini-Mental State Examination (Folstein et al., 1975).
f Aging 32 (2011) 1742–1755 1743

riteria for Dementia of the Alzheimer’s Type (Diagnostic
nd Statistical Manual of Mental Disorders-Fourth Edi-
ion, Text Revision; American Psychiatric Association, 2000))
r to have remained stable with regard to cognitive state.
hese independent determinations were made through clini-
al follow-ups at a later date by the same memory-disorders
hysicians, who were blind to our study data. Those who
rogressed were given the typical clinical assessment of
probable” AD (but referred to here as AD for brevity’s
ake). The clinical diagnosis of MCI and AD was based
n a detailed patient history, relevant physical and neuro-
ogical examinations and laboratory findings, and imaging
tudies routinely performed as part of the clinical assessment
f dementia (Petersen et al., 2001). Separate cognitive testing
as performed by the memory-disorders physicians to assist
ith their diagnosis; these tests included the Mini-Mental
tate Examination (MMSE) (Folstein et al., 1975), a clock
ace drawing, the Auditory Verbal Learning Test (Rey, 1964;
aylor, 1959), and a category fluency task (animal naming).

In order to match the terminology of the medical commu-
ity, we will use the term “Progress” to indicate the disease
s progressing. Of the 43 MCI patients, 15 were subsequently
iagnosed with AD (the Progress to AD group, or Progress
roup) and 28 were not (the Stable group). The median num-
er of years between the initial diagnosis of MCI and the
ubsequent diagnosis of AD was 0.9 (min = 0.3, max = 3.9,
D = 1.1) for the Progress group. For the Stable group, the
edian number of years between the initial MCI diagnosis

nd the most recent clinical work-up was 2.07 (min = 0.3,
ax = 4.8, SD = 1.2). Although the time between our base-

ine ERP data collection and clinical follow-up was short for
ome subjects, we included as many participants with follow-
p information as possible to boost the sample size used in
ur analysis understanding that some members of the Stable
roup may not have been given enough time to progress to
D. The gender, age, education, and MMSE demographics

or each group appear in Table 1. There were no significant
p < 0.05) group or gender differences for age and education.
n the Progress group, 7 of the 15 individuals were taking
holinesterase inhibitors and/or memantine at the time of
esting. In the Stable group, 11 of the 28 individuals were
aking these medications. The proportions taking these med-
cations were not significantly different between these groups

Fisher’s Exact Test, χ2(1, n = 43) = 0.78, p = 0.52).

Exclusion criteria for all groups included clinical (or imag-
ng) evidence of stroke, Parkinson’s disease, HIV/AIDS,

ation is in number of years. There was no significant group effect, gender
ee subjects did not have MMSE scores, and two of those subjects also did

Age Education MMSEa

76.7 (5.2) 15.7 (2.1) 25.0 (3.2)
74.8 (8.8) 14.2 (2.6) 27.1 (2.5)
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nd reversible dementias, as well as treatment with benzo-
iazepines, antipsychotic, or antiepileptic medications. As
n additional inclusion criterion, all subjects had a previ-
usly administered score of 21 or higher on the MMSE
this criterion included AD subjects recruited for this and
ther research; the MCI subjects used in this study had mean
MSE scores of 25 or 27 (Progress or Stable) as shown in

able 1). Our study received IRB approval from the Uni-
ersity of Rochester Research Subjects Review Board, and
nformed consent was obtained from each subject.

.2. Neuropsychological assessment

In addition to the cognitive testing performed by the
emory-disorders physicians who routinely evaluated our

ubjects, we administered a neuropsychological test battery
o the MCI participants when the ERP data was collected
s part of our experimental paradigm. We designed the
attery to produce a comprehensive sample of cognitive pro-
esses. Among others, the tests included measures of memory
etrieval and retention, generative fluency, executive func-
ion, visuospatial abilities, and attributes of mood and daily
iving. The results of these neuropsychological tests appear
n Table 2. Only five measures reached statistical signifi-
ance at p < 0.01, which was selected as a more conservative
hreshold than 0.05 yet one that is less strict than the Bonfer-
oni adjustment. All five measures were memory measures,
nd only one of these measures relates to executive function
the Hopkins Verbal Learning Test Discrimination Index). All
ther measures of executive function were not significantly
ifferent between the groups. There was no significant differ-
nce between the two MCI subgroups in comorbid depressive
ymptoms (as shown through the Geriatric Depression Scale)
r in impact of disease on daily activities (indicated by the
lessed Dementia Scale). In general, the mean scores for the
eriatric Depression Scale for each group were considered

normal” for depressive symptoms (Hickie and Snowdon,
987).

The neuropsychological assessment shown in Table 2 was
ot used by the memory-disorders physicians in their diag-
osis of the MCI patients. Their diagnostic decisions were
ade completely independent of any data collected in our

aboratory. While the two MCI subgroups performed slightly
ifferently, no MCI subject reached the diagnostic criteria
or AD. Additionally, on average the subjects of each group
id not score 1.5 SD below the normative mean on tests
f other cognitive domains aside from memory, a criterion
ffered by Petersen (2004) as indicative of amnestic MCI-like
mpairment. In examining each individual’s neuropsycholog-
cal test results, four subjects may have had impairments
n domains secondary to memory (cognitive domains as
efined by the NINCDS-ADRDA criteria). One member of

he Progress group had impairment in the language domain
nd three individuals had impairments with problem-solving
one member of the Progress group and two members of the
table group). However, even if some of the subjects had clin-

o
e
a
r

f Aging 32 (2011) 1742–1755

cally undiagnosed multiple-domain amnestic MCI, Petersen
2004) indicated that the pattern of progression in both single-
omain and multiple-domain amnestic MCI tends to lead to
D (when other factors, such as a vascular or mood com-
onent, are excluded, as was done by the memory-disorders
hysicians).

The neuropsychological assessment is reported here to
elp characterize the MCI group in this sample. Detailed anal-
ses of these data are not reported here because this paper is
ocused on ERP measures.

.3. The Number–Letter paradigm

Subjects completed a Number–Letter paradigm which
mployed a visual task with memory and other cognitive
emands. Memory storage of the first relevant stimulus was
equired in order to compare it with the second relevant
timulus. Thus, in order to complete the task, the subjects
iscriminated between stimuli relevant and irrelevant to the
ask. Two numbers and two letters were flashed individually
n random order at intervals of 750 ms preceded and followed
y a filled square comparable in size to the numbers and
etters. All visual stimuli were white presented briefly
∼20 ms) on a dark background. On a number-relevant block
f trials, the participant compared the two numbers in each
rial for numerical order, the letters being irrelevant to the
ask. On another block of trials, the numbers were irrelevant
nd the task involved comparing the two letters for alphabetic
rder. At the end of each trial, the participant said “Forward”,
Backward”, or “Same” to indicate the order of the two
elevant stimuli. The numbers (1–6) and letters (A–F) were
andomly chosen, and the sequences of numbers and letters
n the four temporal intratrial positions were randomized
constraint of two numbers and two letters per trial). Every
articipant was shown a randomized sequence of trials.
ne block of 102 number-relevant and one block of 102

etter-relevant trials were completed by each subject. Sub-
ects were provided practice trials before these experimental
locks began.

Our MCI subjects were able to perform the task with strong
uccess. The Progress group on average answered correctly
n 95.1% (SD = 3.7%) of the trials, and the Stable group
erformed at 96.1% (SD = 3.9%). Both groups were similar
o like-age, cognitively normal Controls (96.0%, SD = 2.6%).

.4. EEG recording

Scalp electrodes (O1, O2, OZ, T3, T4, T5, T6, P3, P4,
Z, C3, C4, CZ, F3, F4, and EOG with reference to linked
arlobes) recorded electrical brain activity while the partic-
pant performed the Number–Letter task. To begin with a
impler model developed for clinical purposes, we will limit

ur report in this case to analysis of ERPs at CZ. Picton
t al. (2000) wrote in their guidelines that ERPs can be
dequately examined for clinical purposes using a single
ecording channel. Collecting ERP functions at a distance
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Table 2
MCI Progress and MCI Stable group means (SDs) for each of the neuropsychological tests.

Test measure Group mean scores p-Value†

Progress (n = 13)a Stable (n = 27)a

Rey–Osterrieth Complex Figure (Rey, 1941; Osterrieth, 1944)
Copy score 26.8 (7.4) 30.8 (3.9) NS
Immediate recall score 4.3 (5.2) 10.6 (6.8) <0.01
Delayed recall score 5.2 (5.5) 9.5 (7.2) NS

Mini-Mental State Examination (Folstein et al., 1975)
Score 25.0 (3.2) 27.1 (2.5) NS

WMS-III Digit Span (Wechsler, 1997)
Forward score 6.3 (1.1) 6.3 (1.0) NS
Backward score 4.8 (1.0) 5.0 (1.3) NS
Letter–number sequencing 4.5 (1.3) 5.0 (1.3) NS

Geriatric Depression Scale (Yesevage et al., 1983)
Score 7.2 (7.7) 6.5 (4.6) NS

WMS-R Logical Memory I (Wechsler, 1945; Wechsler, 1987)
Total recall score 23.2 (11.5) 34.7 (10.7) <0.01

WMS-R Logical Memory II (Wechsler, 1945; Wechsler, 1987)
Total recall score 9.2 (10.8) 17.6 (9.9) NS
Recognition score 20.9 (5.3) 24.1 (3.9) NS

Clock drawing test (Tuokko et al., 1992)
Score 18.5 (1.3) 18.6 (2.3) NS

North American National Adult Reading Test (Grober and Sliwinski, 1991)
Score 38.2 (7.2) 37.3 (8.3) NS

Stroop test (Golden, 1978)
Color–word score 26.6 (10.8) 27.3 (9.3) NS

Brief Visuospatial Memory Test-Revised (Benedict and Groninger, 1995)
Total recall score 7.5 (5.2) 12.7 (7.7) NS
Delayed recall score 2.1 (2.1) 4.5 (3.4) NS
Discrimination index 4.6 (1.6) 4.4 (1.3) NS

Controlled Oral Word Association Test (Benton and Hamsher, 1976)
Total score (F, A, S) 34.5 (17.2) 37.6 (12.4) NS

Category fluency (Benton and Hamsher, 1976)
Score (animal naming) 13.4 (5.7) 16.5 (5.3) NS

Blessed Dementia Scale (Blessed et al., 1968; Morris et al., 1989)
Score 1.8 (1.8) 1.3 (1.4) NS

Hopkins Verbal Learning Test (Brandt, 1991)
Total recall score 17.1 (5.9) 23.0 (5.2) <0.01
Delayed recall score 2.9 (4.0) 6.3 (3.2) <0.01
Discrimination index 6.7 (3.6) 9.5 (2.1) <0.01

Boston Naming Test (Kaplan et al., 1978; Mack et al., 1992)
Score (15 item maximum) 13.8 (1.2) 14.3 (0.8) NS

Standardized Road-Map Test of Direction (Money, 1976)
Score 26.7 (7.4) 25.6 (7.3) NS

Trail Making Test (Reitan, 1958)
Trail A score (in s) 52.8 (22.3) 40.6 (12.4) NS
Trail B score (in s) 182.3 (118.9) 109.0 (54.7) NS

a Two members of the Progress group and one member of the Stable group did not complete the neuropsychological battery, leaving 40 MCI individuals
contributing to the group means reported.
† In order to maintain a significance level of 0.05 for the entire family of neuropsychological tests, the Bonferroni adjustment would result in p < 0.002 for

each individual test; using this, no test reached statistical significance at this level. Because the Bonferroni is often considered too conservative, a two-tailed p
level <0.01 was selected. NS: not significant.
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rom their discrete brain sources is facilitated by volume con-
uction in a conducting medium, measures that are based
n electrical potential differences between electrodes, and
ipole orientations of the sources. Keeping the number of
easures entering a discriminant analysis low relative to the

umber of observations (individuals) is important for not
apitalizing on chance in the development of a discriminant
unction. This is a major methodological reason for limit-
ng the electrodes in this analysis. The central midline site
CZ) is featured here because it provides a good view of
any ERP components of interest (Chapman, 1969, 1974;
hapman and McCrary, 1979) with the same paradigm used
ere. Moreover, we have disentangled and measured partially
verlapping ERP components based on a formal analysis
PCA) that yielded eight ERP components from this site with
imilar subjects (Chapman et al., 2007) and successfully used
hese measures in discriminating AD and Control individuals.

Frequency bandpass of the Grass amplifiers was
.1–100 Hz. Beginning 30 ms before each stimulus presen-
ation, 155 digital samples were obtained at 5 ms intervals.
ubsequently, the digital data were digitally filtered to pass
requencies below 60 Hz, and artifact criteria were applied to
he CZ and EOG channels to exclude those 750 ms epochs
hose voltage range exceeded 200 �V or whose baseline

xceeded 250 �V (baseline was mean of 30 ms pre-stimulus).
he ERPs were based on correct trials and data not rejected

or artifacts. Mean artifact rejection rate for all MCI subjects
as 6.4% (SD = 13.8%).

.5. Statistical analysis

.5.1. Event-Related Potentials: Principal Components
nalysis

ERPs were derived for each subject from the EEG vectors
155 time points) by averaging each vector separately for
ach of the stimulus conditions in this experimental design.
ayser and Tenke (2005) discuss the difficulty in visually

dentifying and quantifying the ERP components “even after
horough inspection of the waveforms”. In our study, ERP
omponents were identified and measured by Principal Com-
onents Analysis (PCA) with Varimax rotation which allows
he variations due to experimental conditions and individual
ifferences in the data to define the ERP components. While
ome have expressed concerns about PCA in ERP component
nalysis, the major misgivings focus upon misallocation of
ariance. Picton et al. (2000) have stated that misallocation
f variance is a problem general to any analysis of ERP data
here components overlap. Several simulation studies revis-

ted the problem of misallocation of variance by modeling the
omponent prototypes introduced by Wood and McCarthy
1984) using new perspectives and comparisons not previ-
usly considered (Achim and Marcantoni, 1997; Beauducel

nd Debener, 2003; Chapman and McCrary, 1995; Dien,
998). For reviews of recent developments using PCA, see
ayser and Tenke (2005) and Dien et al. (2005). For instance,
hapman and McCrary (1995) noted that the misallocation

t
c
i
p

f Aging 32 (2011) 1742–1755

f variance, or component leakage, is likely due to correlated
rototypes rather than their overlap and may spread from
omponents producing a large effect size to neighboring com-
onents that yield a much smaller effect size. That paper also
emonstrated that when the original component prototypes
ere slightly altered, there was no leakage among the PCA

omponents; however, a peak amplitude measure resulted in
perfect 100% misallocation of variance. Moreover, when

he PCA scores are used as predictors in discriminant anal-
ses for purposes of classification (as is done here), they are
inearly combined in discriminant functions and any spread-
ng of effects to other components should be automatically
djusted by the weights being developed to maximize the
iscrimination between classes (groups).

We previously performed the PCA using a correlation
atrix of the 155 time points on 48 individuals: 12 with

linically diagnosed AD, 12 MCI individuals, 12 elderly
ontrols, and 12 young subjects. This set of varying groups
ll completed the same Number–Letter task under the same
xperimental and recording conditions, and these subjects
nd their ERP data were used in a previous study to dis-
riminate between AD and normal cognition using ERP
omponents (for more information, see Chapman et al.,
007). This set of groups was used to create components that
ould be more generalizable to a wider array of individuals

John et al., 1993). Of the 12 MCI subjects used in devel-
ping this component solution, only 4 appear in the MCI
ataset of this paper. Deriving a component solution from
narrow set of similar individuals has been shown to limit

he range in the variables and attenuate correlations among
ariables that can result in falsely low estimates of compo-
ent loadings (Fabrigar et al., 1999). Thus we included a
ide variety of individuals in developing our ERP component

olution (Chapman et al., 2007). In addition to the technical
easons given for including individuals from diverse groups,
t is desirable to have established a method of measuring
he ERP components that does not require doing a complete
CA for each new subject, but rather simply applying the
component loadings” that were already developed.

Eight components were retained by Kaiser’s Eigenvalue
1 rule (accounting for 95% of the variance). The components

ncluded well-known components, such as C415, which is
ften called parietally loaded P3 (Chapman, 1965; Chapman
nd Bragdon, 1964; Chapman et al., 1978, 1981; Donchin,
981), contingent negative variation (CNV) (Walter et al.,
964), and memory “storage” component C250 (Chapman
t al., 1978, 1981), as well as other early and late com-
onents. Part of the PCA output (the component loadings)
epresented the temporal waveforms of each ERP compo-
ent (Chapman et al., 2007). Here the ERP component scores
mean zero and variance one) of the 43 MCI individuals
ere measured using the component structure developed in
hat previous PCA analysis. We mathematically generated
omponent scores given the ERPs for each subject’s exper-
mental conditions (component conditions). The SAS 9.1.3
rocedures FACTOR and SCORE were used to generate the
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Table 3
Mean component scores (SD) for the eight ERP components for the relevant and irrelevant stimulus conditions for the Progress and Stable groups. The
component scores were based on mean zero and variance one.

ERP component ERP component scores (group mean and SD)

Progress (n = 15) Stable (n = 28)

Stimulus conditions Stimulus conditions

Relevant Irrelevant Relevant Irrelevant

C1: slow wave −0.24 (0.73) −0.50 (0.75) −0.43 (0.84) −0.67 (0.57)
C2: CNV −0.49 (0.95) −0.29 (0.62) −0.71 (0.62) −0.34 (0.92)
C3: C415 “P3” −0.54 (0.64) −0.74 (0.63) −0.19 (0.66) −0.76 (0.67)
C4: C250 “memory storage” −0.39 (0.82) −0.41 (0.77) −0.32 (0.46) −0.41 (0.65)
C5: C140 0.10 (0.72) 0.04 (0.72) 0.06 (0.67) 0.03 (0.68)
C6: C540 0.23 (0.89) 0.04 (0.57) 0.11 (0.87) 0.02 (0.84)
C7: C325 −0.20 (0.47) −0.18 (0.40) −0.37 (0.89) −0.12 (0.49)
C 0.
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8: C185 0.68 (1.10)

omponent solution and calculate component scores for the
CI groups (SAS OnlineDoc 9.1.3).
For this report, only measures for relevant and irrelevant

onditions averaged over all the other conditions were ana-
yzed in the discriminant analyses. The intratrial positions and
he stimulus conditions of each component were averaged
eparately for relevant and irrelevant stimulus conditions
esulting in 16 ERP component conditions (8 ERP compo-
ents obtained for relevant and irrelevant stimuli) for each
ubject. The blank conditions (the first and last epochs of each
rial where the subject saw the square stimuli) were omitted
rom further analysis. Unlike our previous work (Chapman et
l., 2007), the component conditions were further averaged
ver the trial number (odd, even). This was done to increase
he sample size of each ERP component condition and reduce
oise.

.6. Discriminant analyses

The component conditions for each MCI subject were
sed to predict the individuals who would develop AD
t a later date and those who would remain stable. This
as completed through another multivariate procedure: dis-

riminant analysis based on Bayesian posterior distributions
Ingelfinger et al., 1983). The linear discriminant func-
ion is comprised of the sum of the scores of the selected
omponent conditions, and each component condition was
eighted by its best contribution in differentiating the subject
roups (Progress vs. Stable). First, a stepwise discriminant
rocedure selected the component conditions best able to dif-
erentiate between the two subject groups (PROC STEPDISC
f SAS; see below). This was done by first selecting the
omponent condition that best discriminates. The next com-
onent condition was then chosen after the discriminatory
ffect of the first one was removed. This process con-

inued until there was no important improvement in the
iscriminability of the function. After selecting the predictor
ariables, discriminant functions, created from the groups’
RP component scores of the chosen component conditions

b
k
f

46 (0.96) 0.19 (0.60) −0.02 (0.73)

Tables 3 and 4), were used in a second procedure to clas-
ify each MCI individual as either a member of the Progress
roup or the Stable group. This classification was depen-
ant on from which group that individual had the smaller
eneralized squared distance (PROC DISCRIM of SAS; see
elow).

In addition, a one-left-out cross-validation was computed
o assess classification of subjects that had not contributed
o the development of the discriminant functions. The
ross-validation uses two distinct samples (development and
alidation). When each individual serves as validation, that
ndividual does not contribute to the development of the
oefficients in the discriminant equation. Thus, a new dis-
riminant function is developed for and tested on every
ubject individually. This validation method has been shown
o achieve a nearly unbiased estimate (Hora and Wilcox,
982; Lachenbruch, 1975), and when all predictors are forced
nto the equation, bias is eliminated (Tabachnick and Fidell,
001). We used the stepwise procedure only to select the
ariables to use, and these variables remained fixed in the
iscriminant procedure and cross-validation procedure where
ll were forced to enter. Additionally, we chose this method
onsidering sample size limitations and our desire to use as
uch data as possible in the development of the discrimi-

ant function (Johnson and Wichern, 2002). This jackknifed
lassification validation makes good use of a limited num-
er of individuals in that all but one of them contribute to
he development, and the larger sample size (n − 1 compared
o n/2 in a split-half approach) enhances the stability of the
olution. This solution stability coupled with elimination of
ias in classification makes for a better approach given a lim-
ted, fixed sample size. Hora and Wilcox (1982) indicated that
he one-left-out method is a “superior alternative” to a split-
alf method, which has an unfortunate effect of reducing the
ffective sample size.

Discriminant analysis also provides the posterior proba-

ility of group membership for each subject, which adds a
ey quantitative context when analyzing binary predictions
or individuals. The accuracy of these predictions based on
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Table 4
Development results using ERP components to predict progression to AD in MCI individuals. (A) Linear discriminant function coefficients (SEM) for classifying
MCI individuals into Progress to AD and Stable groups. The discriminant functions classified MCI individuals into two groups (those who will Progress to AD
and those who will remain Stable) on the basis of ERP component conditions. Variable names: 3-digit numbers indicate latency (ms) of the ERP component
waveform maxima; Rel or Irr indicates relevant or irrelevant stimulus conditions that evoked the ERP. Discriminant coefficients (from development set) shown
are for the eight component conditions selected, in this order, by the stepwise discriminant procedure. These coefficients are provided for replication with novel
data. (B) Prediction summary for the 43 MCI subjects. T+ indicates a positive ERP test result (ERP test predicts MCI progression to AD) and T− indicates a
negative ERP test result (ERP test predicts MCI remaining stable).

Variable Progress (n = 15) Stable (n = 28)

(A)
Constant −1.47 (0.03) −1.22 (0.02)
C185 Rel 1.44 (0.04) −0.35 (0.04)
C540 Rel 1.48 (0.06) −1.47 (0.04)
C415 Rel −1.61 (0.06) 1.78 (0.08)
C415 Irr −0.34 (0.07) −3.29 (0.08)
C250 Irr 1.97 (0.10) −2.99 (0.07)
C250 Rel −2.76 (0.10) 1.84 (0.07)
C325 Irr −1.21 (0.06) 1.03 (0.04)
C540 Irr 0.09 (0.05) 0.91 (0.05)

MCI subgroups T+ T− Total

(B)
Progress 12 3 15 Sensitivity: 0.80
Stable 6 22 28 Specificity: 0.79

Total 18 25 43 Accuracy: 79% χ2 = 13.8 (p = 0.0009)a
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ote: Standard errors of the coefficients were calculated using a bootstrapp
a Corrected via Bonferroni’s adjustment for multiple comparisons.

RP data was assessed by comparing with the later clinical
utcome for each subject. We also calculated the sensitivity
nd specificity of the group classifications.

Discriminant analysis was used because the procedure not
nly can develop classification (discriminant) functions, but
t also computes the posterior probability of group member-
hip for each individual as an integral part of the computation.
he STEPDISC and DISCRIM procedures of SAS 9.1.3

SAS OnlineDoc 9.1.3) were used to conduct the discriminant
nalyses. To evaluate the statistical significance of our clas-
ification results, we applied a one-tailed Fisher’s Exact Test
ith an alpha level of 0.05. This test is appropriate because

ach individual is placed in a cell in a 2 × 2 contingency
able: ERP test classification of Progress or Stable by clini-
al diagnosis of Progress or Stable. We would not consider
he ERP predictions successful if they were significantly in
he wrong direction, so a one-tailed rejection region is appro-
riate. As was performed on the neuropsychological data, p
alues calculated from the Fisher’s Exact Tests on classifica-
ion results were corrected with a Bonferroni adjustment for

ultiple comparisons (Shaffer, 1995).

. Results

.1. Group mean ERPs to relevant and irrelevant stimuli
For illustrative purposes, the ERPs of the Progress and
table groups were averaged separately for the relevant and

rrelevant stimulus conditions. These mean ERPs were visu-

t
w
g
f

edure with replacement (1000 bootstrapped random samples were taken).

lly compared to those from a group with clinically diagnosed
D and those from a group of like-age Controls judged by
emory-disorders physicians to have normal cognitive func-

ion (Fig. 1). The ADs and Controls are the same subjects
ho contributed to the PCA component solution (Chapman

t al., 2007). Although all the MCI individuals were in the
ame clinical diagnostic group at the time their ERPs were
ecorded, those that later would progress to AD showed
bviously different average ERP waveforms than those who
ould remain stable. The differences in ERP amplitude
etween the relevant and irrelevant conditions were much
maller for the Progress group (which was similar to the
D group, plotted above) than the Stable group (which was

imilar to the Control group, plotted below).
Although Fig. 1 represents the observed ERPs, these will

irror virtual ERPs for the relevant and irrelevant conditions.
ince 95% of the variance of the PCA dataset was accounted
or by the eight components retained, the virtual ERPs built
rom these eight components with the appropriate component
cores for the experimental conditions (Table 3) will very
losely approximate the observed ERPs. Examples like this
ere shown in Chapman et al. (1979) for the same paradigm
here 96% of the variance of the PCA dataset was accounted

or by eight ERP components. Looking at these overall aver-
ge waveforms may lead to interpretation without benefit of
nowing the underlying components. However, we present

hem in Fig. 1 to offer an overall impression that the ERP
aveforms may be different between the Progress and Stable
roups under our experimental conditions as well as different
rom AD and Control groups. We take account of the vari-
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Fig. 1. The mean brain ERPs to relevant and irrelevant stimuli for the AD (n = 12), MCI (Progress (n = 15) and Stable (n = 28)), and like-age Control (n = 12)
groups. The ERP data for the MCI individuals were collected approximately 1–2 years before clinical follow-up where progression to AD or stability was
determined. For demographic information concerning the ADs and the like-age Controls, see Chapman et al. (2007). The ERPs here were recorded at CZ with
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eference to linked earlobes. The ERPS shown are from relevant and irrele
omponents, see Fig. 2 for temporal waveforms (loadings) and Table 3 for g

bility within groups after measuring the ERP components
nd using their amplitudes (component scores) (Table 3).

.2. Predicting MCI individuals who progress to AD
discriminant analyses)

To predict which MCI individuals will progress to AD
nd which will not, we used discriminant analysis to derive
nd apply a weighted combination of ERP component scores.
he temporal waveforms of the five ERP components used

n the discriminant analysis are shown in Fig. 2. The group
ean component scores for the relevant and irrelevant stim-

lus conditions for each of the eight components are listed in
able 3, and Table 4A contains the group-derived discrimi-
ant functions for the eight selected component conditions.
ittle credence should be placed in the meaning of the par-

icular coefficients found for the sample unless all important
ariables are known to be included in the analysis or are
nown to be uncorrelated with the variables already included
Ahlgren, 1986). We show them here because they were used
n the discriminant functions as the weights to be multiplied
y the ERP component condition scores of an individual and
s a set were assessed to have favorable, statistically signifi-
ant classification success (Table 4B). Furthermore, they may

e used as a tool in analyzing additional data. It should also be
oted that an examination of the univariate group mean com-
onent scores listed in Table 3 may not reveal the relative
ontributions of the components selected in the multivari-

i
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t

mulus conditions averaged over all other conditions. For underlying ERP
ean component scores.

te set with the greatest discriminability between the groups
ecause the stepwise discriminant procedure takes the corre-
ations among the component scores into account during its
nalysis.

The discriminant functions were individually applied to
he component scores of the 43 MCI subjects to classify
ach subject into the Progress or Stable group with an asso-
iated posterior probability. Of the 15 MCI individuals in the
rogress group, our ERP test measures correctly predicted 12
ould later develop AD (Table 4B). The discriminant analy-

is also correctly predicted 22 of the 28 subjects in the Stable
roup would not progress to AD. Overall, 34 of 43 individ-
als were correctly classified, a prediction accuracy of 79%
Fisher’s Exact Test, χ2(1, n = 43) = 13.8, p = 0.0009). The
ensitivity (the number of MCIs who were correctly predicted
o progress to AD out of the total number that did progress
o AD) and the specificity (the number of MCIs correctly
redicted to remain stable out of the total number that did
emain stable) were 0.80 and 0.79, respectively. Thus, the
RP components were able to detect progression to AD and
ifferentiate between progression and stability with good suc-
ess. Also, it is possible that, given more time, some members
f the Stable group might develop AD. If the six stable indi-
iduals who were predicted to progress to AD in fact develop

t later, then the accuracy, sensitivity, and specificity would
ncrease.

All four subjects with possible multiple-domain amnes-
ic MCI received correct predictions from our ERP method
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Fig. 2. Temporal waveforms of the ERP components selected by the stepwise discriminant procedure for their predictive power of progression to AD in MCI.
Each component is offset here with its baseline shown as a dashed line. In these component waveforms, the metric has been restored by multiplying the loading
at each time point by the standard deviation of the data set at the corresponding time point (Chapman and McCrary, 1995). The amplitudes depicted are for a
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omponent score of 1.0. The five components appear (top to bottom) in the o
ctually selected component conditions (these were ERP components score
ables 3 and 4).

two to progress and two to remain stable). Thus this basis
f prediction may apply to both single-domain and multiple-
omain amnestic MCI, though further study is necessary to
onfirm this.

It was important to determine how confident (probable)
hese predictions were. In addition to the decision of group

embership (will progress to AD or will remain stable) for
ach participant, the posterior probability of membership in
ither group was also provided by the discriminant proce-
ure (for an example, see Chapman et al., 2007). This added
quantitative context to the binary predictive decision by sup-
lying a measurement of likelihood that the group into which
he subject was placed by our ERP measures was the correct
ne. The obtained prediction accuracy (percent of subjects
orrectly classified) for each posterior probability bin was
lotted (Fig. 3). Subjects were placed in posterior proba-
ility bins by their probability of belonging to the group in
hich the discriminant function placed them (and placement
as determined by the group for which the posterior prob-

bility was greater than 0.50). First, the obtained prediction
ccuracy does dramatically rise with posterior probability.
ost (34) of the 43 subjects lie in highly confident poste-

ior probability bins (0.70–1.00). Additionally, half of the
4 subjects lie in the highest confidence bin (0.90–1.00),

here the obtained prediction accuracy was 94%. Even in the

lightly less confident bins, the prediction accuracy remains
ery good (81–84%). Only in the lowest bins (which con-

(
t
i

y were selected by the discriminant procedure. The discriminant procedure
either relevant or irrelevant stimulus conditions; for more information, see

ain only nine subjects) does the accuracy greatly decrease
o near 50%. These bins (0.50–0.59 and 0.60–0.69) could be
onsidered “too close to call”. The remaining 79% of indi-
iduals were correctly predicted with 88% accuracy. Thus,
ith this method of using the posterior probabilities, most of

he subjects have correct predictions, and the confidence in
hose predictions is high.

In addition, a cross-validation was performed. The cross-
alidation created discriminant functions for each individual
sing the data of all other subjects in the MCI group and then
sed those functions to classify the individual as a member
f either the Progress or Stable groups. Thus, 43 separate
airs of discriminant functions were calculated. The mean
iscriminant coefficients for each component condition for
ach group are shown in Table 5. Two aspects of these results
hould be noted: first, the variabilities (standard deviations)
f the coefficients were low. Second, the mean coefficients
n the cross-validation were extremely similar to those in the
evelopment function (Table 4A); in all cases, the develop-
ent coefficients lie well within one standard deviation from

he mean cross-validation coefficients. This suggested that
he cross-validation was testing essentially the same discrim-
nant functions as those created using the development set.
herefore, the cross-validation tested an independent sample
each of the 43 subjects, classified one at a time) with a rela-
ively stable discriminant function that was derived for each
ndividual without using that individual’s data.
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Fig. 3. The prediction accuracy for, and number of subjects in, each posterior probability bin based on the development set. Prediction accuracy is the percent
of MCI individuals correctly predicted to progress to AD or remain stable. Each of the 43 MCI individuals was placed in a bin by the probability of group
membership calculated through the discriminant function (placement was determined by the probability greater than 0.50). The number of subjects is given
below the x-axis (e.g. 16/17 = 16 of 17 subjects were correctly classified in this posterior probability bin). Disregarding the bins with low probability (those that
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ere “too close to call”), the prediction accuracy and number of subjects da
ins) and 88% of these predictions were correct.

The cross-validation produced slightly lower classifica-

ion results: 30 of 43 individuals were correctly predicted,
esulting in 70% prediction accuracy (Table 6A, using a cut
oint of 0.50). Given that some subjects with low posterior

able 5
ross-validation: mean linear discriminant function coefficients (SD) using
RP measures for classifying MCI individuals into Progress to AD and
table groups. Variable names: 3-digit numbers indicate latency (ms) of the
RP component waveform maxima; Rel or Irr indicates relevant or irrelevant
timulus conditions that evoked the ERP.

ariable Progress (n = 15) Stable (n = 28)

onstant −1.54 (0.31) −1.25 (0.09)
185 Rel 1.46 (0.15) −0.36 (0.07)
540 Rel 1.49 (0.19) −1.49 (0.20)
415 Rel −1.62 (0.23) 1.84 (0.32)
415 Irr −0.39 (0.31) −3.34 (0.27)
250 Irr 2.09 (0.70) −3.05 (0.45)
250 Rel −2.92 (0.84) 1.88 (0.39)
325 Irr −1.25 (0.28) 1.04 (0.18)
540 Irr 0.04 (0.24) 0.90 (0.16)

ote: Means and standard deviations of the coefficients were calculated
rom the cross-validation where each subject was omitted from creating the
iscriminant functions. Thus, 43 sets of discriminant coefficients were the
ata underlying these numbers.
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79% of the subjects were predicted with high confidence (in the 0.70–1.0

robabilities of group membership may not have confident
redictions and are perhaps “too close to call” (suggesting a
ut point of 0.70 for classification), we analyzed the poste-
ior probabilities provided by the cross-validation using only
he probable predictions (probable progression and probable
tability). The results were improved; disregarding the low-
st two probability bins, 25 of the 32 individuals had 78%
rediction accuracy in the cross-validation (Table 6B). This
uggests that few MCI subjects would be in the “too close to
all” category and many (74%) would belong to the probable
ategory.

Additionally, a bootstrapping validation approach was
erformed where the 43 subjects were randomly sorted with-
ut replacement into a 15-subject pseudo-Progress group and
28-subject pseudo-Stable group irrespective of their clinical
iagnoses. The two randomized groups were then classified
sing the discriminant function developed from the eight
RP component conditions (Table 4A). An average accu-

acy, sensitivity, and specificity for the development results
f 25 iterations of these randomized groups were calculated.

he extent to which our original development results (79%
ccuracy, 0.80 sensitivity, 0.79 specificity) were outliers in
his distribution of classification results with pseudo groups
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Table 6
Cross-validation results for individual MCI subjects belonging to either the Progress group or the Stable group. (A) Prediction summary for the cross-validation
analysis including all 43 MCI subjects. T+ indicates a positive ERP test result (ERP test predicts MCI progression to AD) and T− indicates a negative ERP test
result (ERP test predicts MCI remaining stable). Cut point for classification is 0.50. (B) Prediction summary omitting the subjects that were “too close to call”
based on their posterior probability of group membership. Cut point for classification is 0.70. The specificity, accuracy, and statistical significance increased
when only the probable subjects were considered.

MCI subgroups T+ T− Total

(A)
Progress 10 5 15 Sensitivity: 0.67
Stable 8 20 28 Specificity: 0.71

Total 18 25 43 Accuracy: 70% χ2 = 5.82 (p = 0.02)a

MCI subgroups T+ T− Total

(B)
Progress 9 4 13 Sensitivity: 0.69
Stable 3 16 19 Specificity: 0.84

Total 12 20 32 Accuracy: 78% χ2 = 9.41 (p = 0.004)a
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a Corrected via Bonferroni’s adjustment for multiple comparisons.

s a measure of our discriminant functions’ validity and gen-
ralizability relative to a random sampling of subjects. The
iscriminations of the 25 random samples produced a mean
SD) accuracy of 53.4% (6.8%), a mean sensitivity of 0.42
0.09), and a mean specificity of 0.58 (0.05). The accuracy
btained in our development results was more than 3.5 SDs
bove the mean random accuracy. Likewise, our development
ensitivity and specificity were more than 4.0 SDs above the
ean random sensitivity and specificity.
For a neuropsychological comparison to the ERP mea-

ures, we used each subject’s individual MMSE score in a
iscriminant analysis to determine how well this ubiquitous
est of general cognitive ability can predict outcomes. Of the
3 subjects, 28 were predicted correctly (65%, a result that
as not statistically significant at the 0.05 level). The sensi-

ivity and specificity dropped to 0.60 and 0.68, respectively.
learly the ERP measures performed better than the MMSE
s predictors of individual MCI progression to AD.

While discriminant analysis could be performed more
implistically using a single component condition, we dis-
overed this produced worse results. In analyzing each of the
ight selected component conditions in separate discriminant
nalyses where each variable was used individually to classify
he 43 MCI subjects, on average, they performed no better
han chance (mean (SD) accuracy = 55.0% (6.66%); sensi-
ivity = 0.55 (0.09); specificity = 0.55 (0.06)). The best single
omponent condition was C185 Rel, which only reached an
ccuracy of 67%. This was still 12% lower than what the
inear combination of these components achieved (Table 4B).

. Discussion
.1. ERP components as predictive biomarkers of AD

The ERP components performed with good accuracy, sen-
itivity, and specificity at predicting which MCI individuals

o
i
t

ould later develop AD and which would not. Our method
enefits from several advantages. First, using a percep-
ual/cognitive paradigm with memory processing demands
encoding, retrieval) allows assessment of brain functioning
elated to cognitive processes believed to be affected by AD.
his task contains built-in control stimuli (the irrelevant stim-
li), and it also manipulates the expectancy of a relevant
timulus. In addition to previous work with this paradigm
Chapman et al., 2007), this study suggests that analyzing
RPs collected at CZ provides a good initial view (due to
olume conduction) of the cognitive processes that may be
ffected by the deterioration seen in early AD and MCI. Sec-
nd, ERPs have a temporal resolution that is fast enough to
aintain pace with neural processing. In analyzing the ERPs,

mploying a formal multivariate procedure (PCA) is a third
dvantage as it permits a data-driven approach to measur-
ng ERP components. Fourth, discriminant analysis combines
RP component conditions in a weighted manner to predict
rogression to AD in MCI individuals with good success.

Our results are related to some of those reported in the
iterature. Missonnier et al. (2007) and Olichney et al. (2008)
resent prediction accuracies for their study of MCI pro-
ression with ERPs in the 80–90% range, which roughly
grees with our findings. Additionally, Jelic et al. (2000) used
uantitative EEG markers and frequency bands to predict pro-
ression to AD with 85% success. Prichep et al. (2006) also
eached 86% success in predicting conversion to AD over a
onger time (seven years) using quantitative EEG, although
nly seven of their study group developed AD. Validation of
hese varied results is warranted.

Finally, another advantage of our method is the posterior
robabilities associated with the binary prediction for each
ndividual, which add a quantitative measure of confidence in
hat prediction. We have not often found these measures used

r discussed in the literature on predicting MCI progression
n individuals. Featuring the posterior probabilities is impor-
ant for several reasons. It allows a determination of which



ology o

s
o
s
c
n
p
t
t
t
S
m
e

c
n
d
p
t
o
a
a
b
t
m
c
t
t
a

s
t
c
p
t
i
g
m
v
c
m
t
i
r
u
u
r
C
p
p
b
i
i
T
p
b
a

B
p
t
c
s
b

f
i
o
a
a
i
a
p
a
g
d
c
t
s
r
i
d
d
a
b
v
w
t
i
a
i
a
t
a
o
r
F
o
r
a
t
s
l
a
i
o
v
w

R.M. Chapman et al. / Neurobi

ubjects may be “too close to call” (e.g., the determination
f a cut point of group membership for classification); these
ubjects, because of their low posterior probabilities (near
hance), should be considered indeterminate in their diag-
osis. For example, when removing the “too close to call”
articipants from the cross-validation analysis by adjusting
he cut point to 0.70, diagnoses became more realistic as only
he probable predictions remained. This is particularly true of
he Stable individuals who lie in the “too close to call” range.
even of the nine individuals in this range for the develop-
ent set were Stable subjects who may not have been given

nough time to progress to clinically defined AD.
Although it is convenient to consider the prediction out-

omes to be binary (either the subject developed AD or did
ot), the posterior probabilities can be considered to measure
isease progression. In this case, they create a continuum of
rogression to AD and an individual is directly placed along
his continuum by the discriminant function according to his
r her probability of group membership. We believe evalu-
ting the posterior probabilities as we have done is a novel
pproach that adds value to study of MCI progression to AD
ecause it allows the physician or researcher to both identify
he probable predictions in a group of individuals and perhaps

easure the stage of progression for each individual. This
ould aid a physician in determining the appropriateness of
reatment, and it could benefit researchers in selecting par-
icipants for their projects about whom they can be confident
bout the subjects’ group membership.

In general, as is supported in the present work, having
eparable ERP components permits differential weighting
hrough a formal, data-driven procedure that arrived at good
lassification success for discriminating individuals who
rogress to AD from those who have not. ERP responses
o irrelevant stimuli, as well as to relevant, stimuli were
mportant to discriminating stable MCI individuals from pro-
ressive MCI individuals. C185 Rel was our strongest ERP
easure for predicting MCI individuals who will progress

ersus those who remain stable. This relatively early ERP
omponent (maximum near 185 ms poststimulus, Fig. 2) is
ore positive in response to visual stimuli that are relevant

o the task. Its amplitude tended to be more positive in MCI
ndividuals who later progress than in MCI individuals who
emain stable (Table 3). The larger amplitude in MCI individ-
als who progress may be indicative of a compensatory stim-
lus processing effect. Another early ERP component to both
elevant and irrelevant stimuli with discriminatory power was
250, peaking at 250 ms poststimulus. C250 is an ERP com-
onent that we previously discovered in this Number–Letter
aradigm and called the memory “storage” component,
ecause it has larger amplitudes when a stimulus is stored
n short-term memory as subsequently assessed by a behav-
oral memory probe technique (Chapman et al., 1978, 1981).

he C415 component, with a positive maximum at 415 ms
oststimulus, has been shown with this type of paradigm to
e larger in response to stimuli that are task relevant in normal
dults and parietally loaded (Chapman, 1965; Chapman and

5

t

f Aging 32 (2011) 1742–1755 1753

ragdon, 1964; Chapman et al., 1978, 1981). Those MCI who
rogress tended to have less positive C415 to relevant stimuli
han the stable MCI individuals (Table 3), implying that diffi-
ulty in differentiating and processing relevant and irrelevant
timuli, or possibly context-updating (Donchin, 1981), may
e indicative of AD-like cognitive decline.

There are limitations to our present work that require
urther research. Clinical follow-ups were conducted approx-
mately 1–2 years after the initial diagnosis and collection
f our ERP data. More time is required to determine how
ccurate the predictions could be and how far in advance
prediction might hold. One might argue that some of the

ndividuals clinically diagnosed as MCI were really early AD
t baseline (though not recognized by the memory-disorders
hysicians). However, even if that were true, it is clear that
ll of those later clinically diagnosed as AD (the Progress
roup) had sufficient clinical deterioration to have had their
iagnoses changed and thus would satisfy a “deterioration”
riterion that marks the Progress individuals as different from
he Stable individuals at follow-up. Our present data lack the
tatistical power to determine the influence of time on our
esults, though work by others (Jelic et al., 2000) suggests
nclusion of time in prediction models does not improve pre-
ictive accuracy. Our discrimination results warrant further,
irect validation with a greater number of subjects. Addition-
lly, the model we present here is effective but likely could
e improved further by adding additional or more refined
ariables. While we believe this is an important first step,
e have started with a relatively sparse model with a desire

o limit the number of variables in the discriminant analyses
n order not to overreach the degrees of freedom. System-
tic latency differences in ERP components could appear
n the PCA component structure (discussed in Chapman
nd McCrary, 1995). Spatial information provided by addi-
ional electrodes would be of interest when larger samples
re available. Finally, how our ERP biomarkers relate to
ther predictors of MCI progression to AD (including neu-
opsychological test performance) remains to be determined.
urther work is necessary to determine the additive value
f ERP measures in a clinical setting, but there are several
easons that these measures might improve MCI and AD
ssessment. First, ERPs more directly measure brain func-
ions than neuropsychological testing and anatomical brain
canning. Second, ERPs have a high temporal resolution (mil-
iseconds). ERPs also can measure underlying processes in
noninvasive, less costly manner. Studying brain responses

n this way may reveal information that behavioral and some
ther biologic measures cannot. Finally, measures to irrele-
ant stimuli are easier to obtain and are shown in the present
ork to be important to classifying AD.
. Conclusion

We believe this is the first report that utilizes formal mul-
ivariate analyses to measure separable ERP components
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btained while individuals perform a task and to combine
hese ERP measures in a weighted and cross-validated way
o predict with associated probabilities which MCI individu-
ls will progress to AD in the future and which will remain
table. In addition to a binary prediction for each individual,
he associated posterior probability offers a quantitative con-
ext that allows an estimation of confidence. This estimation
as validated by the empirically obtained prediction accura-

ies rising to 94% when the computed posterior probabilities
or individuals was 0.90 or higher (which was found for 40%
f our MCI sample). Such a quantitative biomarker warrants
reater study and could be useful to early treatment, as well
s to elucidating understanding the progression from MCI to
D.
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