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bstract

A pattern of components from brain event-related potentials (ERPs) (cognitive non-invasive electrical brain measures) performed well in
eparating early-stage Alzheimer’s disease (AD) subjects from normal-aging control subjects and shows promise for developing a clinical
iagnostic for probable AD. A Number–Letter task elicited brain activity related to cognitive processes. In response to the task stimuli, brain
ctivity was recorded as ERPs, whose components were measured by principal components analysis (PCA). The ERP component scores to
elevant and irrelevant stimuli were used in discriminant analyses to develop functions that successfully classified individuals as belonging to
n early-stage Alzheimer’s disease group or a like-aged Control group, with probabilities of an individual belonging to each group. Applying
he discriminant function to the developmental half of the data showed 92% of the subjects were correctly classified into either the AD group or
he Control group with a sensitivity of 1.00. The two crossvalidation results were good with sensitivities of 0.83 and classification accuracies

f 0.75–0.79. P3 and CNV components, as well as other, earlier ERP components, e.g. C145 and the memory “Storage” component, were
seful in the discriminant functions.

2005 Elsevier Inc. All rights reserved.
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. Introduction

A valid and objective biological marker that can reliably
istinguish between early-stage Alzheimer’s disease (AD)
atients and those with normal age-related cognitive deficits
s critical to the advancement of both basic AD research and
linical intervention for patients with the disease [3,23,32].

ere we report event-related potential (ERP) brain measures

hat hold promise for developing a sensitive diagnostic test
or AD. This brain marker may allow diagnosis of individuals
n nascent stages of AD, consequently facilitating early inter-
ention. Additionally, identifying specific ERP components
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nd task conditions that discriminate AD individuals from
ike-aged controls may also provide better understanding of
rain functions related to Alzheimer’s disease.

Our approach uses cognitive ERP signs from non-invasive
ecordings of brain electrical activity as a diagnostic tech-
ique. Some researchers have taken steps in this direc-
ion by investigating ERPs in AD patients and studying
roup differences between AD and control subjects (e.g.
14,16,17,21,24–27]). Many of the results were based on
he odd-ball paradigm and measured the P3 component
sing ERP peak or area measures. Our study employs a
umber–Letter paradigm that varies information processing

onditions and a more formal measurement method (princi-
al components analysis [PCA]) to identify and measure a

umber of independent ERP components.

The Number–Letter paradigm generates a number of
nteresting ERP components. One is the P3, which is larger
o relevant stimuli [4,6,18] and may be involved with
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emory modification and context updating [10,11]. Another
omponent evident in this paradigm is the contingent
egative variation (CNV) [18,33], which indicates another
emory-dependent process: expectancy of an upcoming

elevant stimulus [8]. The memory “Storage” component
C250), previously discovered in this paradigm [9], is larger
hen the stimulus should be stored in short-term memory; in
behavioral probe test, the C250 amplitude was predictive of

ecall a short time later [10]. Thus, testing with this paradigm
llows the measurement of ERP components associated with
timulus relevancy, expectancy, and short-term memory
torage, as well as other ERP components.

ERP component amplitudes vary with experimental con-
itions, and we use the term “component condition” to refer
o the amplitude of a component under a specified experimen-
al condition. We apply discriminant analyses that combine
eighted measures of a set of ERP component conditions to

onstruct functions that classify an individual as belonging to
he AD group or Control group and give posterior probabil-
ties of group membership. This classification of individuals
rovides a more precise evaluation than analyses of mean
roup differences. Significant mean group differences do not
ecessarily assure that a significant number of the individuals
n those groups can be correctly classified. On the other hand,

significant number of correct classifications of individu-
ls does assure that mean group differences are significant.
dditionally, the sensitivity and specificity of this pilot test

re assessed.

. Methods

.1. Study population

A desirable test for Alzheimer’s disease would detect
bnormality in an early stage of the disease when “evi-
ence of cognitive dysfunction will be different and less frank
han in later stages” [1]. Therefore, we selected participants
hose diagnoses were considered early in the course of AD.
he participants were diagnosed by physicians who are AD
pecialists and who were blind to the results of our ERP
ests. The AD participants met standard National Institute
or Neurological and Communicative Disorders and Stroke
nd Alzheimer’s Disease and Related Disorders Associa-
ion (NINCDS-ADRDA) criteria [22]. As further inclusion
riteria, the AD participants had Mini Mental State Exam
MMSE) scores of 22 or greater (out of 30; higher scores indi-
ating better performance) [13]. The AD participants were
rom the Alzheimer’s Disease Center at the University of
ochester, including the Geriatric Neurology and Psychiatry
linic at Monroe Community Hospital. The control partici-
ants selected were normal for their age and demographically

imilar to AD participants, e.g. age (mean [S.D.] years, for
D: 75.8 [4.5] and for controls: 74.2 [4.8]). Exclusion criteria

ncluded clinical (or imaging) evidence of stroke, Parkinson’s
isease, HIV/AIDs, and reversible dementias, as well as treat-

(
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i
t
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ent with benzodiazepines, antipsychotic, or antiepileptic
edications. Of the 12 subjects in the AD group, there were
minumum of four subjects taking cholinesterase inhibitors

o treat mild Alzheimer’s disease, and at least three subjects
ere not.
The AD group had nine males and three females; the

ontrol group had nine females and three males. Using a
ausch & Lomb Vision Tester, their acuity (corrective lenses
llowed) in the better eye was 20/30 or better. All subjects
ould read the large, bright numbers and letters used as stim-
li in our Number–Letter paradigm.

.2. The Number–Letter paradigm

The Number–Letter paradigm employed a visual task with
emory and other cognitive demands. On each trial it entailed

iscrimination between stimuli relevant and irrelevant to the
ask and memory storage of the first relevant stimulus in order
o compare it with the second relevant stimulus. Two num-
ers and two letters flashed individually in random order at
ntervals of 750 ms preceded and followed by a blank flash
9]. On a number-relevant block, the participant compared
he two numbers in each trial for numerical order, the letters
eing irrelevant to the task. On another block of trials, the
umbers were irrelevant and the task was to compare the two
etters for alphabetic order. At the end of each trial, the par-
icipant said “Forward”, “Backward”, or “Same” to indicate
he numerical order of the two numbers on number-relevant
locks or the alphabetic order on letter-relevant blocks. The
umbers and letters were randomly selected (1 to 6, A to F),
nd the sequences of numbers and letters in the four tem-
oral intratrial positions were randomized (constraint of two
umbers and two letters per trial). The stimuli were large
height of 5.3◦ visual angle), bright (55 cd/m2), and presented
equentially in the middle of a computer monitor in order to
ake it easy for the participants to see them. The stimuli were

rief (20 ms) to restrict the time at which each stimulus could
e processed and to lower the influence of eye movements.
wo blocks of 102 trials each were run; one was number-
elevant and the other was letter-relevant. The sequence of
timuli in the two blocks of trials was the same so that any
ifferences in the neural responses would not be attributable
o differences in the physical stimuli, but rather to the dif-
erent perceptual/cognitive processing of the same stimuli.
equences were randomized for each subject. The relevance
rder was alternately assigned to each subject. The relevance
rder was balanced for both groups of subjects (half of the
ubjects received the number-relevant task first, while the
ther half had the letter-relevant task first). Using behavioral
ata from the two blocks of trials, the median behavioral per-
ormance was about the same for the number and letter tasks

97 and 94%, respectively) and for the first and second task
96 and 97%, respectively). Thus, the relevance order did not
mpact performance. The data was halved by odd and even
rials for later crossvalidation testing.
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The subject was instructed and given practice at doing the
ask for that block (usually only 10 or so trials were needed).
hen, the subject performed the task while his/her EEG was

ecorded. The participants in this pilot set were capable of
erforming this task after the brief behavioral training. Only
orrect trials were included in the brain function measures.
he median correct was 92% for the early-stage AD group
nd 97% for the like-aged Control group. The mean (and stan-
ard deviation) of the percentage of correct trials for the AD
nd Control groups were 90 (18.3) and 96 (2.6), respectively.
ne AD subject answered correctly only 40% of the time. To

ccount for this discrepancy, extra blocks of trials were mea-
ured to ensure that this subject had roughly the same number
f correct trials enter the analyses as the other subjects had.

.3. EEG recordings

While the participant was performing the letter or num-
er comparison tasks, scalp electrodes recorded electrical
rain activity. Data were recorded with monopolar electrodes
Electro-Cap) from the midline central area (CZ) to linked
arlobes. EOG was recorded to monitor eye movements. Fre-
uency bandpass of the Grass amplifiers was 0.1–100 Hz.
eginning 30 ms before each stimulus presentation, 155 digi-

al samples were obtained at 5 ms intervals. Offline, the digital
ata were digitally filtered to pass frequencies below 60 Hz.
he ERPs were based on correct trials and data not rejected

or artifacts (mean artifact rejection rate was 1.7%). Arti-
act criteria were applied to the CZ and EOG channels in
esponse to each stimulus, and those 750 ms epochs were
xcluded if either voltage range exceeded 200 �V or either
aseline exceeded ±250 �V (baseline was mean of 30 ms
re-stimulus). These artifact criteria were designed to pri-
arily reject data with eye blink artifacts. Artifact reduction

lso depended on averaging to minimize the effects of small
ye movements.

.4. Event-related potentials (ERPs)

To obtain ERPs, the EEG vectors (155 time points) were
veraged separately for each of the stimulus conditions in this
xperimental design. For each subject there were 36 ERPs:
2 relevance (relevant, irrelevant) × 4 intratrial positions × 2
timuli (Number, Letter) + 2 blanks (B1, B2)] × 2 halves of
ata (even/odd trials).

.4.1. ERP components measured by principal
omponents analysis (PCA)

ERP components were identified and measured by princi-
al components analysis (PCA) [30]. This formal multivari-
te procedure has a number of advantages over peak and area
easures. For a discussion of PCA applied to brain ERPs see
7], and for examples of PCA used with this Number–Letter
aradigm see [5,8].

In order to provide a common measurement of ERPs for
wide variety of subjects [19], we used additional groups of

t
t
f
“
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ubjects for the PCA step. Our four groups of twelve subjects
ach were AD, like-aged Control, Mild Cognitive Impair-
ent, and Young. The 36 experimental conditions × 48

ubjects constituted 1728 ERPs (observations), each with
mplitudes at 155 time points. This data matrix of 1728
bservations by 155 variables was submitted to a PCA [7]
sing the correlation matrix and Varimax rotation.

The PCA output the temporal waveforms of each ERP
omponent (loadings) (Fig. 2) and the amount (i.e., amplitude
r score) of each component for each observation (experi-
ental condition by subject). The waveforms from the PCA
ere considered the basis set for the measurements of the
RP components’ amplitudes (scores).

After the PCA was computed, the resulting ERP com-
onent scores were averaged so that means were obtained
or relevant and irrelevant stimuli for odd and even trials
or each of the subjects (collapsing across intratrial position
nd stimuli). The component scores for the blank condi-
ion were not considered in further analyses. The measures
ere renamed to reflect both the name of the component

nd the relevance condition under which it was elicited. This
roduced 16 component conditions: one relevant and one
rrelevant measure for each of the eight components in the
alf of the data being examined at a time. These compo-
ent conditions were input into the discriminant analyses
30].

.5. Discriminant analysis

Discriminant analyses developed linear combinations of
RP component scores that revealed differences between
RPs belonging to the AD group as distinguished from the

ike-aged Control group. These combinations of scores (dis-
riminant functions) then served as the basis for classifying
ndividuals into these groups. The resulting classification
ccuracy (proportion of correct classifications) was evalu-
ted for the developmental data and with two crossvalidation
ethods (the jackknifed or one-left-out and the test data).
he classification accuracies were statistically assessed with
isher’s Exact Test. Sensitivity and specificity of the diag-
oses were also computed.

A stepwise discriminant procedure selected a subset of the
RP component conditions that produced a good discrimi-
ation model. The selected component conditions (Table 1)
ere the variables entered into discriminant analyses to
evelop discriminant functions.

Only half of the data (odd trials) were used initially in
ur discriminant analysis, leaving the other half of the data
even trials) as test data for crossvalidation testing. The one-
eft-out crossvalidation procedure determines a discriminant
unction based on N-1 subjects and then applies it to classify
he one subject left out. This was done for each of the 24

raining observations (12 AD and 12 control subjects). Thus,
he data used to develop the discriminant functions were dif-
erent from the data being classified. This method achieves a
nearly unbiased estimate” [20].
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Table 1
ERP variables (component conditions) in discriminant analysis: ADs vs.
like-aged Controls

1 P3 Rel P3 component to relevant stimuli (peak 415 ms
poststimulus)

2 CNV Irr CNV component to irrelevant stimuli (negative wave
prestimulus and turns off at about 350 ms)

3 C145 Irr C145 component to irrelevant stimuli (peak 145 ms
poststimulus)

4 CNV Rel CNV component to relevant stimuli (negative wave
prestimulus and turns off at about 350 ms)

5 P3 Irr P3 component to irrelevant stimuli (peak 415 ms
poststimulus)

6 C250 Irr Memory “Storage” component to irrelevant stimuli
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Fig. 2. Event-related potential components derived from principal com-
ponents analysis across 48 subjects. The top waveform (AV) is the grand
average ERP at electrode CZ for all experimental conditions and subjects.
The remaining waveforms are the first 8 components from the PCA after
Varimax rotation, in order of variance accounted for, from top to bottom.
SW = slow wave. CNV = contingent negative variation (negative prior to
stimulus). P3 = P300, maximum at 415 ms. C250, C145, C540, C325, and
C185 are components with maxima at the poststimulus time (ms) given in
(peak 250 ms poststimulus)
SW Rel Slow wave component to relevant stimuli (peak about

745 ms poststimulus)

. Results

.1. ERPs

ERP waveforms for relevant and irrelevant stimuli are
verlaid and shown separately (displaced) for the AD and
he like-aged Control groups (Fig. 1). The AD group had
maller ERPs and smaller ERP differences between the rele-
ant and irrelevant stimuli than the like-aged Control group.
hese effects appear to involve ERP components in a wide
ariety of time regions.

.2. ERP components
ERP components were identified and measured by princi-
al components analysis (PCA) (online supplementary data,

ig. 1. Event-related potentials (ERPs) averaged over 12 Alzheimer’s dis-
ase (AD) participants (early stage) and over 12 like-aged Control (CON)
articipants, graphically displaced. ERPs from the central-midline electrode
CZ) to relevant (solid red) and irrelevant (dashed blue) stimuli are super-
mposed.

their labels. Each component is offset here with its baseline shown as a
dashed line. In these component waveforms, the metric has been restored by
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ultiplying the loading at each time point by the standard deviation of the
ata set at the corresponding time point [7]. The amplitudes depicted are for
component score of 1.0.

able 1). From the PCA, eight components, accounting for
5% of the variance, were retained. (The ninth component,
stimulus artifact with high loadings during the brief stim-
lus, was not used further in the analyses.) The temporal
aveforms of the ERP components are in Fig. 2. In addition

o the well-known P3 [4,6,18], contingent negative variation
CNV) [8,33], and slow wave (SW) [8,29], other ERP com-
onents, including relatively early ones peaking at 145 and
50 ms, were seen.

The amplitudes of each component for each experimental
ondition by subject were another output from the PCA (com-
onent scores) [7]. These were the ERP component scores
sed in assessing differences between AD and control indi-
iduals.

.3. Discriminant analyses: developmental data
The seven ERP component conditions selected (Table 1)
ere the variables entered into the discriminant analyses

o develop a discriminant function (online supplementary
ata, Table 2). Applying the discriminant function to the
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Table 2
Crossvalidation (one-left-out) classification of subjects as Alzheimer’s disease (AD) or Control group using discriminant function of 7 ERP component condition
scores from the PCA

(A) Subject From group Classified into group Correct classification Posterior probabilities of classification into

AD Control

80 A A + 0.9969 0.0031
81 A A + 0.9675 0.0325
82 C C + 0.0014 0.9986
84 A A + 0.9929 0.0071
90 A A + 0.9371 0.0629
93 C C + 0.0502 0.9498
AC A A + 0.9987 0.0013
AE C C + 0.0349 0.9651
AF C A 0.5941 0.4059
AG C A 0.9298 0.0702
AH C C + 0.0000 1.0000
AJ C C + 0.0332 0.9668
AK A C 0.0631 0.9369
AL C C + 0.0016 0.9984
BA A A + 0.6201 0.3799
BB C C + 0.0101 0.9899
CM A A + 0.9992 0.0008
CY C A 0.9989 0.0011
DN A A + 0.9084 0.0916
DT A A + 0.9937 0.0063
ET A A + 0.6162 0.3838
FB C C + 0.0175 0.9825
FD A C 0.3318 0.6882
FF C C + 0.0168 0.9832

(B) ERP test diagnosis Clinical diagnosis Row total

AD Control

T+ 10 3 13
T− 2 9 11

Sum 12 12 24

+ Correctly classified.
(A) Classification results for each of the 24 subjects including posterior probabilities of group membership calculated by discriminant analysis using the ERP
m AD, Co
T as not
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easures. (B) Summary of individual results for 12 subjects in each group (
+ indicates classified as AD by the ERP measures. T− indicates classified

evelopmental half of the data (odd trials), 22 of the 24
ubjects (92%) were correctly classified into the AD group
r the Control group (sensitivity = 1.00; specificity = 0.83).

These results, which used the same set of data (odd trials)
o develop and to apply the discriminant function, are promis-
ng. However, to avoid capitalizing on chance, it is important
o crossvalidate the discriminant function.

.4. Discriminant analyses: crossvalidations

The one-left-out crossvalidation results (Table 2) were cor-
ect for 19 of the 24 individuals (79% success), a statistically
ignificant result by Fisher’s Exact Test (p < 0.01). The sen-
itivity (0.83) and specificity (0.75) were relatively high.

A test-data crossvalidation further evaluated the diagnos-

ic generality. The discriminant function developed with one
et of data (odd trials) was tested on a different set of data
even trials) not used in creation of the function. The result-
ng classification success rates dropped slightly to 18 of 24

l
d
(
s

ntrols).
AD.

ubjects (75%), compared to the 79% success rate in the one-
eft-out crossvalidation (Table 2), but were still statistically
ignificant by a 2 × 2 test (Fisher’s Exact Test, p < 0.01). The
ensitivity for the AD group remained at 0.83, while the speci-
city dropped to 0.67 with one more control misclassified as
D.

. Discussion

.1. Diagnosing AD with discriminant analyses

For the purpose of developing a diagnostic procedure
hat discriminates between Alzheimer’s disease and like-aged
ontrol individuals, ERP component scores under particu-

ar task conditions were used as the input variables in a
iscriminant analysis. The resulting discriminant functions
based on combinations of seven of these scores [Table 1])
erved as the basis for classifying individuals into the two
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roups. The resulting classification accuracy was excellent,
n that 92% of the individuals in the developmental data were
orrectly classified with a sensitivity of 1.00 and specificity
f 0.83.

These results used the same set of data (odd trials) to
evelop and to apply the discriminant functions. In additional
nalyses designed to better assess the generalizability of the
esults, the data used to develop the discriminant functions
ere different from the data used to test them. Two such cross-
alidation methods were used: the one-left-out and the test
ata (even trials). As expected, their classification accuracies
ere lower (0.79, 0.75) but remained statistically significant

p < 0.01).
Particularly relevant are the one-left-out results (Table 2),

ince in this crossvalidation method the subject being tested
oes not contribute to the development of the classification
unctions. Thus, this one-left-out procedure estimates the
bility to generalize the results to new subjects. The sen-
itivity (0.83) and specificity (0.75) were relatively high for
rossvalidation results.

It is interesting to consider the few individuals who were
isclassified in the crossvalidation results (Table 2). First,

ome of the misclassifications might be due to clinical mis-
iagnosis of these individuals since we were dependent on
linical judgments. In fact, some of the controls may have
lzheimer’s disease and vice versa. If this ERP test is sensi-

ive to very early stages of AD, then one might expect it to
ometimes classify a control as AD before clinical symptoms
ppear. Three of the controls (Table 2) were misclassified
s AD. Second, some of the individuals may be difficult to
learly classify by our ERP measures. The posterior prob-
bility of membership in each group is available from the
iscriminant analysis, in addition to the binary decision based
n the higher probability. Table 2 shows that most of the cor-
ectly classified individuals had much higher probability of
elonging to one group over the other (e.g., Subject 81 had
.97 probability of belonging to the AD group and only 0.03
robability of belonging to the Control group). On the other
and, some misclassified individuals had probabilities closer
o 0.50 (e.g., Subject AF had 0.59 probability of belonging to
he AD group and 0.41 probability of belonging to the Con-
rol group). These posterior probabilities add a quantitative

easure to the decision and could indicate that the evidence
s “too close to call” one way or the other with those individ-
als.

For example, if one decided that only probabilities greater
han 0.70 be used to diagnose an individual, in the cross-
alidation results (Table 2) 4 of the 24 individuals would be
onsidered “too close to call”. In the remaining individuals,
his would reduce the error rate from 20.8 to 15.0%, and
ncrease the sensitivity from 0.83 to 0.89 and the specificity
rom 0.75 to 0.82.
The success of discriminating AD from controls using
rain ERP measures was not due simply to failure of the AD
roup to perform the Number–Letter task, since only ERP
ata from correct trials were included in the analyses and the
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ask was performed with high accuracy (the median percent
orrect was better than 90% in both groups).

Though at least 33% of our AD subjects were taking
holinesterase inhibitors, we were not expecting this treat-
ent to affect the ERP components. Based on the literature,

ignificant P3 amplitude changes related to cholinergic treat-
ent were not found in AD subjects, although modest P3

atency effects were reported [28,34]. Our ERP measures are
ore like amplitude measures and hence not likely to be very

ensitive to cholinergic treatment. If there were ERP effects,
ne might expect the changes to be more in the direction
f ADs looking like controls, and therefore make it more
ifficult for our measures to discriminate AD from control
ndividuals. The presumed drug effect operates in the wrong
irection to account for the AD effect, which was statistically
ignificant. Thus, the literature and the expected direction of
holinergic effects make it unlikely that our reliable ERP
ifferences between AD and controls are due to cholinergic
reatment.

Also, there was a gender imbalance between the AD and
ontrol groups (75% versus 25% male). We studied this
otential confound through additional analyses that made
ender enter the discriminant function either before or after
he ERP measures listed in Table 1. With the ERP measures
lready in the discriminant model, gender did not make an
mportant contribution to the discrimination of AD subjects
rom control subjects (the average squared canonical correla-
ion increased only 0.681 to 0.688). When gender was entered
nto the model first and partialled out of the ERP measures,
he set of seven ERP measures increased the discriminative
ower more than 2.5 times (average squared canonical cor-
elation rose from 0.25 to 0.688, a figure nearly the same as
he ERP measures alone, 0.681). Thus, the ERP measures
layed the major role. These additional analyses support that
he imbalance in gender do not provide a worrisome confound
o the ERP conclusions.

Overall, these analyses indicate that this pattern of seven
RP measures did well in classifying whether individuals
elong in the AD or Control groups, and they offer a promis-
ng method for diagnosing early-stage Alzheimer’s disease.
he multivariate methods described here would be easy to
se in an automated procedure. The component scores for
ew ERPs would be computed by using the PCA results
lready obtained in the test development. Then, the discrim-
nant functions would classify an individual, with computed
robabilities, to the AD or Control group, based on their ERP
omponent scores.

.2. ERP components

A select set of ERP measures was important in discrim-
nating ADs from controls (Table 1). Each ERP measure

as the amplitude (score) of a particular ERP component

n response to a particular experimental condition (com-
onent condition). For example, the amplitude of the P3
omponent to relevant stimuli was the first ERP measure
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elected for the discriminant function. Consideration of the
RP components and conditions that were important for dis-
riminating ADs from controls may generate ideas not only
bout improving diagnostic tests, but also about understand-
ng mechanisms that differ in AD.

The discriminatory power of rather early ERP components
C145 and C250, peaking at 145 and 250 ms poststimulus)
as not previously been explored for AD. Since both of these
arly ERP components were smaller for the AD group than
or the Control group, this illustrates that it is not only late
ognitive components that are different in AD. C145 may
eflect perceptual processing of the stimuli [31], suggesting
hat very early aspects of neural processing may be affected in
D. C250 is the ERP component we have called the “Stor-

ge” component, because it has a larger amplitude when a
timulus is stored in short-term memory [2,9,10]. Finding
hat the median C250 amplitude is smaller for the AD group
han the Control group suggests that AD deficits may include
torage in short-term memory.

Another problem for AD individuals may lie in their cog-
itive processing of stimuli that are relevant to the task in
hich they are engaged. P3, an ERP component with a pos-

tive maximum at 415 ms poststimulus, is well-known to be
arger in response to stimuli that are task relevant in normal
dults [4,6,8,10]. A similar effect of stimulus relevance on P3
as also found in the AD group. However, the P3 amplitudes
ere considerably smaller in the AD group than in the like-

ged Control group (median P3 scores to relevant stimuli of
.02 and 0.64, respectively). Reduced P3 amplitudes in AD
roups have been reported for other tasks [12,15,24,27].

The SW component, a slow wave ERP component with
late maximum at approximately 745 ms, was considerably

arger to relevant stimuli for the AD group than for the Con-
rol group (median scores of 0.53 and 0.13, respectively).
urthermore, the AD group showed a much larger SW ampli-

ude difference between relevant and irrelevant stimuli (0.34)
han did the Control group (0.06). This result illustrates that
ot all of the ERP components are smaller for the AD group
han for the Control group. This is surprising if one expects
D effects to always be in the direction of smaller ampli-

ude measures of brain function. The amplitude of SW has
een interpreted to be larger when a stimulus requires more
rocessing [29]. Perhaps this larger ERP component may be
howing a compensatory effect in the AD group.

The CNV component also played a prominent role in
iscriminating ADs from controls. The CNV has been inter-
reted to represent expectation of a relevant stimulus. The AD
roup showed a larger component score for CNV to irrele-
ant stimuli than the Control group (medians scores of 0.58
nd −0.14, respectively). This suggests that AD individuals
ay have problems in anticipating important stimuli.
An interesting aspect of the ERP measures that were
elected for discriminating ADs from controls (Table 1) is
hat brain responses to irrelevant stimuli, as well as to rel-
vant stimuli, were helpful. Of the seven ERP measures
elected, ERP components P3, CNV, C145 and C250 were in

f
2
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esponse to task-irrelevant stimuli and P3, CNV and SW were
n response to task-relevant stimuli. It is tempting to consider
hat a major problem for individuals with Alzheimer’s dis-
ase lies in their processing of stimuli that are irrelevant to
he task in which they are engaged, not just their processing
f relevant stimuli.

It is premature to consider these interpretations based on
RP components as definitive, but they do suggest intriguing

deas for subsequent studies that seek to improve diagnostic
ests based on ERPs and to understand better the specific
ature of Alzheimer’s disease deficits.

. Conclusion

We have demonstrated that the analyses of a pattern of
omponents from brain event-related potentials (ERPs) show
romise as a diagnostic tool for detecting individuals as hav-
ng probable Alzheimer’s disease at an early stage. Two
rossvalidation methods support the utility of these cogni-
ive non-invasive electrical brain measures as a potential
iagnostic test. The success of our method is fostered by
sing a cognitive task that involves a number of processes.
e developed a pattern of ERP component conditions that

iscriminates individuals with Alzheimer’s disease from like-
ged controls by measuring separable brain ERP components
ith a formal procedure (principal components analysis) and

ombining these measures in a discriminant analysis. The
osterior probabilities of each individual belonging to either
he AD group or the like-aged Control group could provide
uantitative measures that offer additional precision and con-
ext to a diagnosis. Additionally, the ERP components found
o be useful in the discrimination may present a means of fur-
her understanding the specific nature of Alzheimer’s disease.
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