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Abstract
Deciphering how sentence meaning is represented in the brain remains a major challenge to science. Semantically related
neural activity has recently been shown to arise concurrently in distributed brain regions as successive words in a sentence
are read. However, what semantic content is represented by different regions, what is common across them, and how this
relates to words in different grammatical positions of sentences is weakly understood. To address these questions, we apply
a semantic model of word meaning to interpret brain activation patterns elicited in sentence reading. The model is based
on human ratings of 65 sensory/motor/emotional and cognitive features of experience with words (and their referents).
Through a process of mapping functional Magnetic Resonance Imaging activation back into model space we test: which
brain regions semantically encode content words in different grammatical positions (e.g., subject/verb/object); and what
semantic features are encoded by different regions. In left temporal, inferior parietal, and inferior/superior frontal regions
we detect the semantic encoding of words in all grammatical positions tested and reveal multiple common components of
semantic representation. This suggests that sentence comprehension involves a common core representation of multiple
words’ meaning being encoded in a network of regions distributed across the brain.
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Introduction
Whilst it is now established that sentence comprehension
engages a widely distributed network of sensory, motor,

linguistic, cognitive and affective neural systems (Lau et al.
2008; Binder et al. 2009; Lambon Ralph et al. 2017), how mean-
ing is represented, extracted and processed by this system is
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weakly understood. Beyond the academic value of finding
answers to this problem, scientific progress in this area may
enhance diagnosis and treatment of language disorders and
provide guidance for artificial intelligence research.

Two very recent studies revealed that the word by word
construction of sentence meaning in the brain is marked by a
rise in electrocorticography (ECoG) electrode activity that shows
a similar profile in distributed brain regions (Fedorenko et al.
2016; Nelson et al. 2017). These studies suggest that semantic
constructs of entire sentences may be represented in distrib-
uted brain regions, which has been contrasted (Fedorenko et al.
2016) with proposals that link semantic composition to a par-
ticular region (e.g., Baron and Osherson 2011; Westerlund and
Pylkkänen 2014; Zhang and Pylkkänen 2015). It remains unclear
what semantic content is represented in different sentence pro-
cessing regions. For instance, is semantic activation associated
with a similar representation of meaning accumulating in many
different regions, or do different regions tend to represent differ-
ent semantic features (or even features of words in select gram-
matical positions of sentences, e.g., subject/verb/object, etc)?

The intracranial electrodes analyzed by Fedorenko et al.
(2016) and Nelson et al. (2017) may be too few and positioned
too sparsely to adequately test questions of detailed semantic
representation. We turn to functional Magnetic Resonance
Imaging (fMRI) which enables activation across the entire brain
to be scanned with relatively high spatial resolution, but rela-
tively slow sample rate. The goals of the current article are to
identify from fMRI data those brain regions that are engaged in
processing sentence meaning, then: test whether they semanti-
cally encode content words in multiple grammatical positions;
filter out and interpret the components of semantic informa-
tion processed by those regions; and identify commonalities in
semantic components represented across regions. To do this
we build on very recent advances in semantic modeling that
have made addressing this type of question possible.

The last decade has seen semantic models becoming an
increasingly popular tool with which to predict and decipher
scans of brain activity as people perform conceptual tasks (e.g.,
Mitchell et al. 2008; Chang et al. 2010; Devereux et al. 2010;
Sudre et al. 2012; Pereira et al. 2013; Wehbe et al. 2014;
Fernandino et al. 2015b; Anderson et al. 2016; Fernandino et al.
2016; Huth et al. 2016; Yang et al. 2017). These models typically
represent meaning as a vector of weights on a set of discrete
semantic features. For instance, the concept “football” would
weigh heavily on “shape” and “lower-limb” related features and
weakly on “taste” and “temperature”. In contrast “beer” would
show a reversed pattern, and both “beer” and “football” would
weigh heavily on “socialization”. Such a semantic model can be
applied to factor brain activation patterns associated with dif-
ferent concepts (e.g., “football”) into a set of component brain
activation maps, each one associated with a model feature.
Thus, brain maps for taste, temperature, lower-limb…, can be
weighted and summed together to predict neural activation for
“football”. Recent modeling work has transitioned from the pre-
diction of neural activation patterns associated with isolated
words (Mitchell et al. 2008; Chang et al. 2010; Devereux et al.
2010; Sudre et al. 2012; Pereira et al. 2013; Fernandino et al.
2015b, 2016), to more ambitious questions concerning the pre-
diction of neural activation associated with sentences
(Anderson et al. 2016; Pereira et al. 2016; Yang et al. 2017) and
narratives (Wehbe et al. 2014; Huth et al. 2016).

We here reanalyze fMRI data from one of these studies that
scanned 14 participants whilst they read 240 sentences describ-
ing simple everyday situations (Anderson et al. 2016). Anderson

et al. (2016) used a semantic model (Binder et al. 2016) to pre-
dict fMRI representations of words contained in sentences,
then superposed these to predict fMRI representations of the
meanings of new sentences. Whilst this study showed that
neural activation associated with sentence meaning is predict-
able, it left many questions open surrounding how sentence
meaning is distributed across the cortex, and the entirety (or
otherwise) to which sentence meaning is locally represented
within different brain regions. In particular, it did not reveal
how regional activation relates to words in different grammati-
cal positions of sentences, which semantic features capture
neural activation in different regions, and commonalities in
both of the previous respects across different regions of the
semantic network.

This article newly reveals how semantic features underpin-
ning sentence meaning are commonly encoded in multiple dis-
tributed brain regions. To show this we first develop
computational methods to test which regions encode semantic
content associated with words in different grammatical posi-
tions (e.g., in the sentence “the footballer bought the beer”, dif-
ferent semantic features are triggered by the sentence’s subject
and verb and object). We reason that if a region is sensitive to
semantic features supplied by all elements of grammatical
structure (subject/verb/object inclusive in the previous exam-
ple) then it is a candidate for representing the semantic con-
structs of sentences observed by Fedorenko et al. (2016).
Secondly, we test which semantic features can be recon-
structed from fMRI activation in different regions, before finally
estimating semantic structure that is common across regions.
We discover that semantic features associated with words in
each grammatical position tested can commonly be recon-
structed from multiple brain regions. Results are consistent
with comprehension involving a common multiword core of
semantic information being encoded in each of those regions.

Materials and Methods
Fourteen people were scanned as they read 240 simple 3 to 9
word long sentences describing everyday situations (sentences
are detailed in Anderson et al. 2016; Glasgow et al. 2016 and
listed in Supplementary materials Table S1). Following stan-
dard preprocessing (documented in detail in Anderson et al.
2016 and summarized in Supplementary materials) a single
fMRI volume was created for each sentence per participant. An
“experiential attribute” semantic model was built that repre-
sented each of the 242 content words that appeared in the 240
sentences in terms of human ratings of the degree of association
between each lexical concept and a particular type of experience
(e.g., “On a scale of 0 to 6, to what degree do you think of a foot-
ball as having a characteristic or defining color?”). Ratings were
collected via Amazon Mechanical Turk for a total of 65 features
(attributes) of experience (listed in Supplementary materials
Table S3), that ranged over sensory, motor and affective pro-
cesses, systems processing spatial, temporal, and causal infor-
mation, and social cognition and abstract cognitive operations
(Binder et al. 2016). Ratings were averaged across subjects to give
a single 65 dimensional “semantic feature vector” for each word.

Analytic Procedure: Mapping the Semantic Model to
fMRI Sentences and Back

All subsequent analyses were based on the following proce-
dure, which was later used to test which brain regions were
sensitive to semantic information associated with content
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words in different grammatical positions, and which semantic
features could be extracted from fMRI activation within differ-
ent brain regions.

Firstly, to enable sentence-level fMRI data to be matched to
the word-level semantic model, a “bag-of-words” semantic
model representation for each of the 240 sentences was built
by featurewise averaging all constituent content words in the
sentence (Fig. 1 stage 1). Although this approach to combining
words is simplistic because it ignores word order and syntactic
structure, similar additive phrase construction methods have
proved practically effective in both predicting brain activation
(Anderson et al. 2016) and in computational linguistics
(Mitchell and Lapata 2010.

Next, to estimate how well semantic vectors could be recon-
structed from new fMRI data an iterative leave-2-sentence out
cross-validation procedure was run for each participant. At
each cross-validation iteration, the 240 sentences were split
into a test set of 2 sentences and a training set of 238 sen-
tences. Then both fMRI and model data for any of the 238 train-
ing sentences that contained any content word within the 2
test sentences was deleted. This was done to enable testing of
how well the predictive model could generalize to decode the
semantic content of sentences constructed from untrained
words. The mean ± SD number of sentences in the training set

for each iteration was 218 ± 5, containing a mean±SD of 232 ± 2
words. Model and fMRI data for the remaining training sen-
tences were then feature/voxelwise z-scored. Model and fMRI
test sentence data were also normalized by subtracting and
dividing by the feature/voxelwise mean and SD of the training
data.

At each iteration, semantic vectors were reconstructed from
the test fMRI data using a two-stage regression analysis
(Pereira et al. 2016, see Fig. 2). First a “forward model” that
mapped the 65 semantic model features to activation in each
individual voxel was learnt from the training sentences using
an independent multiple regression for each voxel. Regression
was implemented using the Moore–Penrose pseudoinverse
(function pinv in MATLAB, with the default tolerance of 1e–6)
to invert the semantic model matrix (see top of Fig. 2). The
resultant matrix of beta coefficients (with number-of-features
rows and number-of-voxels columns) constitutes the forward
model and can be thought of in terms of a set of brain maps,
one map for each semantic feature, of the degree of modulation
in activity at each voxel by that feature. Whilst weighting these
brain maps with corresponding semantic feature values for a
test sentence (achieved by matrix multiplication of a test
semantic vector with the forward model) would have predicted
voxel activation associated with the sentence (as undertaken in

Figure 1. Model to brain to model algorithm for reconstructing the semantic content of sentences. Stage 2 and 3 are illustrated in detail in Figure 2. In stage 4 “Sent” is

short for sentence, and S, V, and O are abbreviations for Subject, Verb and Object. Exclusion of only S, V and O are illustrated to save space, however analyses

involved withholding all 6 grammatical elements in turn (also Indirect Object, Copula-phrase and Adjunct).
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Anderson et al. 2016), our central interest was instead in the
semantic information that could be reconstructed from fMRI
activation patterns local to different anatomical regions of
interest (ROI).

To this end, we identified voxels within each ROI of the
Destrieux atlas (Fischl et al. 2004), segmented the columns cor-
responding to those voxels from the forward model (beta coeffi-
cient) matrix, and then inverted the segmented beta
coefficients (again using the Moore–Penrose pseudoinverse).
This built a mapping projecting from ROI space back into
semantic model space. Matrix multiplication of test sentence
fMRI data, with the inverse of the forward model enables
semantic vectors to be reconstructed from the test sentences.
This process was repeated for each of the 22 ROIs.

This second stage of inverting the forward model can be
understood in terms of a second set of multiple regression
analyses, each conducted independently for each test sentence
(Pereira et al. 2016) as illustrated in Figure 2 (middle and bot-
tom). Here regression is from the forward model (transposed to
have number of voxels rows, and number of features columns)
to the vector of voxel activation values for a single test sen-
tence (number of voxels rows). The vector of beta coefficients
(number of features rows) arising from each second stage
regression analysis serves as the reconstruction of the

semantic vector for that test sentence: reconstructed semantic
features will receive high values if the brain map of forward
model beta coefficients for that feature matches the actual acti-
vation profile of the test fMRI data, and low values otherwise
(see Fig. 2, bottom).

To evaluate the quality of the reconstructed model data for
each ROI, we applied a similar procedure to that introduced by
Mitchell et al. (2008) which has been in common usage since.
For each pair of test sentences the two ROI-based reconstructed
semantic model vectors were cross-correlated with the 2 origi-
nal model vectors using Pearson correlation. The 4 resulting
coefficients (2 for matching sentences and 2 for non-matching
sentences) were transformed using Fisher’s r to z transform
(arctanh), as is customary when comparing correlation values.
If the sum of values corresponding to the correctly matched
reconstructed versus original pairs was greater than the sum
for the non-matched pairs, decoding was scored as a success
(1), otherwise a failure (0).

This process was repeated, leaving out each possible pair of
held out test sentences in turn (28 680 iterations in total). For
each participant, a single metric of success was computed for
each ROI by taking the mean of the 28 680 test scores. If there is
no correspondence between model and fMRI data, a mean
accuracy of 0.5 is expected. Statistical significance of decoding

Figure 2. Detailed illustration of the computational stages involved in reconstructing semantic features from fMRI activation. The top row corresponds to Figure 1

stage 2, and the middle/bottom row Figure 1 stage 3. pinv corresponds to the Moore–Penrose pseudoinverse as implemented for example by Matlab function pinv.
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performance was estimated for each individual participant
using permutation testing. Specifically, prior to running the
analysis above, the word-level semantic vectors were shuffled
relative to the word-labels (where the label is the written
word). For each ROI, sentence-level semantic vectors were con-
structed according to the original word labels, meaning that
sentences were now built from random word-level semantic
content. From then on, the leave-2-out analysis proceeded as
normal. This was repeated 1000 times over, using different ran-
dom shuffles each time, to give a null distribution of 1000 mean
decoding accuracies. P-values associated with (non-random-
ized) decoding accuracies were calculated as the proportion of
chance accuracies greater than or equal to the observed decod-
ing accuracy.

Analysis Overview

We initially undertook a preliminary analysis to identify a net-
work of brain regions processing semantics on which to focus
our 4 main analyses. The first of the main analyses tests which
elements of sentences’ grammatical structure are semantically
encoded in different brain regions. We anticipate that some
regions will semantically encode all elements of grammatical
structure based on the results of Fedorenko et al. (2016) and
Nelson et al. (2017). Secondly, we test which sentences are dis-
criminable in different brain regions to confirm that the same
sentences were encoded in different regions. Thirdly we test
which experiential semantic features can be reconstructed
from fMRI activity in different regions. Finally, we identify com-
monalities in the experiential semantic features that can be
reconstructed from different regions. In advance, some degree
of correspondence between the results of these analyses is to
be anticipated: if different brain regions correlate on the
semantic components they reconstruct, then those regions will
also correlate on the sentences they can discriminate.
However, the strength of each correlation would be difficult to
ascertain without explicit tests of each factor.

Results
Identification of a Network of Brain Regions Processing
Semantic Information

In a preliminary analysis we identified a network of brain
regions engaged in the semantic processing of sentences, based
on the ROIs returning the highest mean sentence decoding
accuracies across participants. We used permutation testing to
identify an individual-level significance threshold associated
with P = 0.01 and selected all ROIs that had a mean decoding
accuracy across participants that was greater than this thresh-
old, i.e., For the selected ROIs, on average, each participant’s
decoding results were significant at the P < 0.01 level.

This yielded 22 regions of interest (ROIs), which it turned
out were widely distributed across the cortex. Decoding accura-
cies and selected ROIs are illustrated in Figure 3. Sixteen ROIs
were in the left hemisphere and 6 in the right hemisphere. The
set of ROIs encompassed regions associated with processing
sentences identified by Pallier et al. (2011), Fedorenko et al.
(2016) and Nelson et al. (2017), regions that show a similar pro-
file as speakers of different languages listen to narrative in
their native language (Honey et al. 2012), and adhere closely to
the spread of the semantic processing network as defined in
recent literature (e.g., Binder et al. 2009; Binder and Desai 2011),
as well as variants of the “language network” as identified by
Fedorenko and Thompson-Schill (2014). The highest scoring

ROI was the left superior temporal sulcus, for which decoding
accuracies were significant (P < 0.01) for all 14 participants. The
weakest scoring of the ROIs was the right precuneus, for which
7/14 participants yielded significant results at the P = 0.01 level
(the cumulative binomial probability of achieving ≥7 results
significant at P = 0.01 is P < 0.0001). Destrieux atlas labels of
ROIs, followed in parentheses by the abbreviation used in the
subsequent text of this article and the mean ± SD number of
voxels across participants in each are as follows:

ctx_lh_S_temporal_sup (LSTS, 533±66), ctx_lh_G_temp_sup-
Lateral (LSTG, 435±49), ctx_lh_G_temporal_middle (LMTG, 588
±62), ctx_lh_G_front_sup (LSFG, 1269±111), ctx_rh_S_temporal_
sup (RSTS, 567±68), ctx_lh_G_pariet_inf-Angular (LAG, 441±51),
ctx_lh_S_front_inf (LIFS, 217±29), ctx_lh_G_precuneus (LPrCnG,
397±65), ctx_lh_G_front_inf-Triangul (LIFGtr, 197±44), ctx_lh_G_
front_middle (LMFG, 856±84), ctx_lh_S_front_sup (LSFS, 313
±38), ctx_lh_G_pariet_inf-Supramar (LSMG, 515±65), ctx_lh_G_
occipital_middle (LMOG, 352±36), ctx_lh_S_oc-temp_med_and_
Lingual (LOTLingS, 187±19), ctx_lh_G_front_inf-Opercular
(LIFGop, 266±40), ctx_rh_G_front_sup (RSFG, 1200±111), ctx_lh_G_
temporal_inf (LITG, 534±78), ctx_rh_G_temporal_middle (RMTG,
650±75), ctx_lh_G_oc-temp_lat-fusifor (LOTFFG, 309±42), ctx_rh_
G_pariet_inf-Angular (RAG, 563±64), ctx_rh_G_front_inf-Triangul
(RIFGtr, 223±53), ctx_rh_G_precuneus (RPrCnG, 413±72).

Elements of Grammatical Structure that are
Semantically Encoded in Different Brain Regions

Nine different grammatical structures were identified within
the 240 experimental sentences. These were constructed from
combinations of the following grammatical elements (where
the number in parentheses indicates the number of sentences
containing each element): {Subject (240), Verb (196), direct
Object, (128) Indirect Object (27), Copula-phrase (44), Adjunct
(74)}. The 9 different grammatical structures, with examples,
were as follows (NB sentences containing a copula-phrase, in
which the linking verb was exclusively “was” were not regarded
as containing a verb conveying any intrinsic meaning):

Subject, Verb (3): [S: The patient][V: survived]

Subject, Verb, Object (98): [S: The family][V: survived][O: the
powerful hurricane]

Subject, Verb, Object, Indirect Object (7): [S: The child][V: gave]
[O: the flower][IO: to the artist]

Subject, Verb, Object, Adjunct (23): [S: The child][V: broke]
[O: the glass][Adju: at the restaurant]

Subject, Verb, Indirect Object (19): [S: The parent][V: shouted]
[IO: at the child]

Subject, Verb, Indirect Object, Adjunct (1) [S: The judge]
[V: stayed] [IO: at the hotel][Adju: during the vacation]

Subject, Verb, Adjunct (45): [S: The wealthy family][V: cele-
brated][Adju: at the party]

Subject, Copula-phrase (39): [S: The family] [Cop: was happy]

Subject, Copula-phrase, Adjunct (5): [S: The school] [Cop: was
empty][Adju: during summer]

A full grammatical breakdown of the test sentences is
included in Supplementary Materials Table S1, and Table S2
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identifies the frequency that each content word appeared in
each grammatical position.

We then tested which regions encode semantic information
associated with different elements of sentences’ grammatical
structure, and in particular regions that represent all elements
inclusive (which might represent the sentence constructs
observed by Fedorenko et al. 2016). To estimate which gram-
matical elements were semantically encoded in a brain region,
we tested whether excluding the semantic vector associated
with each element {S, V, O, IO, Cop, Adju} from the semantic
sentence model decreased decoding accuracy. We reasoned
that if an element of grammatical structure is not semantically
encoded in an ROI, excluding that element from the sentence
model should either have no effect on decoding accuracy or
even improve it (because semantic information associated
with other grammatical elements is irrelevant to decoding
that region). We also reasoned that a statistically significant
drop in decoding accuracy induced by excluding all 6 gram-
matical elements in turn would reveal that any of the 6 gram-
matical elements can semantically activate the region in
question. We consider that such a region can represent
semantic information provided by a content word in any
grammatical position of a sentence. In addition, if decoding is
still significantly better than chance when using the reduced
sentence model that is missing a grammatical element, this is

evidence that semantic information associated with (some of)
the remaining grammatical elements of the sentence is also
encoded.

In interpreting this analysis, it is first important to point out
that a regional drop in decoding accuracy induced by removing
a grammatical element from the sentence model does not
entail that grammatical information (as opposed to semantics)
is explicitly encoded in brain activation. However, one strategy
the brain might use to parse sentences into different elements
of grammatical structure is to spatially partition semantic
information associated with different elements of grammatical
structure in the cortex (as there is some evidence for e.g.,
Frankland and Greene 2015). In this case, a region exclusively
dedicated to representing a specific grammatical element
would be revealed by a selective decoding deficit induced by
removing that element (and possibly a boost in decoding accu-
racy induced by removing other grammatical elements con-
taining irrelevant information). However, to foreshadow the
forthcoming results, the current analysis is consistent with
most regions we test representing semantics supplied by words
in most grammatical positions.

We: (1) Built model sentence vectors with {S, V, O, IO, Cop,
Adju} excluded by taking the featurewise mean of all other con-
tent words in each sentence (Fig. 1 stage 4). If the grammatical
element contained an adjective (e.g., “The wealthy patient…”),

Figure 3. Mean sentence decoding accuracy across participants (top left). Mean ± SEM drop in decoding accuracy induced by withholding semantic vectors associated

with each grammatical element from the sentence decoding model for the highest scoring ROIs (right). ROIs are arranged in order of decreasing decoding accuracy

(LSTS at the top left gives the strongest result). Significant results from each ROI from the grammatically reduced model analysis (right) are identified on a brain map

(bottom left). ROI colors for this plot (bottom left) are arbitrary and used to delineate ROIs. Supplementary Figure 4 illustrates a companion post hoc analysis under-

taken on anterior, mid and posterior subregions of LSTS, LSTG, and LMTG. Because different grammatical elements occurred with different frequencies across the

sentences (and withholding elements consequently affected different subsets of sentences) different bars correspond to tests on different subsets of the experimental

sentences. See main text for further details. The number of test pairs contributing to each comparison were: Sent-S: 28667 tests, Sent-V: 27733 tests, Sent-O: 22464

tests, Sent-IO: 6102 tests, Sent-Cop: 9568 tests, Sent-Adju: 14985 tests.
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the adjective was also excluded. These vectors are denoted by
{Sent-S, Sent-V etc} where Sent refers to the full sentence
model. (2) Used each of {Sent-S, Sent-V etc} in place of Sent, to
decode the ROI-based reconstructed model data derived in the
initial analysis (when fMRI data was regressed on the full sen-
tence model). This was repeated for each ROI and participant.
(3) Contrasted per-participant mean decoding accuracies for
Sent and each of Sent-{ S, V, O, IndO, Cop, Adju } using paired
t-tests (df = 13,1-tail, with the prediction that accuracy for the
full sentence is greatest). This was repeated for each ROI, and
P-values were corrected for multiple comparisons by False
Discovery Rate (FDR) (Benjamini and Hochberg 1995).

The comparisons between Sent and each experimental con-
dition {Sent-S, Sent-V etc} were restricted to only those held
out sentence pairs for which either one of or both sentences in
the pair contained the grammatical element (we also present
companion results in Supplementary materials for the subset
of these tests for which both sentences contained the dropped
grammatical element). Because different grammatical elements
occurred with different frequencies across the sentences, this
meant that {Sent-S, Sent-V etc} were based on pairwise decod-
ing comparisons of different subsets of the 240 sentences (with
each subset having a different size). In addition, because
removing elements of grammatical structure resulted in occa-
sional cases of semantic sentence vectors for different sen-
tences being made identical (consider removing the subject
from “the criminal broke the television” and “the dog broke the
television”), cross-validation iterations involving pairs of identi-
cal sentence vectors were also excluded from the analysis to
avoid biasing results. In practice, there were few such
instances, and the most severely affected condition was Sent-S,
where 13/28 680 of the pairwise comparisons were deleted from
both Sent and Sent-S. Finally the number of pairwise decoding
comparisons undertaken on tests of each experimental condi-
tion were as follows: Sent-S: 28667 tests, Sent-V: 27733 tests,
Sent-O: 22464 tests, Sent-IO: 6102 tests, Sent-Cop: 9568 tests,
Sent-Adju: 14985 tests. To recap, each test was restricted to
sentence pairs where either one or both sentences originally
contained the grammatical element (e.g., for Sent-V 19110/
27733 tests involved both sentences containing V, and the
remaining 8623/27733 test pairs involved only a single sentence
containing V, a single test was deleted due to the creation of
identical sentence vectors).

The drops in decoding accuracy incurred by withholding
grammatical elements from the sentence model {Sent-S, Sent-
V etc} are shown in Figure 3. LSTS and LMTG showed a signifi-
cant FDR corrected (P < 0.05) drop in decoding accuracy
incurred by removing each of the 6 grammatical elements,
LSTG, LSFG, RSTS, LAG, LIFGtr, LSFS, LMOG showed a significant
drop associated with 5 elements, LIFS, LPrCnG, LMFG, LSMG,
LOTLingS, RMTG, LOTFFG, RAG showed a significant drop for 4
elements, LITG, RIFGtr and RPrCnG showed a drop for 3 elements,
and LIFGop and RSFG showed a drop for 2 elements. Companion
results for the subset of tests when both sentences contained the
dropped grammatical element are in Supplementary Figure 1.
The pattern of results is broadly similar in the key respect that
each ROI is sensitive to the removal of a similar selection of
grammatical elements, though the magnitude of differences var-
ies for some of the tests.

Aggregating results across contiguous ROIs (Fig. 3), it can be
seen that the removal of all 6 elements of grammatical struc-
ture incurred a significant drop in decoding accuracy in left
temporal, inferior parietal, inferior frontal, and superior frontal
brain regions (e.g., LSTS, LMTG, [LAG & LMOG], [LIFG & LIFS],

[LSFG & LSFS]). This is evidence that all of these (collated)
regions were activated by semantic information exclusive to
each grammatical element. Furthermore, following the removal
of each grammatical element, discrimination accuracies for
each ROI were all still significantly greater than chance-level
(0.5), (one sample t-tests, df = 13, all P < 0.001, FDR corrected).
This is evidence that each ROI contained semantic information
associated with both the removed element, together with one
or more other grammatical elements of the sentences.

An additional analysis (Supplementary Fig. 2) took this one
step further to test for semantic information associated with
the presence of two or more grammatical elements within acti-
vation patterns. Decoding accuracies using the grammatically
reduced models that were already missing an element were
compared to those achieved using only a single grammatical
element—the sentence subject (e.g., Sent-V was contrasted
with “S Only” with the expectation that “S Only” would have
lower accuracy). The sentence subject was chosen as the single
element for experimental convenience because it was the only
element to appear in all 240 sentences (and therefore Sent-V,
Sent-O, Sent-IO, Sent-Cop and Sent-Adju could all be compared
to “S Only”). There was a significant drop in decoding accuracy
between each of Sent-V, Sent-O, Sent-IO, Sent-Cop and Sent-
Adju when compared to “S Only” in each of LSTS, LSTG, LMTG,
LSFG, LSFS, LAG, LIFGtr and LOTLingS. Taken alongside the pre-
vious evidence that left temporal, inferior parietal, inferior
frontal and superior frontal brain regions encode semantic
information associated with any of the 6 grammatical ele-
ments, this provides evidence that activation patterns contain
semantic information associated with more than two gram-
matical elements. We therefore infer that left temporal, inferior
parietal, inferior frontal and superior frontal brain regions rep-
resent semantic information associated with content words in
multiple grammatical positions within sentences. These results
echo the ECoG-based findings of Fedorenko et al. (2016).

A qualitative observation is that different ROIs show differ-
ent sensitivities to withholding different grammatical ele-
ments, e.g., LMTG and LSTS are sensitive to withholding verbs,
and LITG and LOTLingS are especially sensitive to withholding
objects (but not verbs). We do not assign importance to differ-
ences in the magnitude of drop for different grammatical ele-
ments within each ROI because these were not experimentally
controlled. Different grammatical elements appeared with dif-
ferent frequency across the 240 sentences (e.g., S was in all sen-
tences and IO was in 27) and were also not controlled according
to semantic content (e.g., sentences’ subjects were often social
roles and rarely places, whereas sentences’ adjuncts tended to
be places). This also entails that there is an experimental con-
found between grammar and semantics in the experimental
sentences, which had been initially preselected as experimental
materials for the Knowledge Representation in Neural Systems
(KRNS) project (Glasgow et al. 2016, www.iarpa.gov/index.php/
researchprograms/krns), sponsored by the Intelligence Advanced
Research Projects Activity (IARPA). Indeed, to some degree this
confound is embedded in the English language; e.g., nouns tend
to represent objects and verbs tend to represent actions.

To provide some resolve to this semantics/grammar con-
found, we ran a parallel analysis that decoded the subset of the
sentences that all had a similar grammatical structure (accord-
ing to the criteria used in this article). These were the 98/240
Subject-Verb-Object sentences. These SVO sentences were
decoded using the following sets of sentence vectors: Sent-S,
Sent-V, Sent-O, and S only, V only and O only. The results of
this analysis are in Supplementary Figure 3. Results across ROIs
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show a similar general trend to Figure 3. Even when using
semantic vectors for just the subject, verb or object of the sen-
tence to decode ROI-based reconstructions of full sentences,
discrimination accuracy was significantly greater than 0.5 for
all ROIs (one sample t-tests, df = 13, all P < 0.05, FDR corrected).
This strongly suggests that the current decoding results are
predominantly accountable to semantic content.

Finally, motivated by theories that the anterior temporal
lobe plays a central role in conceptual representation (e.g.,
Patterson et al. 2007) and additionally by theories that it is cen-
tral to conceptual combination (Bemis and Pylkkänen 2012;
Brennan and Pylkkänen 2012; Westerlund and Pylkkänen 2014;
Zhang and Pylkkänen 2015) a post hoc analysis was run that
repeated the analysis withholding semantic vectors associated
with all 6 grammatical elements, this time on anterior, mid and
posterior subregions of LSTS, LSTG, and LMTG. The results of
these tests are in Supplementary Figure 4. In summary, no sub-
region showed statistical sensitivity to the removal of all 6
grammatical elements (unlike LSTS and LMTG when treated as
a whole). All posterior subregions and mid LSTS were statisti-
cally sensitive to the removal of either 4 or 5 grammatical ele-
ments, each including verbs. Collectively the 3 anterior
subregions were sensitive to the removal of 5 of the 6 grammat-
ical elements, but not verbs. Beyond this insensitivity to verb

removal there were no visually obvious differences distinguish-
ing anterior subregions.

Different Brain Regions Reconstruct the Same Sentences

Although unlikely, it was still possible that different experi-
mental sentences were semantically processed in different
brain regions (this would have been more likely if the experi-
mental sentences had been designed to group into distinctive
categories such as mathematical concepts and food). To verify
correspondence in the sentences processed by different brain
regions, we identified which sentence pairs were discriminable
in each region and correlated results across regions. More spe-
cifically, each individual test sentence was assigned a discrimi-
nability score, given by the number of times that sentence was
successfully discriminated from another sentence in the 28 680
pairwise sentence comparisons. The maximum discriminability
score attainable for each sentence is therefore one less than
the number of test sentences (240 – 1 = 239). This process was
repeated for each ROI and for each participant, yielding a total
of 22 (ROIs) ∗ 14 (participants) discriminability scores for each
of the 240 sentences. To test whether a pair of ROIs decoded
similar sentence pairs, the set of 240 discriminability scores for
each ROI were intercorrelated using Pearson’s correlation.

Figure 4. Correlation between the 22 ROIs (selected in Fig. 3) in the sentence pairs that could be discriminated.
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Repeating for each participant, this yielded 14 correlation coef-
ficients (one per participant) for each pair of ROIs. To evaluate
the statistical significance of these 14 coefficients, the coeffi-
cients were r-to-z transformed and the resulting values were
compared to zero using one sample t-tests (df = 13,2-tail). The
set of P-values across ROI pairs were corrected using False
Discovery Rate (Benjamini and Hochberg 1995). Mean±SD corre-
lations of discrimination profiles between ROIs are shown in
Figure 4. All comparisons yielded statistically significant results.

Multiple Semantic Features can be Reconstructed from
Activation in Multiple Brain Regions

To estimate which semantic features could be reconstructed
from different brain regions’ activation during sentence compre-
hension, we correlated model features that were reconstructed
from test fMRI data (held out from the training phase) with the
features of the original sentence model. Reconstructions of all
65 features for all 240 sentences, for each of the 22 ROIs were
accumulated over the leave-2-out cross-validation procedure. As
each sentence was held out a total of 239 times over the 28 680
cross-validation iterations (per participant), it was also recon-
structed 239 times, and the featurewise mean of these 239 recon-
structions was taken to analysis. NB the current analysis could
have been approached with less computational effort using a
leave-one-out procedure, however as we already had the data
available from the leave-2-out analysis, we elected to use this for
all analyses.

To evaluate whether a semantic feature was successfully
reconstructed the row corresponding to that feature’s values
across all 240 sentences was extracted from both the recon-
structed matrix and the original model matrix. The two row vec-
tors were correlated (Pearson’s correlation). This process was
repeated for all semantic features, for all ROIs, for all participants
(giving 65 correlations, for each ROI for each participant). Results
are in Supplementary Figure 5. To test statistical significances of
the correlations, all coefficients were r-to-z transformed, and for
each ROI, for each feature, the set of 14 r-to-z transformed corre-
lations were compared to zero using one sample t-tests (df = 13,
2-tail). P-values were corrected according to False Discovery Rate
(Benjamini and Hochberg 1995).

18/65 semantic features were reconstructed significantly by
all 22 of the ROIs, and all 22 ROIs significantly reconstructed
more than half of the semantic features. The number of seman-
tic features that were significantly reconstructed can be seen to
visibly decline (Supplementary Fig. 5) with ROIs’ mean decoding
accuracies. Temporal ROIs (LSTS, LSTG, and LMTG) significantly
reconstructed the majority of features (the maximum was
LSTS, at 61/65). Inferior frontal, superior frontal and inferior
parietal ROIs significantly reconstructed ≥70% of features.

In general ROIs reconstructed a diverse array of features asso-
ciated with different modalities of experience (Supplementary
Fig. 5), which we explore in more detail in the next section.
Features that were most strongly reconstructed apparently
related to human traits and socialization (e.g., human, speech,
social). The only feature that was not significantly reconstructed
by any ROI was music. This may be because music was of gener-
ally low relevance to the majority of sentences. Whilst people
may infer the likelihood of music from experimental sentences
referencing e.g., “theater”, “party”, “television”, and “cellphone”,
none of the sentences explicitly described a musical scenario.

Taken together with the results of the previous two analy-
ses, these results suggest that multiple grammatical elements
of sentences are semantically encoded within a network of

brain regions, that each reconstruct multiple dimensions of
experience with words and their referents. Given the limited
number of experimental sentences analyzed (and subject mat-
ter), it is natural to expect strong components of covariation
across semantic features (e.g., color, shape, and pattern might be
modulated by the same underlying “visual” component). We
next test for underlying semantic dimensions and commonali-
ties in representation across different brain regions.

Underlying Semantic Components and their
Commonality Across Brain Regions

Finally, we present the results of factor analyses seeking to (1)
uncover the underlying dimensionality of semantic features in
the original semantic model; (2) interpret the underlying
dimensionality of the 22 ROI-based reconstructions by referenc-
ing them back to the latent dimensions of the original model
identified in (1); (3) identify commonalities in the underlying
dimensions of the reconstructed data across brain regions.

Analyses focused on only the semantic features that could
be reconstructed from fMRI data (as identified by a single signif-
icant correlation for any of the 22 ROIs in the previous section).
This step was originally implemented with the intention of
removing noise in the data (i.e., removing semantic features
that were not neurally supported), however as this was only
music this turned out to be a minor adjustment.

PCA was applied to the 64 features (minus music) *240 sen-
tences model matrix, after each feature had been z-scored. The
first 10 principal components were retained for further investi-
gation and varimax rotated (Fig. 5). These 10 components all
had eigenvalues greater than one {16.1, 9, 6.6, 5.1, 3.4, 3.4, 2.7, 2,
1.7, 1.2}, all had apparently straightforward interpretations and
they collectively explained 81% of variance in the data.
Components 11 and 12 also had eigenvalues greater than one
(1.09 and 1.04 respectively), however had less obvious interpre-
tations and consequently were discarded to simplify the
upcoming discussion. If they had been included components 11
and 12 would have explained an extra 3% of variance.

We offer the following interpretation of each component
(features that receive heaviest loadings for that component are
identified in italics): pc1 “human traits” (human, speech, body,
face, biomotion); pc2 “negative valence” (fearful, disgusted, sad,
unpleasant, harm, pain); pc3 “locomotion” (path, lower-limb, fast,
motion, toward, away); pc4 “place” (scene, landmark, long, large);
pc5 “handling” (upper-limb, practice, near, needs); pc6 “hear-
ing” (sound, high, low, loud, audition); pc7 “eating/drinking” (taste,
smell, temperature). pc8 “timing” (time, duration, short, caused,
number). pc9 “positive valence” (happy, pleasant, arousal, atten-
tion). pc10 “object properties”, (vision, shape, small, weight).
These components were subsequently used as references to
interpret the underlying dimensions of the ROI-based recon-
structed data.

PCA was then undertaken on the reconstructed data for
each ROI. As the ROI-based semantic reconstruction converts
fMRI into the same representational format across participants
(a number of features ∗ number of sentences matrix), we took
the opportunity to aggregate the reconstructed data into group-
level representations by pointwise averaging ROI-based recon-
structions across participants to yield 22 group-level matrices,
one for each ROI (and each matrix was featurewise z-scored
prior to PCA). This step would have been more difficult to
approach on the fMRI data itself, where anatomical/functional
differences between different brains may result in relatively
similar activity patterns being spatially mismatched even in
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the spatially normalized fMRI space. The motivation behind
building group-level representations was to expose group-level
regularities in semantic representation (that previous work leads
us to expect, e.g., Shinkareva et al. 2011; Anderson et al. 2015;
Fernandino et al. 2015b; Huth et al. 2016; Anderson et al. 2017)
and consequently to reduce noise in the data. We also might
expect group-level reconstructions to match better to the seman-
tic model itself, because this too was built from group-level
averages of individuals’ behavioral ratings. The downside of
building group-level representations is, however, that inferences
are not guaranteed to generalize to individuals in the group (a
related discussion is in Anderson et al. 2015). Nevertheless,
comparative results derived at individual-level are included in
Supplementary materials that reflect broadly similar patterns,
with weaker correlation strengths.

For each ROI, the first 10 principal component scores of the
reconstructed data were retained. The 10 components were
related back to the previously computed 10 model reference
components (“human traits”, “negative valence”, etc.) by cross-
correlating each row of each ROI’s 10 component *240 sen-
tences matrix of principal component scores with rows of the
10∗240 model reference matrix using Pearson correlation. This
resulted in a 10∗10 correlation matrix of r values (and associ-
ated P-values) for each of the 22 ROIs. The set of 22∗10∗10 P-val-
ues were collectively corrected for multiple comparisons
according to False Discovery Rate (Benjamini and Hochberg
1995). Correlation matrices for a selection of 9/22 ROIs are illus-
trated in Figure 6. The choice to display only 9 ROIs was made
to avoid visually cluttering diagrams, and complete results are
included in Supplementary Figure 6 for the group-level analysis
and Supplementary Figure 7 for the individual-level analysis.

Absolute correlation values were displayed in Figure 6 to
ease visualization by remedying cases when otherwise matching

model and ROI-based principal components turned out to be
flipped in polarity relative to one another (e.g., see Fig. 5 pc8),
and model and ROI-based component scores were consequently
negatively correlated. We verified that cases of significant nega-
tive correlations were a byproduct of flipped eigenvectors by
ensuring that negatively correlated component scores coincided
with negative correlations in eigenvector loadings. If both com-
ponent scores and eigenvector loadings are negatively correlated
between model and ROI, the matrix multiplication of scores and
target reconstructs semantic features that are positively corre-
lated between model and ROI. Consequently, the negative corre-
lation in principal component scores does not signify a true
negative relationship between the model and ROI-based recon-
struction. Of the 52 statistically significant negative correlations
in principal component scores (Supplementary Fig. 6), 51 indeed
coincided with negatively correlated eigenvectors. The single
exception was the correlation between model pc8 “timing” and
LPrCnG pc10.

Common to the majority of ROIs (18/22 ROIs at group-level
and 12/22 ROIs at individual-level, see Supplementary Figs 6
and 7) was a significant correlation between the first 4 principal
component score row vectors and the first 4 model reference
components (“human traits”, “negative valence”, “locomotion”,
“place”). This is visible as the diagonal of red stars (significant
correlations) in the upper left quadrant of most of the ROI’s cor-
relation matrices. This suggests that a common semantic infor-
mation core, broadly related to these 4 components (for this set
of 240 sentences), was regionally encoded across the semantic
network (and in particular left lateral temporal, inferior frontal,
superior frontal, and inferior parietal regions, respectively).

Beyond these 4 common components, significant correla-
tions in the group-level data were observed between compo-
nent score row vectors and “handling” in 11/22 ROIs, “hearing”

Figure 5. First 10 principal components of the original semantic sentence model varimax rotated. The 10 components collectively explain 81% of variance in the

model data. Interpretations of each component are in quotes above each plot. Highlighted in bold blue font are features that had absolute loadings greater than one

standard deviation above the mean (absolute) loading. That pc8 has negative loadings is an incidental byproduct of PCA: positive expression of negatively loaded

semantic features is induced by negative principal component scores.
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in 16/22, “eating” in 14/22, “positive valence” in 5/22, and
“object properties” in 5/22. As would be expected, ROIs support-
ing high decoding accuracy (Fig. 3) tended to show greater
numbers of significant correlations. The highest scoring ROI
(LSTS) had principal component score vectors that correlated
with all 10 model reference components, however there was
not a one-to-one match between all LSTS component score vec-
tors and those of the model (4 of the LSTS component score
vectors each correlated with 2 or 3 model component score vec-
tors). A similar pattern of some one-to-one matches and some
one-to-many matches was observed for all ROIs. On average,
across all 22 ROIs, 6 component score vectors per ROI correlated
with an average of 7 model reference components (i.e., on aver-
age across the 22 correlation matrices, 6 columns had one or
more stars and 7 rows had one or more stars). Collating across
ROIs, 79/220 component scores did not correlate with any
model reference component score, 94/220 correlated with a sin-
gle model reference score, 42/220 correlated with 2, 4/220 corre-
lated with 3, and 1 with 4.

Following up on the previous post hoc analyses that were
run using the grammatically reduced models to decode ante-
rior, mid, and posterior subregions of LSTS, LSTG, and LMTG,
the current analysis was repeated on the same subregions. The
results of this analysis are illustrated in Supplementary

Figure 6. In brief, component scores reconstructed from all sub-
regions except for mid MTG significantly correlated with the 4
core model components: “human traits”, “negative valence”,
“locomotion”, and “place”. Mid MTG reconstructed only
“human traits” and “eating”. All 3 posterior subregions, and
mid LSTS reconstructed around 7 components in total, whereas
anterior regions reconstructed 4 or 5 components.

To directly test for commonalities in reconstructed data
across ROIs, each row vector of each ROI’s 10∗240 matrix of
principal-component scores was cross-correlated with the
equivalent row vectors for each other ROI, yielding a 10∗10 cor-
relation matrix for each ROI pair. The entire set of correlations
were collated together and re-arranged by sorting according to
principal component number to facilitate visual assimilation.
Correlation coefficients for the 9/22 ROIs illustrated in Figure 6
are in Figure 7. Matrices for all 22 ROIs are in Supplementary
Figure 8 (for both group and individual-level data). As for
Figure 6 absolute correlation values are displayed to ease visu-
alization (in cases of negative correlation arising from flipped
components, as discussed earlier in the description of Fig. 6).
Similar to Figure 6, we checked that negative correlations
between ROI-based principal component scores coincided with
negatively correlated eigenvector loadings, finding this to be
the case in 98% of the 2128 instances of significant negative

Figure 6. Correlation between principal component scores derived from the original semantic sentence model, and those derived from group-level ROI-based recon-

structions of the semantic model. Absolute correlation coefficients are displayed in the matrices to ease visualization. This remedies cases when otherwise matched

model and ROI-based principal components turned out to be flipped in polarity (e.g., pc8 in Fig. 5) causing negative correlation coefficients (see main text for further

details and tests of this). Dark indicates a high correlation coefficient and light a low coefficient. Correlation coefficients in each correlation matrix were scaled differ-

ently to the greyscale range to optimize visual contrast for each plot. Actual ranges are in Supplementary Figure 6, alongside correlation matrices for the remaining

13 ROIs, and a post hoc companion analysis focusing on anterior, mid and posterior regions of LSTS, LSTG, and LMTG.
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correlation displayed in the complete results shown in
Supplementary Fig. 8.

The blocked pattern visible around the correlation matrix
diagonal (the actual diagonal is self-correlations) reflects simi-
larities in matched component scores across ROIs, e.g., the
upper left dark block indicates scores for the first principal
component were highly correlated across ROIs, and likewise for
the other blocks. A broadly similar pattern is visible in the
individual-level data, albeit with visibly weaker correspondence
across ROIs beyond principal component 4 (Supplementary
Fig. 8). This is direct evidence for commonalities in multiple
latent semantic dimensions across widely distributed regions
of the brain’s semantic network.

In sum, this section has revealed underlying semantic
dimensions in both the model data and ROI-based recon-
structed data, referenced the underlying neural dimensions
back to those of the model, and demonstrated how multiple
latent semantic dimensions are commonly encoded across left
temporal, inferior frontal, superior frontal and inferior parietal
regions, as well as some right hemispheric homologs. For the
current selection of 240 sentences, at least 4 common latent
dimensions appear to be interpretable. These relate to “human
traits”, “negative valence”, “locomotion” and “place”. However,
in interpreting this result it is important to remember that the
expression and relative importance of these particular compo-
nents is liable to differ for a different set of sentences empha-
sizing different semantic features (e.g., if sentences never
mention or imply places, the place component is unlikely to be
modulated).

Discussion
The prime contribution of this article is to uncover evidence of
a new characteristic of sentence processing: that multiple

regions of a cortical network commonly encode the meaning of
content words in multiple grammatical positions of sentences.
More specifically, that when sentence text is converted to
meaning in the brain, multiple dimensions of meaning, first
decoded by the brain from words in multiple grammatical posi-
tions are represented within left temporal, inferior frontal,
superior frontal and inferior parietal cortex (as well as some
right hemispheric homologs).

This follows up the recent ECoG results of Fedorenko et al.
(2016) and Nelson et al. (2017) that revealed neural signal asso-
ciated with the construction of sentence meaning across differ-
ent brain regions. However, unlike the current article, they did
not estimate what semantic content is represented within dif-
ferent regions, what semantic content is shared across regions,
and where different elements of grammatical structure are
semantically encoded. Due to the slow sample rate of fMRI, the
current results do not reveal the temporal dynamics of how
semantic information emerges across the brain. For instance,
similar semantic representations may have been generated in
parallel in distributed neural regions, and/or modally- or
linguistically-specialized neural modules may have indepen-
dently generated information that was subsequently channeled
throughout the brain. More detailed analyses of neural data
recorded using a technique with a higher sampling frequency
than fMRI will be necessary to resolve this question.

That meaning is processed across a number of “semantic
hubs” that integrate information across different modalities
(e.g., posterior temporal, anterior temporal, inferior temporal,
inferior frontal and inferior parietal regions) is a common com-
ponent of most contemporary proposals of semantic processing
(e.g., Binder et al. 2009; Binder and Desai 2011; Pulvermüller
2013; Lambon Ralph et al. 2017). However, what aspects of
meaning are processed by different hubs and what information
is common across them is poorly understood. Previous work

Figure 7. Correlations between the first 10 principal component score vectors derived from the group-level semantic representations reconstructed from each of the 9

ROIs illustrated in Figure 6. Complete data for all 22 ROIs is in Supplementary Figure 8. Absolute correlation coefficients are displayed in the matrix to simplify visuali-

zation. This remedies cases when otherwise matched ROI-based principal components turned out to be flipped in polarity (e.g., pc8 in Fig. 5) causing negative correla-

tion coefficients (see main text for further details and tests of this).
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targeting cross/multimodal conceptual representation has pre-
dominantly focused on fMRI activation elicited by isolated con-
crete nouns, and either detected the whereabouts of common
neural responses to stimuli presented in different modalities,
e.g., names and pictures of the same objects (e.g., Akama et al.
2012; Devereux et al. 2013; Fairhall and Caramazza 2013;
Shinkareva et al. 2011; Simanova et al. 2014), or analyzed
concrete noun activation using models with more restricted cov-
erage (e.g., 5 sensorimotor attributes in Fernandino et al. 2015a,
2015b, 2016, or visual and textual distributional semantic models
in Anderson et al. 2015). Where Anderson et al. (2016) demon-
strated how a broader set of 65 experiential attributes could be
used to predict fMRI activation elicited in sentence comprehen-
sion, the current article substantially advances beyond this by
linking semantic fMRI activation to elements of grammatical
structure, and in so doing newly uncovering evidence that
content words in multiple grammatical positions of sentences
are semantically encoded in multiple distributed brain regions;
newly identifying which experiential attributes support decoding
(and can be reconstructed from different regions); and newly
revealing commonalities in the semantic representation of
sentences across multiple distributed brain regions.

The breadth and distribution of common semantic content
observed in this study is perhaps greater than would be
expected from prior work that placed emphasis on identifying
distinct roles of particular anatomical regions. With specific
respect to sentence comprehension, Frankland and Greene
(2015) have recently pinpointed a region in the left midsuperior
temporal cortex where activation associated with the agent
and patient of a small set of sentences is spatially distinct.
These authors also showed that sentence manipulations that
modulate affective connotations (“the grandfather kicked the
baby” versus “the baby kicked the grandfather”) modulate neu-
ral activation in the amygdala. Whilst our results are compati-
ble with this architecture, and indeed in Figure 3 we observe
highest decoding accuracy in superior temporal regions, they
would additionally predict that semantic information associ-
ated with sentences’ subject/object and valence is also locally
available in many other regions in the brain. Indeed, this pre-
diction receives some external support from Wang et al.’s
(2016) analysis of fMRI cued by a small set of videos, where
agent and patient were switched and distinct agent/patient
activation was revealed in different brain regions. The broader
spread of semantic information decoded in the current study
compared to Frankland and Greene (2015) is likely to stem from
both the greater power afforded to the current analysis by ana-
lyzing 240 comparatively diverse sentences (rather than 6), and
our analysis of larger regions of interest (compared to their
searchlight analysis).

More generally, an extensive body of literature has docu-
mented functional specificities associated with different corti-
cal regions/networks in tasks related to semantic processing/
language. These include brain regions/networks that are selec-
tive for semantic categories (such as animals/tools e.g., Martin
et al. 1996), object features (such as shape, color e.g., Martin
2016), body parts (e.g., Hauk et al. 2004), actions (e.g., Desai
et al. 2009), valence (e.g., Vigliocco et al. 2014), grammatical
classes (such as nouns/verbs e.g., Caramazza and Hillis 1991,
also interpreted as object/actions e.g., Vigliocco et al. 2011). Our
identification of commonalities in semantic content across
regions should not be taken to dispute results demonstrating
functional specificities, or to be claiming that the regions exhi-
biting commonalities in this article do not have their own func-
tional specializations (indeed the 22 ROIs that were the focus of

this article can be qualitatively observed to vary in the seman-
tic features/grammatical elements they are activated by).
However, irrespective of the functional specificity of different
regions, or which regions were initially responsible for turning
text into semantic information, the current results do provide
evidence that a common core of semantic information is
broadly available across the semantic network during sentence
comprehension (in particular left temporal, inferior and super-
ior frontal and inferior parietal cortex as seen in Figs 3, 6 and 7).
As much of the previous literature has been based on studies of
isolated concepts (with no specified context) it will be interest-
ing to see whether the spread of common information across
the brain observed in the current sentence decoding article is
related to the additional task demands associated with proces-
sing multiple words in sentences and/or integrating semantic
content according to grammatical structure, and/or the result
of analyzing a comparatively large dataset (of 240 sentences
constructed from 242 different content words).

The detection of latent semantic features spanning different
brain regions observed in this article is not without precedent
in the literature. In a factor analysis of neural activation pat-
terns associated with 60 isolated nouns, Just et al. (2010) identi-
fied semantic components that they related to manipulation,
shelter, and eating, located in 3–4 lobes, and more recently used
the same components as the basis for decoding brain activation
elicited by reading short sentences themed around manipula-
tion, shelter or eating (Just et al. 2017). Yang et al. (2017) used
principal components analysis of fMRI data to select voxel clus-
ters to use as the basis for predicting fMRI activation associated
with 60 sentences across languages. Similar to the current
study, each component was linked to voxels in distributed
brain regions, and components were interpreted as relating to
people, actions, feelings, and places. More generally, analyses that
have applied semantic models to factor fMRI into brain maps
associated with different semantic features have consistently
detected patterns of high feature weightings that are distrib-
uted across the cortex (Mitchell et al. 2008; Fernandino et al.
2015b; Anderson et al. 2016; Huth et al. 2016). The current arti-
cle has gone beyond this previous work by showing how multi-
ple semantic features associated with words in multiple
grammatical positions of sentences can be reconstructed from
activation in multiple brain regions (Figs 3, 6 and 7), and identi-
fying commonalities in sentence discriminability across these
regions (Fig. 4). Though we acknowledge that the respective
findings of the current analyses are inter-related: if two brain
regions correlate on semantic feature reconstructions then
they are going to correlate in the sentence pairs they can
decode.

The current modeling approach is limited in the following
respects. Firstly, whilst the “bag-of-words” word combination
procedure benefits from its simplicity in interpretation, it is an
oversimplification of semantic composition. The effects of
word order, syntax and morphology are ignored (see Anderson
et al. 2016 for a related discussion of the deficiencies of the bag-
of-words approach). For instance, demonstrating that removing
semantic information associated with all grammatical elements
from the model impairs the decoding of a region, does not entail
that the region also explicitly encodes grammar. In preliminary
analyses, various attempts were made to grammatically constrain
how word-level semantic vectors were combined together into
sentence representations. Disappointingly, decoding results were
worse than the current bag-of-words approach. These attempts
may have been compromised by having insufficient/inadequate
training data, or possibly the slow sample rate of fMRI. Related to

Semantic Encoding of Sentences Across the Brain Anderson et al. | 13
D

ow
nloaded from

 https://academ
ic.oup.com

/cercor/advance-article-abstract/doi/10.1093/cercor/bhy110/4996559 by Jennifer M
cC

arthy user on 14 Septem
ber 2018



this, to better understand the interaction between semantics and
grammar it would be desirable in the future to test sets of sen-
tences that better balance the frequency with which different
grammatical elements appear across sentences, and the fre-
quency that different semantic categories appear in different
grammatical positions.

Secondly, despite benefitting from its neurobiological
interpretability (see Anderson et al. 2016; Binder et al. 2016), the
experiential attribute model is likely to prove limited in its abil-
ity to capture some abstract linguistic concepts. Compared to
computational models based on the distributional statistics of
words in huge text corpora (which have been in frequent use in
the neuroimaging literature since Mitchell et al. 2008), the expe-
riential attribute model is advantaged in that it will reliably
capture fundamental components of meaning that are so obvi-
ous that people are disinclined to report them in writing. For
instance, it is rarely useful to point out the color and shape of a
banana in natural text, and consequently this information is
liable to be underrepresented in text-based distributional mod-
els. However, the experiential attribute model is disadvantaged
when it comes to semantic structure that is only available
through language (e.g., the phylogeny and natural history of
the banana). Consequently, there is likely to be benefit in the
future to combining both experiential and linguistic informa-
tion in modeling. Andrews et al. (2009) demonstrated that the
different data sources capture complementary information in
describing behavioral data. In the context of fMRI data cued by
written concrete nouns, Anderson et al. (2013) and Anderson
et al. (2015) have identified benefits to combining visual and
text-based distributional semantic models. Additionally, text-
based models have formed the only modeling basis thus far to
discriminate neural activation patterns elicited by a selection
of abstract nouns (Anderson et al. 2017). Indeed, work in prog-
ress on the current sentence dataset suggests that experiential
and text-based distributional semantic information are
complementary.

In conclusion, the current article has revealed new com-
monalities in the neural encoding of the semantic components
of sentences across widely distributed brain regions, specifi-
cally, how multiple dimensions of peoples’ experience with
words (and their referents), arising from words in multiple
grammatical positions, can be reconstructed from fMRI activa-
tion in multiple brain regions. In so doing, this has provided a
methodological foundation for both quantifying the importance
of different semantic features and of words from different
grammatical positions to the brain wide representation of sen-
tence concepts. This also provides further validation for the
experiential attribute model, with many questions left open for
future investigation.
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Supplementary material is available at Cerebral Cortex online.
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