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Abstract: The aim of this research was to assess similarity in cognitive factor structures underlying neuropsychological 
test performance of elders belonging to three clinical groups: Alzheimer’s disease (AD), Mild Cognitive Impairment 
(MCI), and normal elderly. We administered a battery of neuropsychological tests to 214 elderly participants in the 
groups. First, the underlying cognitive structure of a Combined-Set of AD, MCI, and Control subjects was determined by 
Principal Components Analysis (PCA), including quantitative relationships (loadings) between the test measures and the 
factors. The PCA resolved 17 neuropsychological test measures into 6 interpretable factors, accounting for 78% of the 
variance. This cognitive structure was compared with separate cognitive structures from an AD-Set, an MCI-Set, and a 
Control-Set (different individuals in each set) in additional PCA using Procrustes factor rotation. Analysis of congruence 
coefficients between each set and the Combined-Set by a bootstrapping statistical procedure supported the factor  
invariance hypothesis. These close similarities across groups in their underlying neuropsychological dimensions support 
the use of a common metric system (the factor structure of a Combined-Set) for measuring neuropsychological factors in 
all these elderly individuals.  

Keywords: Neuropsychological tests, principal components analysis (PCA), cognitive structures, cognitive dimensions,  
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INTRODUCTION 

 Alzheimer’s disease (AD) is a neurological illness with 
early cognitive and behavioral disruption. The early cogni-
tive deficits are frequently in the domain of memory, espe-
cially retentive memory. However, researchers and clinicians 
are now appreciating the behavioral heterogeneity of AD 
cognitive deficits and recognize that early and isolated defi-
cits in domains of language, visuospatial abilities, executive 
function, and even mood may represent nascent AD [1]. 
Mild Cognitive Impairment (MCI) is a recently described 
diagnostic entity which may represent a transition state  
between normal aging and AD [2]. MCI has been defined  
as memory complaint with objective memory impairment  
in the context of normal general cognitive function and  
intact activities of daily living. As in AD, non-mnemonic 
subtypes of MCI are recognized, including those primarily 
affecting language [3], visuoperception [4], and executive 
abilities [5]. 
 It is difficult to discern if different groups of patients 
employ the same cognitive processes while performing  
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standardized neuropsychological tests. This is tied to under-
standing what areas of cognition are impaired in AD and 
MCI and how these impairments are revealed through neu-
ropsychological testing. Additionally, while the diversity of 
cognitive deficits among individuals with AD and MCI can 
make clinical diagnosis difficult, a more fundamental chal-
lenge arises from the use of neuropsychological tests to as-
sess single domains of cognitive function. Most standardized 
tests used by clinical neuropsychologists rely on multiple 
cognitive capacities for successful completion of each task, 
and the inferences derived from test performance should be 
tempered by an understanding of the component processes 
involved. 

 As a formal, data-driven method, factor analysis has been 
applied to neuropsychological tests (for a survey, [6-9]) to 
derive underlying neuropsychological dimensions. Our ap-
proach to better understanding the functional cognitive struc-
ture underlying neuropsychological test performance em-
ploys Principal Components Analysis (PCA), which reduces 
a correlation matrix of test measures to a few factors that are 
implicit in the data [10, 11]. (In this article we will use the 
term “factor” instead of “component” as they are nearly 
analogous). As Harman [12] pointed out, following the prin-
ciple of parsimony that is common to all scientific theory, a 
law or model should be simpler than the data upon which it 
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is based. Thus, the number of factors should be less than the 
number of variables (test measures), and, in the linear 
description of each variable, the complexity should be low.  
 PCA condenses a wide array of measures that are based 
on different metrics and cognitive functions into simpler and 
interpretable factors. When derived from neuropsychological 
tests, a factor can be considered as a cognitive dimension 
(e.g., a general memory dimension). PCA provides both fac-
tor loadings (which relate test measures to the cognitive di-
mensions) and factor scores (which pertain to an individual’s 
performance on those cognitive dimensions). The factor 
loadings describe properties of the system in terms of 
weights (correlations) of neuropsychological test measures 
on the underlying factors. In other words, the factor loadings 
represent the tests’ varying contributions to each dimension 
while the factor scores represent an individual’s performance 
on each dimension. Each factor can be identified by its pat-
tern of these test measure loadings. Larger loadings (more 
distant from zero) are more salient in this identification and 
interpretation. Additionally, PCA achieves data reduction, 
which can be an important advantage in subsequent analyses 
where degrees of freedom limitations may be present. 
 PCA is an additive factor model, where the performance 
measure of an individual on a test is the summation of each 
factor’s contribution to that test measure. The contribution is 
the product of the factor loading on that test measure (which 
is a static structure) and the factor score (which varies with 
the individual). As said above, a neuropsychological test 
may involve multiple cognitive capacities that are difficult to 
separate. Through PCA, this distinction may be quantita-
tively expressed as a test measure’s loadings on the associ-
ated factors for those cognitive dimensions.  
 While there are obvious quantitative differences among 
AD, MCI, and normal individuals in neuropsychological test 
performance, an important question remains concerning 
qualitative differences among these groups. These differ-
ences refer to the underlying dimensionality of test perform-
ance including the relations among test variables. Under-
standing these relations may reveal how these test variables 
measure cognitive performance in AD, MCI, and normal 
elderly. In terms of factor analysis, factor invariance between 
two factor structures derived from different groups should be 
established before meaningful comparisons with factor 
scores can be made [13]. This issue of studying the underly-
ing cognitive structure of AD, MCI, and normal cognition 
has been addressed by other researchers [8, 9, 14-16]. 
Siedlecki et al. [9] studied neuropsychological invariance 
using exploratory and confirmatory factor analyses and de-
termined that, generally, there was structural (but not metric) 
invariance among AD, MCI, and normal elderly but with 
unanswered questions pertaining to how delayed memory 
might be different in AD versus MCI and normal elderly. 
 There are difficulties inherent in trying to compare fac-
tors across solutions generated from different subject groups. 
There is an arbitrariness to factor rotation that can result in 
two factor solutions occupying the same factor space with 
markedly different orientations, which can result in mislead-
ingly small congruence coefficients [17]. One would not 
expect the same factors to appear in the same order in each 
solution. Additionally, selecting the number of factors to 
retain is inherently an arbitrary process (one in which we 

combine the Eigenvalue > 1 rule with interpretability). Par-
ticularly for the factors whose Eigenvalues are clustered 
around 1, due to noise there will be fluctuations concerning 
which are retained and which are not. Thus, it is not likely 
the exact same set of factors will appear in each data set. The 
method we employ in this paper allows better comparisons 
of factor solutions than generating an independent, orthogo-
nal solution from each subject group and attempting to de-
termine if each contains the same set of factors. By rotating a 
replication factor structure to a target factor structure, we can 
directly measure how similar the replication structure is to 
the target by the congruence coefficients without the difficul-
ties sometimes encountered when using confirmatory factor 
analysis [13, 18, 19]. When used in conjunction with statisti-
cal tests of fit, orthogonal Procrustes rotation leads to the 
acceptance of models that are replicable and the rejection of 
those that are not [18]. 
 We will explore the invariance issue with a different ap-
proach that utilizes PCA and orthogonal Procrustes rotation 
to reveal factor similarities. We will test the invariance be-
tween the factor structures of our subject sets by statistically 
evaluating three types of congruence coefficients through a 
bootstrap procedure that randomly permutes the factor ma-
trices [13, 18]. We administered a battery of neuropsy-
chological tests to elderly participants and will compare the 
underlying cognitive structures of three elderly sets of sub-
jects (an AD-Set, an MCI-Set, and a Control-Set) with that 
of a Combined-Set (comprised of different AD, MCI, and 
Control subjects). We will determine whether each set shares 
a similar factor structure and how strong this similarity is by 
using the Combined-Set’s structure as a target and rotating 
the other sets to best match this target. The important result 
of such a comparison lies in the common metric derived 
from the Combined-Set. A common metric ensures that the 
same measurement axes can be used for all the groups in-
volved in the metric’s creation. If the factor structures of the 
AD-Set, MCI-Set, and Control-Set are equivalent to that of 
the Combined-Set (within the bounds of sampling error), 
then it is reasonable to build a single factor structure simul-
taneously from all of these groups. Then, the factor scores 
created by PCA for each individual can determine group 
membership by placing the test performance tied to those 
scores upon the axes provided by the common metric. This 
could be a formal way of assessing where a novel patient 
belongs along those axes, as part of the AD group, as part of 
a Control group, or some place in the middle where the MCI 
group may lie. Such a diagnostic method could possibly aid 
in early detection of both AD and MCI. 

METHODS 

Study Sample 

 This study involved four sets of elderly individuals  
(Table 1): an AD-Set (containing 38 diagnosed with AD),  
an MCI-Set (containing 62 diagnosed with Mild Cognitive 
Impairment), a Control-Set (containing 63 with normal cog-
nition), and a Combined-Set of 51 (containing 17 AD, 17 
MCI, and 17 Control subjects, all different from those in the 
other sets). The subjects were randomly placed in either the 
Combined-Set or one of the other sets depending on their 
clinical diagnoses. The term “separate sets” will be used to 
refer to the AD-Set, MCI-Set, and Control-Set. 
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 The participants were recruited primarily from the Geri-
atric Neurology and Psychiatry Clinic at the University of 
Rochester and affiliated University of Rochester clinics. All 
AD and MCI subjects were evaluated by memory-disorders 
physicians. All AD subjects met standard criteria for AD 
(NINCDS-ADRDA) [24] and DSM-IV-TR criteria for De-
mentia of the Alzheimer’s Type [25] and were considered 
early in the course of the disease. All MCI subjects met cur-
rent consensus criteria for amnestic MCI [2, 26, 27]. Control 
subjects were also from area clinics, were spouses or friends 
of the AD or MCI subjects, or were volunteers from the 
community. No Control subject met criteria for AD or MCI. 
The clinical diagnosis of MCI and AD was based on a de-
tailed patient history, relevant physical and neurological ex-
aminations and laboratory findings, and imaging studies rou-
tinely performed as part of the clinical assessment of demen-
tia. Limited cognitive testing was performed by the memory-
disorders physicians to assist with their diagnosis. With the 
exception of the Mini-Mental State Examination (MMSE) 
[20], a clock face drawing, and a category fluency task (ani-
mal naming), no cognitive test used in clinical decision mak-
ing was repeated as part of our experimental test battery de-
scribed below. Exclusion criteria for all groups included 
clinical (or imaging) evidence of stroke, Parkinson’s disease, 
HIV/AIDS, and reversible dementias, as well as treatment 
with benzodiazepines, antipsychotic, or antiepileptic medica-
tions.  
 Demographic information for each of the subject sets is 
in Table 1. The mean MMSE score of each subject group 
was appropriate for its diagnosis. For the MMSE, the 
ANOVA group effect was statistically significant within the 
Combined-Set (F (2, 48) = 11.6, p <0.001) and among the 
separate sets (F(2, 160) = 26.76, p<0.001). The mean score 
on the Blessed Dementia Scale (BDS) showed no significant 
group effect within the Combined-Set, but there was a sig-
nificant group effect among the AD-Set, MCI-Set, and Con-
trol-Set (F(2, 160) = 5.61, p<0.01). There was no significant 
group effect for comorbid depressive symptoms measured by 
the Geriatric Depression Scale (GDS) within the Combined-

Set or among the separate sets. In general, the mean scores 
for the GDS for each set were considered “normal” for  
depressive symptoms [28]. The number of years of education 
differed slightly, but significantly, among the groups within 
the Combined-Set (F(2, 48) = 4.5, p<0.05), as did the ages 
among the separate sets (F(2, 160) = 6.8, p<0.01). However, 
the influence of these demographic variables was removed 
by transforming each subject’s scores to standard scores us-
ing published, corrected normative data, as described below. 
At the time of testing, 48 of the 55 AD subjects in the AD-
Set and the Combined-Set (28 males, 20 females) and 44 of 
the 79 MCI subjects in the MCI-Set and the Combined-Set 
(23 males, 21 females) were taking cholinesterase inhibitors 
and/or memantine.  
  Our study received IRB approval from the University of 
Rochester Research Subjects Review Board, and informed 
consent was obtained from each subject. 

Neuropsychological Assessment 

 The neuropsychological battery administered to each 
subject contained 15 common tests (Table 2) that target dif-
ferent cognitive domains, particularly memory. We designed 
the battery to produce a comprehensive sample of cognitive 
processes and their degeneration in AD. Among others, the 
tests included measures of memory encoding, retrieval, and 
retention, generative fluency, executive function, and visu-
ospatial abilities. All measures based on the amount of time 
the subject took to accomplish a task were inverted to be-
come speed measures [29]. The effects of demographic vari-
ables, such as education and age, can make results difficult 
to interpret [6]. Therefore, the test measures of each partici-
pant were transformed to z-scores (mean 0, variance 1) using 
established age/education corrected normative data. 

Neuropsychological Factors Derived from Principal 
Components Analysis (PCA) 

 The data used for PCA were 17 neuropsychological test 
measures (variables) obtained from 51 aged individuals (ob-

Table 1. Demographic Information for Each of the Subject Sets 

Group Gendera Ageb Educationb MMSEc GDSd BDSe 

Separate Sets 

AD-Set (n=38) 17:21 75.9 (7.7) 14.7 (3.3) 24.7 (3.8) 6.7 (5.4) 1.2 (1.1) 

MCI-Set (n=62) 27:35 72.1 (8.5) 14.8 (2.5) 26.4 (3.1) 6.6 (5.9) 1.2 (1.3) 

Control-Set (n=63) 39:24 69.0 (10.0) 15.9 (2.6) 28.7 (1.5) 5.1 (5.2) 0.6 (1.0) 

Combined-Set (n=51) 

AD (n=17) 7:10 76.0 (7.0) 13.5 (2.3) 23.9 (3.1) 7.4 (5.3) 1.5 (1.7) 

MCI (n=17) 8:9 78.8 (5.7) 14.4 (2.9) 25.9 (3.0) 7.1 (5.5) 1.2 (1.5) 

Control (n=17) 8:9 75.2 (5.7) 16.2 (2.9) 28.3 (1.4) 4.4 (3.3) 0.7 (0.9) 

Note. The Combined-Set contained different individuals than those in the AD-Set, MCI-Set or Control-Set. Values appear as mean (SD). The neuropsychological tests shown here 
were administered as part of the experimental battery used in this study. 
a) Females:Males. 
b) The age and education are shown as number of years. 
c) Mini-Mental State Examination [20]. The highest score possible is 30 (a high score means better cognitive performance). 
d) Geriatric Depression Scale [21]. The highest score possible is 30 (a high score means more depressive symptoms). 
e) Blessed Dementia Scale – CERAD version [22 , 23]. The highest score possible is 17 (a high score means a greater impact of dementia on daily activities). 
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servations) in a Combined-Set of 17 ADs, 17 MCIs, and 17 
Controls. Starting with the correlation matrix of the 17 
measures, principal factors were extracted from the Com-
bined-Set. The number of factors retained (6) was mainly 
determined by the Kaiser-Guttman rule [30] of the number 
of roots (Eigenvalues) greater than unity. The loadings of the 
17 variables on each factor were measured. The FACTOR 
procedure (METHOD = PRINCIPAL) of SAS 9.1.3 [31] was 
used to conduct this analysis. 

Measuring Factor Similarity Between Each of the  
Separate Sets and the Combined-Set 

 After developing the Combined-Set solution and deter-
mining the number of factors to retain, separate PCAs were 
made on the AD-Set, MCI-Set, and Control-Set in order to 
assess the similarity of their underlying multidimensional 
structures to that of the Combined-Set where these sets each 
contained a unique set of subjects. This separation of sub-
jects was done to ensure new and different data would be 
used to measure the similarity of the Combined-Set factor 
solution to the separate sets. While performing the PCA on 
these smaller sets reduced the sample size used to create the 
target structure, it was important to test the reliability of the 
factor structure with entirely novel data. 
 Using the factor solution of the Combined-Set as the tar-
get structure, a new PCA was computed on the three separate 
sets and each rotated via the orthogonal Procrustean method 
[32] to best fit this target. In brief, this rotation method 
forces a replication structure to match a target structure as 
much as possible. As McCrae et al. [18] describe, “Factors 
are rotated to minimize the sums of squares of deviations 
from a target matrix, under the constraint of maintaining 
orthogonality. The technique realigns the position of the axes 
in the factor space without affecting the relative positions, 
just as multiple visual perspectives on a rigid object such as 
a table give different views without in the least changing the 
shape of the table.”  
 After deriving these rotated factor solutions for the AD-
Set, MCI-Set, and Control-Set, we measured their degrees of 
similarity to the target (the Combined-Set) through congru-
ence coefficients. These are similar to correlation coeffi-
cients in that a coefficient of ±1 indicates perfect congruence 
while a coefficient of 0 indicates no congruence. However, 
unlike correlation coefficients, congruence coefficients are 
not adjusted for the means of the samples being compared 
[12]. Congruence coefficients are often used to measure in-
variance between a target factor structure and a replication 
structure (the data being rotated to match the target structure) 
[12, 13, 18]. We examined three types of congruence coeffi-
cients: variable congruence (which measures the extent of 
agreement in the pattern of loadings one variable has across 
all factors between two solutions and can be an indicator of 
the variable causing poor fit when there is a lack of factor 
congruence), factor congruence (which measures the extent 
of agreement in the pattern of loadings between correspond-
ing factors in two solutions), and total congruence (an over-
all index of the degree of similarity) [13]. Thus, for each set 
there was a congruence coefficient for each variable (17), a 
congruence coefficient for each factor (6), and one total con-
gruence coefficient. Congruence coefficients do not have 
known sampling distributions; therefore, bootstrapping is a 

solution to determining statistical significance. Bootstrap-
ping with replacement generates a distribution of congruence 
coefficients from randomly sampling the target and replica-
tion data and performing the PCA with Procrustes rotation. 
In other words, we randomized the subjects of Combined-Set 
and each of the separate sets (AD-Set, MCI-Set, and Con-
trol-Set) with replacement (which randomly allows subjects 
to potentially appear in the same group more than once), 
performed the PCAs, rotated each of the randomized sepa-
rate sets to match the randomized Combined-Set, and meas-
ured the resultant congruence coefficients. This was done for 
every iteration of the bootstrapping technique. Performing 
this randomization and subsequent analysis numerous times 
creates a sampling distribution of congruence coefficients. 
 Two factor structures are judged to be equivalent (invari-
ant) if their congruence coefficients are larger than critical 
values defined at a certain alpha level. For a more complete 
discussion of these concepts and the SAS IML code used to 
conduct this analysis, see Chan et al. [13] and Paunonen 
[17]. We performed 5,000 replications to generate critical 
values (measured from the bootstrapped sampling distribu-
tion) for each of the three randomized separate sets com-
pared with the randomized Combined-Set (15,000 replica-
tions total). Our alpha level was 0.05. 
 Each congruence coefficient (24 total) for each compari-
son (AD-Set with Combined-Set, MCI-Set with Combined-
Set, and Control-Set with Combined-Set) was judged to be 
statistically significant against the critical values generated 
from the bootstrapping analysis. A coefficient higher than its 
critical value supported invariance. These analyses were per-
formed using the SAS IML procedure [31]. 

RESULTS 

Neuropsychological Factors 

 From the PCA on the Combined-Set of three subject 
groups, we retained six factors. Four factors were retained by 
the Eigenvalue > 1 rule. An additional two factors had Ei-
genvalues nearly equal to 1 and were interpretable and thus 
were retained. Together these six factors accounted for 78% 
of the total variance. Table 2 shows the factor loadings with 
Varimax rotation [33], which was done for interpretability 
and simplicity. One factor was comprised of a single salient 
measure from a specific cognitive domain and required little 
interpretation (factor 6 in Table 2), while all the remaining 
factors entailed two or more salient loadings (e.g., factor 2 in 
Table 2). The factors encompass a wide range of cognitive 
skills, including general memory, generative fluency, visu-
ospatial orientation, and speeded executive function. The 
factor solution (prior to Varimax rotation) became the target 
for comparisons with the AD-Set, the MCI-Set, and the Con-
trol-Set. 

Cognitive Structures Compared for the AD, MCI, and 
Control Sets 

 In order to assess the similarities of the cognitive struc-
tures in the AD-Set, the MCI-Set, and the Control-Set, a 
PCA was done on each set separately and results of each set 
were compared with those of the Combined-Set. Because the 
Combined-Set PCA yielded six factors, a six factor solution 
was selected for each PCA performed. These turned out to 
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be similar as all solutions had at least five factors above the 
Eigenvalue = 1 threshold, and, in each case, the sixth factor 
had an Eigenvalue very close to 1 (in the Control-Set, this 
factor had a value greater than 1). The six factors accounted 
for nearly the same percent of variance in the AD-Set, the 
MCI-Set and the Control-Set (78%, 75%, and 72%, respec-
tively). The Eigenvalues of pre-rotation Factor 6 were 0.96 

for the AD-Set, 0.91 for the MCI-Set, and 1.05 for the Con-
trol-Set, as compared with 0.73 for the Combined-Set. These 
Eigenvalues are in the context of a trace of 17.  
 After Procrustes rotation, the similarities between the 
Combined-Set and the factor structures separately derived 
from the AD-Set, the MCI-Set, and the Control-Set were 
assessed by their congruence coefficients (Table 3). Values 

Table 2. Factor Loadings for the 6-Factor Combined-Set Solution 

 Factors 

Test Measure 1–General  
Memory 

2–Speeded Executive  
Function 

3–Learning/Object  
Naming 

4–Generative  
Fluency 

5–Visuo-
construction 

6–Visuospatial  
Orientation 

Rey-Osterrieth Complex Figure [34, 35] 

Delayed Recall Score .74 .30 .26 -.06 .06 .18 

Mini-Mental State Examination [20] 

Score .62 .19 .13 .28 .38 -.05 

WMS-III Digit Span [36] 

Letter-Number Score .27 .63 -.12 .46 .08 .08 

WMS-R Logical Memory I [37, 38] 

Total Recall Score .78 .38 .10 .13 .11 .22 

WMS-R Logical Memory II [37, 38] 

Total Recall Score .90 .20 .05 .01 .09 .09 

Clock Face Drawing [39] 

Score .40 .20 .06 .14 .79 -.04 

Stroop Test [40] 

Color-Word Score -.02 .68 .18 .07 .44 .20 

Brief Visuospatial Memory Test-Revised [41] 

Total Recall Score .30 .08 .81 .09 .20 .25 

Discrimination Index .79 -.07 .31 .26 .10 .02 

Controlled Oral Word Association Test [42] 

Total Score .15 .18 .11 .89 .12 .11 

Category Fluency [42] 

Animal-Naming .44 .63 .14 .36 .03 -.18 

Hopkins Verbal Learning Test [43] 

Total Recall Score .48 .36 .46 .29 .26 -.10 

Discrimination Index .69 .10 .37 .19 .29 -.12 

Boston Naming Test [44, 45] 

Score .17 .28 .73 .01 -.06 -.21 

Standardized Road-Map Test of Direction [46] 

Score .13 .14 -.01 .09 -.02 .92 

Trail Making Test [47] 

A Speed† .17 .66 .39 >.01 .19 .23 

B Speed† .33 .66 .44 .10 -.04 .03 

Note. Red indicates values above an arbitrary threshold of 0.43 that was selected to highlight more salient loadings. This analysis was from the Combined-Set, which included 17 
early-stage AD, 17 MCI, and 17 Controls. The table shows the PCA orthogonal Varimax [33] rotated factor pattern. Performing Varimax rotation produced a simple, more interpret-
able structure. The six factors explained 78% of the total variance. 
† z scores for these test measures were generated from study data since published age/education corrected normative data were not available. 
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in Table 3 were computed separately for each of the 17 vari-
ables (variable congruence) and for each of the six factors 
(factor congruence). An overall measure of congruence (total 
congruence) was also computed for each set (.81 for the  
AD-Set, .79 for the MCI-Set, and .77 for the Control-Set). 
For each set, these congruence coefficients were large 
enough such that, given the critical values derived from  
the bootstrapping procedure, factor invariance could not be 
rejected. This indicated the Combined-Set factor solution 
was approximated very well in the AD-Set, the MCI-Set,  
and the Control-Set solutions as graphically shown by the  
overlapping factor loadings patterns in Fig. (1). 
 The three types of congruence coefficients (variable con-
gruence, factor congruence, and total congruence) total 24 
for each separate set. All of the congruence coefficients were 
statistically larger than the critical values at alpha = 0.05. 

Thus our findings support the conclusion of factor invari-
ance. 

DISCUSSION 

Cognitive Structures of AD, MCI, and Normal Elderly: a 
Common Metric 

 We examined whether the factor structure derived from a 
Combined-Set of AD, MCI, and Control subjects is appro-
priate for each type of subject. This is of interest for both 
theoretical and practical reasons. Theoretically, invariance 
between the factor structures derived from separate groups 
allows comparisons of scores based on them to be meaning-
ful. This is akin to being certain that the cognitive processes 
assessed by a neuropsychological test battery are the same 

Table 3. Congruence Coefficients Between the Procrustes-rotated Solution for Each Subject Set and the Combined-Set 

Subject Set Congruence Type  

AD MCI CON 

Rey Delayed Recall Score .81 (.65) .83 (.62) .63 (.43) 

MMSE Score .85 (.68) .56 (.30)  .88 (.67) 

Digit Span Letter-Number Score .88 (.68) .75 (.59) .44 (.27) 

LM I Total Recall Score .94 (.81) .94 (.69) .88 (.64) 

LM II Total Recall Score  .97 (.83) .97 (.79) .95 (.77) 

Clock Face Drawing Score .61 (.39) .82 (.41) .55 (.20) 

Stroop Color-Word Score .89 (.66) .84 (.70) .85 (.67) 

BVMT-R Total Recall Score .57 (.18) .90 (.53) .85 (.63) 

BVMT-R Discrimination Index .50 (.25) .65 (.16) .52 (.15) 

COWAT Total Score .86 (.61) .82 (.65) .89 (.73) 

Category Fluency Score .75 (.49) .84 (.64) .73 (.50) 

HVLT Total Recall Score .88 (.67) .76 (.59) .72 (.45) 

HVLT Discrimination Index .92 (.70) .86 (.73) .60 (.37) 

Boston Naming Test Score .85 (.68) .17 (.05) .83 (.63) 

Road-Map Score .91 (.61) .93 (.56) .97 (.85) 

Trail Making A Speed .75 (.53) .78 (.65) .88 (.71) 

Variable Congruence 

Trail Making B Speed .84 (.63) .90 (.70) .85 (.67) 

Factor 1 .96 (.89) .98 (.95) .94 (.90) 

Factor 2 .87 (.62) .83 (.43) .66 (.46) 

Factor 3 .92 (.47) .51 (.34) .63 (.47) 

Factor 4 .50 (.32) .78 (.29) .85 (.41) 

Factor 5 .42 (.29) .23 (.29) .33 (.25) 

Factor Congruence 

Factor 6 .67 (.22) .61 (.18) .64 (.19) 

Total Congruence  .81 (.71) .79 (.71) .77 (.70) 

Note. Each subject set column shows the congruence coefficients (perfect congruence = 1; no congruence = 0). After it the critical value at a one-tailed uncorrected alpha level  
of 0.05 corresponding to each congruence coefficient is displayed in parenthesis. These critical values were generated from 5,000 bootstrapping replications with replacement for 
each set. 
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among different subject groups. On the practical level, it is 
advantageous for these groups to share the same underlying 
neuropsychological dimensions and thus justify the use of a 
common metric system (the factor solution) in measuring all 
the individuals. Thus knowing a novel individual’s diagnosis 
is not necessary when applying the factor structure to obtain 
factor scores, and these factor scores can be easily used in 
subsequent statistical analyses for many purposes, including 
analyzing group differences, diagnosing individuals with AD 
[48], and predicting MCI progression to AD in individuals. 
These latter issues concerning analyses at the individual 
level are particularly important for early identification of 
patients requiring therapeutic and pharmacologic interven-
tions. Additionally, this allows the clinician to avoid assum-

ing a single test score represents a single cognitive domain 
and instead permits remapping a patient’s test battery to the 
fewer, more interpretable factor scores. 
 We used the factor solution of the Combined-Set as the 
target and computed separate PCAs on the AD-Set, MCI-Set, 
and the Control-Set with Procrustes rotation to best fit this 
target. The congruence coefficients between each set and the 
target (Table 3) supported factor invariance. The majority of 
the 24 variables and 6 factors had large congruence coeffi-
cients. For all factors and variables in each two-set compari-
son, the congruence coefficients were larger than the critical 
values calculated from the bootstrapping analysis. The 
analyses supported the conclusion that the factor structures 
are congruent (invariant) (for a more in depth discussion of 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). Superimposed factor loadings for the Combined-Set, the AD-Set, the MCI-Set, and the Control-Set. The factors were generated 
from PCA; the Combined-Set had an orthogonal constraint applied, and the separate sets were rotated via orthogonal Procrustes rotation to 
best match the target (Combined-Set) structure. Loadings of the six factors are plotted across the 17 test measures (shown here in the order 
the tests were administered). 
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this issue, see [13]). The overlaid pattern of factor loadings 
shown in Fig. (1) also visually revealed good agreement 
among the separate sets and the Combined-Set. Here the 
loadings of each factor in each analysis were plotted across 
the 17 test measures (the factors were grouped by their  
numerical order in each solution, as was done in Table 3). 
Their superimposed patterns of loadings were extremely 
similar. Although it may appear that some factors (factor 5, 
in particular) showed low congruence coefficients and 
weaker visual agreement, this is due to sampling error rather 
than dissimilarity (as indicated by the congruence coefficient 
for factor 5 being larger than its critical value). The AD-Set 
was slightly more similar to the Combined-Set than the Con-
trol-Set was. The total congruence coefficient was slightly 
higher for the AD-Set (0.81) than for the MCI-Set (0.79) 
than for the Control-Set (0.77).  
 Although there may be concerns about PCA “over-
factoring” the solution [49], the finding that even the sixth 
factor showed good agreement by congruence coefficients 
(all >0.60) that were all larger than their corresponding criti-
cal values confirms the original retention of six factors. 
There are multiple mathematical methods to measure latent 
constructs in a dataset, but we chose PCA because it operates 
with relatively few prior assumptions about the resultant 
structure and, though not used in this paper, easily generates 
factor scores. The choice of how to measure the latent con-
structs generally does not greatly affect the results [49] and 
sample size as a function of the number of variables is not an 
important factor for stability [50].  
 There is a technical advantage to using a variety of 
groups in the development of an underlying factor structure. 
Using data from only one group risks restricting the range in 
the test measures and attenuating correlations among vari-
ables. This can result in falsely low estimates of component 
loadings [51]. This risk is reduced by involving data from 
multiple groups of individuals. 
 However, we believe the stronger, practical advantage to 
be had in a common metric lies in the utility of the factor 
scores measured by it. A common metric ensures that the 
same measurement axes can be used for all the groups in-
volved in the metric’s creation. Sometimes separate factor 
structures have been derived for each group of subjects [9], 
but this leads to a problem of how to compare the resulting 
factor scores when the factor structures used to create them 
are different. When all the clinical groups of interest simul-
taneously contribute to the structure, it is a far easier task to 
use the factor scores derived from the factor structure to 
compare the neuropsychological performance of groups and 
even individuals [48]. The common metric demonstrated by 
the Combined-Set was influenced by both group and indi-
vidual differences. There is no need to “translate” the scores 
of a Control individual into the factor structure of the AD 
group, for example. The factor scores of all individuals lie on 
the same dimensions and are thus easily compared and ma-
nipulated in subsequent analysis. Because our Combined-Set 
included AD, MCI, and Controls, the neuropsychological 
dimensions derived from the PCA performed on the Com-
bined-Set can represent axes reflective of both demented and 
normal cognition. These dimensions might thus symbolize a 
gradient between neuropsychological performance in AD 
and normal elderly, and an individual’s factor score on that 

dimension can possibly lie at either end or some place be-
tween (as might be the case with MCI patients). For a greater 
discussion and demonstration of what can be gained from the 
implementation of a common factor metric, see [48]. 
 These data support the conclusion that the AD, MCI, and 
Control groups likely share similar underlying cognitive di-
mensions. This does not mean that these groups would tend 
to have similar factor scores. It is expected that different 
groups of subjects would tend to obtain different factor 
scores on one or more of these factors. Here we are asking if 
the underlying neuropsychological dimensions are different, 
rather than if the locations of various groups on the dimen-
sions are different. 
 Further research is needed to determine how stable the 
Combined-Set solution is. Given a larger number of subjects 
and more test measures, it is possible to refine the factor 
structure. Because the Combined-Set contained twice as 
many impaired individuals as normal individuals, its factor 
structure was slightly more reflective of cognitive processing 
in AD/MCI rather than normal elderly (as may be seen in our 
congruence coefficients). Additionally, it would be of great 
clinical and research interest to determine if these common 
factors underlie neuropsychological test performance in 
other types of dementia. If so, the empirically derived factor 
scores from the common metric might help differentiate be-
tween AD and other cognitive diseases. 

CONCLUSIONS 

1. Using neuropsychological test measures as input, princi-
pal components analysis (PCA) allows development of 
fewer, more interpretable underlying cognitive dimen-
sions that provide both relations between the test meas-
ures and the dimensions (factor loadings comprising a 
factor structure) and measures of individual performance 
on those dimensions (factor scores). 

2. The underlying factor structures of an AD-Set, an MCI-
Set, and a Control-Set are congruent with the factor 
structure derived from a Combined-Set of those subject 
types (as judged through orthogonal Procrustes rotation 
and the resultant high congruence coefficients between 
the factors and variables of each separate set and a Com-
bined-Set). This suggests the common metric of the 
Combined-Set adequately represents the cognitive di-
mensions of AD, MCI, and normal elderly. 

3. A common metric system (the Combined-Set) is a useful 
and powerful measurement tool for gauging neuropsy-
chological performance in AD, MCI, and normal elderly. 
This metric is made more stable by contributions from 
varied groups of individuals as the range in values is 
larger due to group differences as well as individual dif-
ferences. Additionally, because the common metric re-
flects the influences of AD, MCI, and Control subjects, 
the factor scores derived from this metric may be used to 
diagnose patients with AD or predict progression to AD 
in MCI patients. 

ABBREVIATIONS 

AD = Alzheimer’s Disease 
BDS = Blessed Dementia Scale 
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BVMT-R = Brief Visuospatial Memory Test-Revised 
COWAT = Controlled Oral Word Association Test 
GDS = Geriatric Depression Scale 
HVLT = Hopkins Verbal Learning Test 
MCI = Mild Cognitive Impairment 
MMSE = Mini-mental State Examination 
LM I/LM II = Logical Memory I/Logical Memory II 
PCA = Principal Components Analysis 
SAS = Statistical Analysis System 
WMS-R = Weschler Memory Scale-Revised 
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