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Abstract
We introduce an approach that predicts neural representations of word meanings contained in sentences then superposes
these to predict neural representations of new sentences. A neurobiological semantic model based on sensory, motor,
social, emotional, and cognitive attributes was used as a foundation to define semantic content. Previous studies have
predominantly predicted neural patterns for isolated words, using models that lack neurobiological interpretation. Fourteen
participants read 240 sentences describing everyday situations while undergoing fMRI. To connect sentence-level fMRI
activation patterns to the word-level semantic model, we devised methods to decompose the fMRI data into individual
words. Activation patterns associated with each attribute in the model were then estimated using multiple-regression. This
enabled synthesis of activation patterns for trained and new words, which were subsequently averaged to predict new
sentences. Region-of-interest analyses revealed that prediction accuracy was highest using voxels in the left temporal and
inferior parietal cortex, although a broad range of regions returned statistically significant results, showing that semantic
information is widely distributed across the brain. The results show how a neurobiologically motivated semantic model can
decompose sentence-level fMRI data into activation features for component words, which can be recombined to predict
activation patterns for new sentences.
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INTRODUCTION
Considerable progress has been made over recent decades in
understanding how conceptual knowledge is represented in
the human brain. In particular, functional neuroimaging stud-
ies have identified a widely distributed, large-scale network of
sensory association, multimodal, and cognitive control systems
that store and retrieve conceptual information (see Lau et al.

2008; Binder et al. 2009 for reviews). In addition, an extensive
body of work has begun to unravel the organization of specific
types of knowledge within this broad network (e.g., Kiefer and
Pulvermüller 2012; Meteyard et al. 2012; Martin 2015;
Fernandino et al. 2015b; Binder and Desai 2011). This progress
has encouraged efforts to develop computational models that
predict neural activation patterns as a function of the meaning
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content being processed by the brain. In the first study of this
kind, Mitchell et al. (2008) used word co-occurrence statistics
derived from a large text corpus to model semantic content. In
this type of approach, word meaning is represented as a vector
of values that indicate how often the word co-occurs with other
words. The fact that the word “alligator” often occurs near the
word “swamp” in text samples, for example, is considered a
part of the representation of “alligator”, and the fact that the
vector of values representing “alligator” is similar to the vector
of values for “crocodile” is taken as evidence that such repre-
sentations capture meaningful semantic structure (Landauer
and Dumais 1997). Mitchell et al. (2008) demonstrated that a
computational model that learned the mappings between such
text-based meaning representations and patterns of brain
activity measured by fMRI could then be used to predict
patterns of brain activity for test words not used in training the
model, for which the meaning representations were known.

In the current study we expand on this and other (Devereux
et al. 2010; Murphy et al. 2012; Pereira et al. 2013; Carlson et al.
2014; Anderson et al. 2015) pioneering work in two ways. First,
we introduce a method for predicting patterns of neural activity
arising from thinking about the meaning of an entire sentence
rather than a single word. In natural language, words nearly
always appear in the context of phrases and sentences rather
than in isolation, thus it could be argued that isolated words are
an unnatural target for understanding meaning representation
in the brain. Although a great deal of neuroimaging and electro-
physiological work has focused on characterizing the neural
systems involved in phrase and sentence processing (see, for
example, Kuperberg et al. 2000; Humphries et al. 2007; Lau et al.
2008; Friederici 2011; Pallier et al. 2011; Bemis and Pylkkänen
2012; Brennan and Pylkkänen 2012; Silbert et al. 2014), almost all
studies using models to predict neural semantic representa-
tions have focused on isolated concrete nouns (exceptions are
Chang et al. 2009, Wehbe et al. 2014; and Huth et al. 2016; we
return to differences between the current study and these in
Discussion). The challenge in devising such a predictive model
arises from the fact that there are an infinite number of possible
sentences with varying degrees of lexical and semantic overlap.
A method for generalized prediction would require sentences to
be analyzed into constituent components, followed by synthe-
sis of a predicted activation pattern from the components.

A second innovation we propose is the use of a brain-based
rather than a text-based model of meaning. A vector of word co-
occurrence values is an abstract representation that contains no
specific information about the qualities or experienced features
of the concept itself. The highly abstract nature of such represen-
tations limits the degree to which they can be interpreted in
terms of actual neural systems that could contribute to concep-
tual representation. Thus, even if a model composed of such fea-
tures is found to predict brain activity, an account of how, in
neural terms, such models work is not always forthcoming. One
alternative explored in recent years is concept representation as
a set of experiential attributes that reflect the sensory, motor,
affective and other brain processes involved in concept learning
(Gainotti et al. 2009, 2013; Crutch et al. 2012; Hoffman and
Lambon Ralph 2013; Lynott and Connell 2013). In this approach,
the semantic content of a given concept is estimated from rat-
ings provided by human participants on the importance of a
given modality of experience, which are taken as equivalent to
modal representational systems in the brain, in learning or defin-
ing the concept. For example, concepts referring to things that
make sounds (e.g., dog, horn, thunder, tuba) receive high ratings
on an attribute representing auditory experience relative to

things that do not make sound (e.g., cloud, flower, paper,
tomato). Fernandino et al. (2015a) showed that a regression mod-
el trained to map a simple representation containing just 5 sen-
sory–motor attributes (color, shape, visual motion, sound and
manipulation) to fMRI word activation patterns could predict
neural activation patterns for new words. These attributes, how-
ever, cover only a fraction of the neural representations of
experience and, in particular, do not capture more abstract
aspects of experience. Binder et al. (2016) recently proposed a
much expanded experiential attribute model that includes sen-
sory, motor, spatial, temporal, social, emotional, and cognitive
dimensions to more comprehensively span the range of human
experience, including experiences with events as well as objects,
and abstract as well as concrete concepts. Here we apply this 65-
dimensional model of word meaning for the first time as a basis
for predicting neural activation patterns of single words.

As illustrated in Figure 1, our approach begins with estima-
tion of the neural activity patterns associated with individual
words, given only fMRI data obtained while subjects read these
words embedded within various sentences. Multiple regression
is then used to learn a mapping between the 65-dimensional
semantic representation of these words and their estimated
neural patterns, which allows neural activation patterns asso-
ciated with trained and untrained words to be synthesized
from their semantic representations. Finally, the neural activa-
tion pattern predicted for a given sentence is estimated by
averaging the synthesized activity patterns for the individual
words in the sentence.

Modeling sentences as an unordered combination of constitu-
ent words, known as a “bag-of-words” model, is an obvious sim-
plification that ignores syntactic structure, thematic role
assignment, and context effects on word meaning. As a first
approximation of sentence meaning, however, the method has
both theoretical and empirical justification. Sentence compre-
hension experiments using word priming effects (e.g., Swinney
1979; Tanenhaus et al. 1979; Till et al. 1988) suggest a time course
in which a word‘s sense(s) is first activated approximately inde-
pendent of its context such that multiple senses of homonyms
such as ‘bat’ are jointly activated (‘mammal’ and ‘sports tool’
together), followed only later by sense selection when the appro-
priate meaning becomes specified by contextual information.
Thus, at least part of the brain response during sentence com-
prehension likely reflects activation of context-independent
semantic representations. Computational models suggest that
feature-wise addition and multiplication of text-based semantic
vectors for single words often provides a reasonable proxy for
representation of word combinations (Mitchell and Lapata 2010).
Based on these results from behavioral and computational
studies, we hypothesized that super-position of word-level
neural activation patterns would predict a similar composition of
word representations in the brain activated in sentence reading.

To test this approach we collected and analyzed a large
fMRI data set, acquired as participants read sentences. The
sentence set was prescribed as part of the Knowledge
Representation in Neural Systems project (see Materials and
Methods, full listing in Table S1, and Glasgow et al. 2016).
Participants were scanned as they read 240 sentences con-
taining combinations of 141 nouns, 62 verbs, and 39 adjec-
tives, presented across 8 scanning visits. The sentences
involved interactions between humans, animals, and objects,
and described situations involving entities, events, and loca-
tions with different affective connotations. Examples include
“The clever scientist worked at the lab”, “The yellow bird flew
over the field”, “The corn grew in spring”, “The feather was
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blue”, “The dangerous criminal stole the television”, “The
artist hiked on the mountain”, “The cloud blocked the sun”,
“The banker watched the peaceful protest”.

We applied our approach to predict neural activation pat-
terns associated with compositions of trained and untrained
words in untrained sentences. ROI analysis revealed that the
left superior temporal sulcus (LSTS) – a structure (defined
according to the Destrieux atlas in Fischl et al. 2004) that
includes portions of the superior and middle temporal gyri, as
well as a large portion of the angular gyrus – consistently
scored highest in all our prediction tests (though significant
results were also obtained within other ROIs in a cortex-level
analysis). In LSTS we achieved statistically significant sentence
predictions in 11/14 participants. In a series of supporting ana-
lyses we test whether discrimination accuracy degrades as
words are experimentally held out from the sentence compos-
ition (e.g., a sentence of n words is predicted using n–1 words or
just a single word), and we evaluate the estimated word-level
representations by testing whether they can determine which
words were present in untrained sentences.

Materials and Methods
How do we Hypothesize Meaning is Encoded in Neural
Activity?

It is now well established that different categories of visual
stimuli (e.g., pictures of objects) are represented in the brain as

spatially distributed neural activity patterns, with overlapping
activation across categories (Haxby et al. 2001; Mitchell et al.
2008; Huth et al. 2012). It is also established that activation
patterns associated with different conceptual categories
(e.g., as elicited in word comprehension) partially match
those elicited by viewing pictures of the word‘s referent
(Shinkareva et al. 2011; Devereux et al. 2013; Simanova et al.
2014).

We here adopt as a working hypothesis that it is appropriate
to model distributed semantic activity as a pattern of weights
across a set of semantic neural features (Mitchell et al. 2008).
We further hypothesize that each of these semantic neural fea-
tures develops as a result of input from a specific modal neural
system activated during sensory, motor, affective, and cogni-
tive experiences. This hypothesis is broadly in line with theor-
ies of embodied or “grounded” cognition (e.g., Barsalou et al.
2008; Kiefer and Pulvermüller 2012; Meteyard et al. 2012; Binder
and Desai 2011) that consider conceptual representation to
involve a partial reenactment of the brain state that occurs
when the concept‘s actual referent is experienced. For instance,
embodiment theories would anticipate that, on reading the
sentence “the boy kicked the ball”, neural systems associated
with processing the human form, lower limb biomotion, object
form, and associated motion would all be activated. Obviously,
semantic representations in the brain must have some
degree of independence from perception/action/affective sys-
tems, otherwise all mental activity would consist of a stream
of hallucinations indistinguishable from external reality.

Figure 1. Different stages of the “sentence to word to sentence” computational approach.
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Embodiment theories generally acknowledge the need for some
form of “abstract” conceptual representation separate from per-
ception and action systems (e.g., Dove 2009; Louwerse and
Jeuniaux 2010; Meteyard et al. 2012; Andrews et al. 2014; Binder
2016). Moreover, such abstractions are often conceived of as
linguistic representations (Glaser 1992; Barsalou et al. 2008;
Dove 2009; Louwerse and Jeuniaux, 2010; Lynott and Connell
2010; Connell and Lynott 2013), providing an additional motiv-
ation for semantic models that use linguistic context as a
proxy for meaning (Louwerse and Jeuniaux 2010; Andrews
et al. 2014). While we do not discount the relevance of linguis-
tic context representations (or the possibility that the brain
passively accumulates linguistic distributional statistics), we
propose that neural activity explained by linguistic-context
models also contains substantial content associated with
experiential states across many neural subsystems (Barsalou
et al. 2008).

As specifically concerns sentence reading, we anticipate
that early stages of comprehension will be marked by localized
patterns of activity determined by weighted activation of
many different neural semantic features. If the participant
concentrates deeply we expect activity to be channeled
approximately in proportion to feature-weight strengths to
specialized experiential systems (e.g., the visual system during
mental imagery of visible referents). It follows that in a case of
experiential simulation, neural semantic feature weights may
also describe activity visible at a macro-scale across the cortex
associated with the corresponding modal systems (even
though we do not attempt to model detailed simulation within
these systems). This hypothesized transition from representa-
tion across many neural semantic feature weights to experien-
tial simulation is not necessarily abrupt, and may cascade
through a hierarchy of modal divergences culminating in
unimodally dominant activity, consistent with Fernandino
et al. (2015b). We next outline our selection of candidate neural
semantic features.

The Experiential Attribute Representation Model

The experiential attribute model (Binder et al. 2016) was devel-
oped to comprehensively span different aspects of experience
as represented in neurobiological systems. Unlike other
approaches to building semantic models using behavioral
norming, the starting point of the attribute model is a list of
well-studied modalities of neural information processing. In
contrast, previous authors have had participants generate tar-
get word associates (“semantic features”), which are subse-
quently used directly as features in the model, or reinterpreted
by the investigators in terms of experiential modalities (e.g.,
Cree and McRae 2003, Vinson et al. 2003).

Attributes in the model are the product of a comprehensive
summary of imaging and physiological experiments (see Binder
et al. 2016, 2009), and each is associated with systematic modula-
tion in neuroimaging activity. The attributes correspond to spe-
cialized sensory/motor/affective processes; systems processing
spatial, temporal, and causal information; and social cognition
and abstract cognitive operations, all of which we hypothesize
are activated to varying degrees in experiencing concrete and
abstract entities and events. The complete list of 65 attributes is
in Table 1. Wemodel each word as a 65-dimensional feature vec-
tor that captures the strength of association between each neural
attribute and that word. Target concept words were linked to
attributes by having naïve participants rate the importance of
each attribute for a given lexical concept.

Data Collection for Attribute Vectors

As per Binder et al. (2016) attribute ratings were collected on
Amazon Mechanical Turk for each of the 242 content words in
the set of experimental sentences. Workers were asked to rate,
on a scale of 0–6, the degree to which a given lexical concept
was associated with a particular type of experience (e.g., “To
what degree do you think of a football as having a characteristic
or defining color?”). The exact wording of these queries was tai-
lored to the attribute in question and the grammatical class of
the word (see Binder et al. 2016 for details). A total of 7237 rat-
ing sessions were conducted, with approximately 30 complete
ratings sets (all attributes for a given word) collected for each
word. Mean ratings for each word were computed, and outliers
were removed by rejecting worker responses that had a
Pearson‘s correlation coefficient of<0.5 against the mean for
that particular concept (intraclass correlation). For our ana-
lyses, ratings per attribute were transformed to z-scores, and
each word-vector was normed to unit length.

Materials

All sentences were pre-selected as experimental materials for
the Knowledge Representation in Neural Systems (KRNS) pro-
ject (Glasgow et al. 2016, www.iarpa.gov/index.php/research-
programs/krns), sponsored by the Intelligence Advanced
Research Projects Activity (IARPA). The stimuli consisted of 240
written sentences containing 3–9 words and 2–5 (mean+/–sd=
3.33+/–0.76) content words, formed from different combina-
tions of 141 nouns, 62 verbs, and 39 adjectives (242 words).
Sentences were in active voice and consisted of a noun phrase
followed by a verb phrase in past tense, with no relative
clauses. Most sentences (200/240) contained an action verb and
involved interactions between humans, animals and objects, or
described situations involving different entities, events, loca-
tions, and affective connotations. The remaining 40 sentences
contained only a linking verb (“was”). The entire list is in
Table S1. Each word occurs a mean+/–sd [range] of 3.3+/–1.7
[1 7] times throughout the entire set of sentences and co-occurs
with 8.1+/–4.3 [1 19] other unique words. The same two words
rarely co-occur in more than one sentence, and 213/242 words

Table 1 List of attributes first arranged by modality, and then subdi-
vided into individual attributes

Dominant
modality

Attribute

Vision vision, bright, dark, color, pattern, large, small,
motion, biomotion, fast, slow, shape, complexity,
face, body.

Auditory audition, loud, low, high, sound, music, speech.
Somatosensory touch, temperature, texture, weight, pain.
Gustatory
+Smell

taste, smell.

Motor head, upper limb, lower limb, practice.
Attention attention, arousal.
Event duration, long, short, caused, consequential,

social, time.
Evaluation benefit, harm, pleasant, unpleasant.
Cognition human, communication, self, cognition, number.
Emotion happy, sad, angry, disgusted, fearful, surprised.
Drive drive, needs.
Spatial landmark, path, scene, near, toward, away.
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never co-occur more than once with any other single word.
Forty-two sentences contained instances of words not found in
any of the other 239 sentences, and 3 of these sentences con-
tained 2 unique words. There were thus 45 words that occurred
in only one sentence, of which 29 were nouns, 7 were verbs
and 9 were adjectives. These 42 sentences contained a mean
+/–sd of 3.57+/–0.59 content words and form a test set for
sentence predictions (these sentences are segregated in
Table S6c).

Participants

Participants were 14 healthy, native speakers of English
(5 males, 9 females; mean age= 32.5, range 21–55) with no his-
tory of neurological or psychiatric disorders. All were right-
handed according to the Edinburgh Handedness Inventory
(Oldfield 1971). Participants received monetary compensation
and gave informed consent in conformity with the protocol
approved by the Medical College of Wisconsin Institutional
Review Board.

Procedure

Participants took part in either 4 or 8 scanning visits. In each
visit, the entire list of sentences was presented 1.5 times,
resulting in 12 presentations of each sentence over the 8 visits
in 10 participants, and 6 presentations over 4 visits in 4 partici-
pants. Each visit consisted of 12 scanning runs, each run
containing 30 trials (one sentence per trial) and lasting approxi-
mately 6minutes.

The stimuli were back-projected on a screen in white
Courier font on a black background. Participants viewed the
screen while in the scanner through a mirror attached to the
head coil. Sentences were presented word-by-word using a
rapid serial visual presentation paradigm. Nouns, verbs, adjec-
tives, and prepositions were presented for 400ms each, fol-
lowed by a 200-ms inter-stimulus interval (ISI). Articles (“the”)
were presented for 150ms followed by a 50-ms ISI. Mean sen-
tence duration was 2.8 s. Words subtended an average horizon-
tal visual angle of approximately 2.5°. A jittered inter-trial
interval, ranging from 400 to 6000ms (mean = 3200ms), was
used to facilitate deconvolution of the BOLD signal. Participants
were instructed to read the sentences and think about their
overall meaning. They were told that some sentences would be
followed by a probe word, and that in those trials they should
respond whether the probe word was semantically related to
the overall meaning of the sentence by pressing one of two
response keys (10% of trials contained a probe). Participants
were given practice with the task outside the scanner with a
different set of sentences. Response hand was counterbalanced
across scanning visits.

MRI Parameters and Preprocessing

MRI data were acquired with a whole-body 3 T GE 750 scanner at
the Center for Imaging Research of the Medical College of
Wisconsin. Functional T2*-weighted echoplanar images (EPI)
were collected with TR = 2000ms, TE = 24ms, flip angle = 77º, 41
axial slices, FOV = 192mm, in-plane matrix = 64 × 64, slice
thickness = 3mm, resulting in 3 × 3 × 3mm voxels. T1-weighted
anatomical images were obtained using a 3D spoiled gradient-
echo sequence with voxel dimensions of 1 × 1 × 1mm3. fMRI
data were pre-processed using AFNI (Cox 1996). EPI volumes
were corrected for slice acquisition time and head motion.

Functional volumes were aligned to the T1-weighted anatomical
volume, transformed into a standardized space (Talairach and
Tournoux 1988), and smoothed with a 6mm FWHM Gaussian
kernel. The data were analyzed using a general linear model
with a duration-modulated HRF. The model included one regres-
sor for each sentence.

After preprocessing and transformation of voxel activity to
z-scores, a single sentence-level fMRI representation was cre-
ated for each sentence per participant by taking the voxelwise
mean of all replicates of the sentence.

Decomposing fMRI Representations of Sentences into
Latent Words

All fMRI representations used in the analyses reflect processing
of entire sentences as opposed to isolated words. As our model-
ing approach is predicated on using words as a link to ‘context-
invariant’ neural semantic features, we introduce a strategy to
extract latent representations of words from sentences. In the
remaining text we use the subscript fMRI (e.g., sentencefMRI) to
indicate an fMRI activity pattern as opposed to other possible
representations of sentences/words.

Given sentence-level fMRI data (sentencefMRI) recorded as
participants read a set of S unique and meaningful sentences,
formed from a dictionary of W content words (nouns, verbs and
adjectives), with some words appearing in many sentences,
and some in just one, how can the fMRI patterns of individual
words forming the sentences be estimated? For each of the
W words, we first identify the subset of sentences in which
the word occurred. Second, we estimate the latent fMRI
representation of that word by taking the voxelwise mean of
the fMRI patterns for all sentences in which the word occurred
(we refer to this as a latent-wordfMRI). The result of this is that
each latent-wordfMRI estimate is built from a composite of
examples of that word, complemented by/contaminated with a
set of other words appearing in the same sentence context.
This is illustrated in Figure 1 (stage 1).

Thus, the latent-wordfMRI for “cow”, would contain aspects
of “eating”, “grass” and “field”, if “the cow ate grass in the field”
occurred in the set of sentences. This inclusion of contextual
information per se is not unreasonable given that many
semantic models in computational linguistics are based
entirely on word context (Landauer and Dumais 1997; Turney
and Pantel 2010), and similar models have successfully been
applied to explain brain data (e.g., Mitchell et al. 2008; Carlson
et al. 2014; Anderson et al. 2015). For this to be appropriate,
however, the sentence decomposition approach relies on hav-
ing a sufficiently large set of sentences and an adequate distri-
bution of words amongst the sentences, such that each latent-
word is estimated from a reasonable word content/context
ratio. What constitutes ‘sufficiently large’ and a ‘reasonable
ratio’ is an empirical question. In this study we use 240 simple
sentences, formed from 242 content words (nouns, verbs and
adjectives), where each latent-wordfMRI is estimated from an
average of 3.3 sentences containing contextual traces of 8.2
other words. The same pair of words infrequently appears in
more than one sentence (see Materials).

As it stands, this set up is not optimal, since 42 of the sen-
tences contain words unique to the sentence set, and for those
unique words the latent-wordfMRI estimate will be an instance
of a sentencefMRI. Three sentences contain 2 unique words (the
other 39 contain 1 unique word), and the estimate for both
unique words within the same sentence will be identical
(the same sentencefMRI). The semantic content of these
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semantically “contaminated” neural activity patterns, however,
can be refined through a process of regression on attribute vec-
tors (ideally removing unwanted semantic information and
noise).

Using Attribute Vectors to Synthesize Word-level
Neural Activity Patterns

We used multiple regression to learn a mapping between attri-
butes and voxels, with a training set of attribute vectors of
words as independent variables and corresponding latent-
wordsfMRI as dependent variables. A separate multiple regres-
sion was trained for each voxel, and all attributes were entered
at once. The beta coefficients produced by these regression
analyses yield brain maps, for each attribute, of the degree of
modulation in activity at each voxel by the attribute. These can
be thought of as basis functions relating the attribute value for
a given word with the contribution of that attribute to the
neural activation pattern elicited by the word (see Fernandino
et al. 2015a). This is illustrated in Figure 2, see also Figure 1
(stage 2). This allows neural activity patterns for words to be
synthesized, voxel by voxel, from attribute vectors using the
equation below:

∑= ( ) ( )
=

y c a w 1v
i

vi i
1

65

where ai(w) is the ith attribute for a content word w and cvi is a
parameter corresponding to the beta coefficient of the ith attri-
bute on the vth voxel learnt in regression.

We distinguish between attribute-based syntheses of new
words (that were not available in training the regression; i.e., w
was not in the training set) and neural activity patterns regen-
erated from attribute vectors for words that were trained in the
regression (w was in the training set), with the respective terms
predicted-wordsfMRI and regenerated-wordsfMRI. This difference is
illustrated in Figure 1 (stage 3).

Regressing voxel activity on attributes will, in principle, fac-
tor desirable semantic content in neural activity patterns,
where irrelevant semantic signal and other aspects of noise
will contribute to the error. The neural activity pattern regener-
ated from attribute vectors in equation (2) will reconstruct the
expected activity (but not the error) and ideally be ‘semantic-
ally-filtered’ of irrelevant semantic content and other aspects
of noise. However, this improvement in regenerated-wordsfMRI

over latent-wordsfMRI is expected only if the attribute vectors
contain sufficiently rich semantic content to restore desirable
semantic fMRI signal, which we test empirically as documented
in the Results.

Using Synthesized Word-level Activity Patterns to
Estimate Sentence-level Activity

The synthesized neural activity patterns corresponding to
words (generated via equation (1)) can be combined to predict
compositions of words in sentences simply by averaging. We
refer to this as a predicted-sentencefMRI, where the voxel-level
prediction for an entire sentence (incorporating equation (1))
can be formally expressed as:

)∑ ∑= ( ( )
= =

y
s

c a w
1

2v
j

s

i
vi ij j

1 1

65

where aij(wj)is the ith attribute for the jth word (wj) in the pre-
dicted sentence representation (where there are S content
words in the sentence), cvi is a parameter corresponding to the
beta coefficient of the ith attribute on the vth voxel learnt in
regression. Averaging of synthesized word activity patterns
(regenerated-wordsfMRI) to predict sentences is illustrated in
Figure 1 (stage 4). This compositional strategy is appropriate to
capture word activation that is independent of context in sen-
tence comprehension (as is suggested to occur in the early
stages of word comprehension (Till et al. 1988)). In Figure S2 we
compare averaging words to estimate sentences with the obvi-
ous (and poorer performing) alternative of multiplication.

Analysis Overview

Five analyses were undertaken. The first is a necessary sup-
porting analysis to demonstrate that both latent-wordsfMRI

(Fig. 1, stage 1) decomposed from sentencesfMRI and word-level
attribute vectors have a similar semantic structure. This veri-
fies that it is reasonable to consider both as an operable proxy
for context-invariant word representations in the brain.

The second analysis factors the decomposed latent-
wordsfMRI using the attribute vectors. Focus here is placed on
refining the latent-wordsfMRI to remove irrelevant semantic sig-
nal left over from the sentence decomposition process, as well
as signal associated with word-form properties (e.g., ortho-
graphic and phonological features) and other noise. We verify
that regression on the attributes can filter semantic features
associated with words from the fMRI signal. We test this by
comparing how well latent-wordsfMRI and attribute-model-
regenerated-wordsfMRI are able to “spot” words in unseen fMRI

Figure 2. Weighted summation of brain maps (corresponding to the beta-

coefficients cvi from Equation (1)) to synthesize neural activation for “play”.
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sentences. Importantly, this also demonstrates that we can use
word-level semantic models to probe the word content of
sentence-level fMRI activity.

The third analysis is the key test of our central hypothesis. It
aims to demonstrate that synthesized fMRI word activation pat-
terns can be combined to predict sentence-level fMRI activation
patterns. We test where in the brain representations consistent
with superpositions of multiple words can be detected by
observing where sentence decomposition degrades when words
are experimentally omitted from the multi-word combination.

We include a fourth analysis in Supplementary Materials.
This was motivated by theories that consider the anterior tem-
poral lobe to play a central role in conceptual representation
(e.g., Patterson et al. 2007) and furthermore by theories that it is
central to conceptual combination (Bemis and Pylkkänen 2012;
Brennan and Pylkkänen 2012; Westerlund and Pylkkänen 2014;
Zhang and Pylkkänen 2015). This analysis repeats the third
analysis, specifically focusing on anterior, middle, and posterior
subregions of the temporal lobe. In addition it compares aver-
aging and multiplication as methods for building “bag-of-
words” sentence representations. This comparison was moti-
vated by previous work that has observed performance benefits
to using multiplication to model word pairs using text-based
computational models (Chang et al. 2009; Mitchell and Lapata
2010).

A fifth analysis examines the factorization of neural activity
patterns into attributes, by identifying which attributes cumu-
latively received the highest regression weights (in stage #2 of
Fig. 1) and how this varies across different brain regions within
and across different participants‘ brains.

Results
Testing on the Whole Cortex and on Localized Brain
Regions

In all analyses, activation was predicted for every voxel in the
cortex and then these predictions were evaluated globally on
all voxels (Cortex-level), and also within regions of interest
(ROI) segmented using the Destrieux Atlas (Fischl et al. 2004).
The left superior temporal sulcus (LSTS), which in the
Destrieux atlas includes portions of the superior and middle
temporal gyri, anterior temporal lobe, and angular gyrus, was
observed posthoc to yield the strongest results across all tests,
and the only ROI to reflect a statistically significant degradation
in decoding accuracy caused by experimentally omitting words
from the sentence model. In light of this, in the main article we
list and evaluate results in detail both at cortex-level (no voxel
selection within the cortex) and for LSTS. Results for all other
ROIs are summarized diagrammatically with full listings in
Supplementary Materials.

Do Attribute Vectors and latent-wordsfMRI Faithfully
Represent Word-level Meaning?

The first analysis was used to establish that attribute vectors
are faithful representations of word meaning and also that the
process of decomposing sentences into latent-wordsfMRI reli-
ably captures semantic regularities associated with the target
words. To verify that the set of latent-wordsfMRI extracted from
the sentencesfMRI captures neural activity specific to the
intended word, and to jointly confirm that the attribute vectors
contain discriminable word-level semantic content, we
matched latent-wordsfMRI to attribute vectors using a

representational similarity analysis (Anderson et al. 2016)
analogous to the observed/predicted word-pair decoding algo-
rithm that has conventionally been used to assess predictions
of word-level neural activity (e.g., Mitchell et al. 2008; Chang
et al. 2010; Sudre et al. 2012).

Mitchell et al.’s (2008) conventional test selects two words at
a time, predicts brain-activity for these words, and then corre-
lates predicted activity with observed activity (to give four
correlation values). If the sum of correlations between the con-
gruent predicted/observed pair exceeds the sum for the incon-
gruent pair, decoding is a success, otherwise a failure. This
process is repeated for all possible word pairs, with the mean
accuracy giving a metric of success. As we have no ground
truth for neural activity patterns for latent-wordsfMRI (because
they are hidden in sentence-level data), this predicted/observed
matching approach cannot be applied. Nevertheless, decoding
can still be achieved by abstracting the matching process to
representational similarity space.

Within both brain and model space, words can be re-
represented in terms of their similarities to other words by
correlating all word pairs within their native (brain or model)
spaces. This produces two square correlation matrices of
word pair similarities, one for models and the other for
latent-wordsfMRI. We use Pearson‘s correlation to generate the
matrices. In model/brain similarity spaces, each word is now
represented as a similarity vector of correlations with all
other words, thereby allowing model and brain representa-
tions of words to be directly compared. In decoding, two test
words are selected and their respective similarity vectors are
drawn from both attribute model and latent-wordfMRI correl-
ation matrices. Entries in the similarity vectors corresponding
to self-correlations (on the correlation matrix diagonal) and
correlations between the two test words are removed from
both test word similarity vectors to eradicate information that
could give away the answer to decoding (i.e., 2 entries are
removed from each vector). Decoding can then be achieved
following Mitchell et al.’s conventional strategy by comparing
summed correlations of congruent and incongruent matches
between model and latent-wordfMRI similarity vectors.

Rather than comparing predicted neural words to actual
neural words (which we did not directly measure, as all words
were embedded in sentences during scanning), this test com-
pares word-level correlational structure within the set of attri-
bute vectors to that within the set of latent-wordsfMRI. Both
attribute vectors and latent-wordsfMRI are independently con-
structed to capture the same thing (word-level semantic
representations in the brain). If structure within model and
brain data sets match each other, then we have confidence
that this commonality is rooted in word-level semantic
structure.

Three sentences that each had two words that were not
found in any other experimental sentences were excluded from
the analysis because the latent-wordfMRI estimates for each of
the respective unique words per sentence would be identical (a
consequence of the sentence decomposition algorithm that we
deal with in the next section). Removal of these sentences did
not create any other sentences containing two unique words.
Analysis was therefore on 236 words (138 nouns, 60 verbs and
38 adjectives).

Per-participant results and mean decoding accuracies in
ROIs are illustrated in Figure 3. Mean+/–sd decoding accur-
acies for all 236 words at cortex-level were 0.71+/–0.05
(chance-level accuracy is 0.5). All participants‘ results were
statistically significant (p<0.05) as determined empirically
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through permutation testing (see Supplementary Materials). The
binomial probability of achieving 14 significant decoding
results at a threshold of p = 0.05 is <0.0001. Comparative
accuracies for LSTS were higher for each participant (mean+/–
sd = 0.76+/–0.05). A comprehensive listing of decoding accur-
acies per ROI per participant and number of voxels per ROI is
in Tables S4a/b. Regions commonly associated with semantic
processing, particularly those in the left hemisphere, scored
highly (e.g., middle temporal, occipito-temporal, inferior
frontal, and posterior inferior parietal regions, and the
precuneus).

To verify that the previous results were not driven by cat-
egorical differences in fMRI activity associated with nouns,
verbs, and adjectives (there is evidence that nouns and verbs
are represented in at least partially distinct systems e.g.,
Caramazza and Hillis 1991; Vigliocco et al. 2011), test words
were partitioned into the three word class categories (N, V, and
A), and the same procedure was repeated for each. Results at
cortex-level and for LSTS are listed in the following format:
mean+/–sd [max min] (n-participants significant at p<0.05,
cumulative binomial probability of achieving ≥ n significant
results at p = 0.05). Significance was empirically determined by
permutation tests (Supplementary Materials), and critical values
at p = 0.05 are displayed as subscripts for N, V and A. Cortex-
level: N0.57 0.69+/–0.06, [0.81 0.57], (13/14, p < 0.0001); V0.62 0.63
+/–0.10 [0.88 0.52], (6/14, p< 0.0001); A0.64 0.64+/–0.08 [0.79 0.54].
(6/14, p < 0.0001). LSTS: N0.57 0.75+/–0.05, [0.84 0.66], (14/14,
p< 0.0001); V0.62 0.72+/–0.08 [0.90 0.63], (14/14, p< 0.0001); A0.64

0.71+/–0.07 [0.79 0.55] (13/14, p < 0.0001). In summary, at cortex-
level, noun results were significant for 13/14 participants,
where verbs and adjectives were significant in approximately
half of the cases. For LSTS all but one participant‘s test on
adjectives were significant.

In closing, this section has confirmed that both attribute
vectors and latent-wordsfMRI carry a significant degree of word-
specific semantic information, and that word-related semantic
information is available at many sites across the brain, with

the strongest traces in brain regions previously associated with
semantic tasks.

Does Model-based Synthesis Improve the Semantic
Specificity of Word Activation Patterns?

We anticipated that latent-wordsfMRI decomposed from sen-
tences would be contaminated by irrelevant semantic content
associated with other words (e.g., if there are only a small num-
ber of sentences referencing cows, and one of them is “the car
drove past the cow”, the sentence decomposition approach may
exaggerate the association between cows and cars). In addition
latent-wordsfMRI can be expected to contain undesirable aspects
of signal associated with non-semantic word-form properties
(e.g., length, letter combination statistics) and other noise. The
attribute vectors should not suffer the same deficit because
humans (presumably) are more reliable in producing attribute
ratings that are specific to the meaning of the target word out of
context (i.e., we do not expect humans typically to assign attri-
butes associated with ‘cars’ to ‘cows’ and vice versa, or to base
attribute ratings on word-form properties). We therefore pro-
posed that model-based regeneration of latent-wordsfMRI could
serve a ‘semantic filtering’ role by removing irrelevant semantic
information and other aspects of unwanted signal associated
with word-form properties and other noise. That is, since the
unwanted signal is ideally only present in the fMRI data, it will
not co-vary with model features and consequently will contrib-
ute to the error in regression; see Materials and Methods. To test
this claim we compare the word-level semantic specificity of
regenerated-wordsfMRI vs. latent-wordsfMRI by testing which
representation is best for “spotting” words in held-out
sentencesfMRI. To spot words in the held-out sentences, we used
Pearson correlation to measure the similarity between the held-
out-sentencesfMRI, and all fMRI word activation patterns (latent-
or regenerated-wordsfMRI) with the natural expectation that
correlations for words that were actually present in the held-out-
sentence would be highest, and the optimistic prediction that

Figure 3. Similarity-based decoding of latent-wordsfMRI using attribute vectors. Mean decoding accuracies across participants per ROI are color-coded on a generic

inflated brain surface. Critical decoding accuracies indicated in the colorbar correspond to individual-level analysis. Decoding accuracies per participant for LSTS and

the cortex-level analyses are in the plots to the right (LSTS is the bright yellow strip on the lower left brain map). For participants #1–10 there were 12 replicate scans

of each sentence, for #11–14 there were 6 replicates.
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correlations would be generally higher for the ‘semantically-fil-
tered’ regenerated-wordsfMRI.

This test was restricted to the 198 sentences formed only
from words that were also present in other experimental
sentences. This was to ensure that all the words in a held-out-
sentence could be decomposed and regenerated from the set of
other sentences. There were 197 content words (N = 112, V = 55,
A = 30) in the 198 sentences. One sentence at a time was
held-out for testing, and latent-wordsfMRI were estimated by
decomposing the 197 training sentences. Multiple regression
was used to create regenerated-wordsfMRI from the attribute
vectors, and all regenerated/latent-wordsfMRI were corre-
lated with the held-out sentence. This process was repeated
until each sentence had been left out once, leaving a 198*197
matrix of sentence vs. word correlations for both latent- and
regenerated-wordsfMRI.

To evaluate word-spotting accuracy, for each matrix, each
row of 197 sentence vs. word correlations was ranked in des-
cending order of correlation strength and ranks were scaled
between 1 and 0, where 1 is most similar and 0 is least similar.
A rank score was then assigned to each sentence by looking up
the ranks of the words in that sentence and taking the mean of
those ranks. The mean rank score across all 198 sentences
gives a composite metric of success, where the chance level
percentile rank is 0.5. Statistical significance was empirically
determined by permutation testing as described in Supplementary
Materials.

Per-participant results and mean scores per ROI are illustrated
in Figure 4. At cortex-level, mean rank scores for regenerated-
wordsfMRI were statistically significant at p< 0.05 for 12/14 parti-
cipants (mean+/–sd rank of 0.55+/–0.04; cumulative binomial
probability p< 0.0001). There was however no significant differ-
ence in score between regenerated-wordsfMRI and latent-
wordsfMRI (mean+/–sd = 0.55+/–0.03, t = 1.32, p = 0.21, df = 13).
For LSTS, mean rank scores for regenerated-wordsfMRI were
higher across all participants (mean+/–sd = 0.59+/–0.04) with
13/14 participants returning significant results (cumulative
binomial probability p< 0.0001). In this case there was a

significant improvement in scores using regenerated-wordsfMRI

over latent-wordsfMRI (mean+/–sd = 0.58+/–0.04; t = 3.77, p =
0.002, df = 13), which suggests that regeneration had indeed
selectively filtered word-specific semantic signal. A compre-
hensive listing of rank scores per ROI per participant for regen-
erated/latent-wordsfMRI is in Tables S5a/b. Regional word
spotting scores were highest in left hemisphere semantic
regions (e.g., inferior frontal, middle temporal, and angular
gyri).

To test that the word spotting result was not driven by cat-
egorical differences between nouns, verbs and adjectives, the
198*197 sentence vs. word correlation matrices were parti-
tioned into three 198*112 (N), 157*55 (V), 96*39 (A) matrices (the
number of sentence rows differs because some sentences did
not contain verbs and/or adjectives), and the previous analyses
were conducted separately for each matrix. Results at cortex-
level and for the LSTS are presented in the following format:
mean+/–sd [max min] (n-participants significant at p< 0.05,
cumulative binomial probability of achieving ≥ n significant
results at p = 0.05). Statistical significance was empirically
determined (as described in Supplementary Materials), and crit-
ical values at p= 0.05 are displayed as subscripts for N, V and A.
At cortex-level, regenerated-wordfMRI results were significant in
~40% of cases: N0.53 0.54+/–0.04, [0.65 0.48], (6/14, p< 0.0001);
V0.55 0.44+/–0.05 [0.69 0.49], (4/14, p= 0.004); A0.56 0.44+/–0.04
[0.63 0.50], (6/14, p< 0.0001). In LSTS results were stronger and
significant in ~80% of cases: N0.53 0.58+/–0.04, [0.69 0.51], (13/14,
p< 0.0001); V0.55 0.61+/–0.06 [0.74 0.50], (12/14, p < 0.0001); A0.56

0.58+/–0.04 [0.68 0.53], (8/14, p< 0.0001). For nouns only,
regenerated-wordsfMRI were significantly improved over
latent-wordsfMRI. Mean+/–sd results for latent-wordsfMRI and
associated t-test comparisons to regenerated-wordsfMRI are
as follows: N0.53 0.57+/–0.03, (t= 3.0, p = 0.01, df = 13); V0.55 0.61
+/–0.06, (t = 0.66, p = 0.52, df = 13); A0.56 0.56+/–0.05 (t = 1.42, p =
0.18, df = 13).

These analyses demonstrate that it is possible to identify
nouns, verbs, and adjectives in held-out fMRI sentence repre-
sentations at a level significantly better than chance at both

Figure 4. Spotting words in unseen sentencesfMRI. Mean scores across participants per ROI are color-coded on a generic inflated brain surface. Critical decoding accur-

acies indicated in the colorbar correspond to individual-level analysis. Scores per participant for LSTS and the cortex-level analyses are in the plots to the right (LSTS

is the bright yellow strip on the lower left brain map). For participants #1–10 there were 12 replicate scans of each sentence, for #11–14 there were 6 replicates.
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cortex-level and in localized ROIs (where results in particular in
LSTS are often stronger). Furthermore, model-based regener-
ation of the neural activity patterns can improve the semantic
information content of the fMRI signal in LSTS, but not at
cortex-level. The latter result holds for nouns, but not verbs or
adjectives. This could either be because the attribute vectors
capture noun semantics better, or because there were less than
half as many verbs and adjectives as nouns (resulting in less
modeling/analytic power).

Predicting Sentence-level fMRI Data with Word-level
Attribute Vectors

Our key test is whether reconstructed neural words can be
combined in a “bag-of-words” fashion (i.e., unordered and with-
out explicit syntactic information) to predict the composition of
word-level activity in sentence fMRI data. In evaluating this
approach, we emphasize the following criteria:

1. Regenerated-wordsfMRI generalize to new contexts. We
ensure that for all predicted-sentencesfMRI evaluated, each
word in the test sentence appears in a new context (the test
sentence is unseen in training and, therefore, so is the con-
text of each word in the sentence).

2. Predicted-wordsfMRI add semantic content to the predicted
sentence representation. We test whether predicted-
sentencesfMRI formed by combining predicted-wordsfMRI with
regenerated-wordsfMRI are a better match to observed-
sentencesfMRI than is a control condition where partially com-
plete sentences were synthesized from only regenerated-
wordsfMRI. For example, if the held-out sentence was “The
man drank coffee” and the verb “drink” was not found in any
other sentences, the control partial-sentence strategy would
combine only two words: regenerated-manfMRI and
regenerated-coffeefMRI, where the test case would combine
regenerated-manfMRI, predicted-drinkfMRI, and regenerated-
coffeefMRI. Note that this test jointly verifies that the predicted
words are both viable semantic representations and viable
building blocks for sentence construction. We also added in a
second control test that represented sentences as the subject
noun alone, with the natural prediction that the full sen-
tences would be a better match for the neural data than the
partial sentences, which in turn would be a better match
than the subject nouns alone. Observing which brain regions
selectively deteriorate in decoding accuracy as words are
removed is evidence that the region locally represents mul-
tiple words.

To evaluate sentence prediction accuracy we used the standard
predicted/observed pair matching strategy introduced by
Mitchell et al. (2008). To address our test goals in unison, we
focused analyses on the 42 most challenging sentences
(Table S6c), which each contain either one or two words that
are not present in any of the other sentences (i.e., it was neces-
sary to synthesize either one or two predicted-wordsfMRI to
complete each test sentence).

We identified all 861 unique sentence pairs from the 42 sen-
tences and cycled through this list, leaving out two test sen-
tences at a time. This left 238 (out of the 240) sentences to be
decomposed to estimate latent-wordsfMRI and be regressed on
the attribute vectors. Regenerated/predicted-wordsfMRI within
the held-out sentences were synthesized, and held-out sen-
tences were then predicted by averaging the relevant wordsfMRI

(or just regenerated-wordsfMRI for the partial-sentence control).
The two predicted-sentencesfMRI were compared to each of the
held-out observed-sentencesfMRI using Pearson correlation, and
the four resulting coefficients were transformed using Fisher‘s r
to z transform (arctanh). If the sum of values corresponding to
the correctly matched predicted/observed pairing is greater
than the sum for the incorrect match, decoding is a success,
otherwise a failure. Statistical significance was empirically
determined by permutation testing. Two different permutation
tests were run. The first randomly shuffled sentence-level vec-
tors relative to the sentence-labels (where the label is the writ-
ten sentence). The second shuffled word-level attribute vectors
relative to word-labels (the written word) prior to building sen-
tence representations (according to the original word-labels
with now mismatched attribute vectors). This verified that dif-
ferences in sentence length/structure were not responsible for
results. Both tests are described in detail in Supplementary
Materials and lead to the same conclusions (the same partici-
pants return significant results under both tests).

Results for each participant and mean accuracies for each
ROI are illustrated in Figure 5. Results are redisplayed against
scores arising from word-level permutation tests in Fig. S1. At
cortex-level, sentence activations in 7/14 participants were
decoded at accuracies significantly better then chance (mean
+/–sd = 0.62+/–0.10; cumulative binomial probability p <
0.0001). Decoding was significantly weaker in the partial-
sentence control case (mean+/–sd = 0.59+/–0.08; t = 2.71, p =
0.02, df = 13, 2-tail), and the subject-noun-only condition was
significantly weaker than the partial-sentence (mean+/–sd =
0.56+/–0.07; t = 2.95, p = 0.01, df = 13, 2-tail).

In LSTS, performance was stronger, and sentence data from
11/14 participants were decoded at accuracies significantly bet-
ter than chance (mean+/–sd = 0.70+/–0.10; cumulative binomial
probability p < 0.0001). Accuracies were again significantly low-
er in the partial-sentence control condition, (mean+/–sd = 0.67
+/–0.09; t = 5.65, p = 7.9e–5 (df = 13, 2-tail)), and the subject-
noun condition was significantly lower than the partial-
sentence condition (mean+/-sd = 0.60+/–0.07; t = 3.55, p = 0.004
(df = 13, 2-tail)). Following correction for multiple comparisons
(either by using false discovery rate or Bonferroni) LSTS was
the only ROI to show a significant reduction in decoding accur-
acy between the full and partial sentence condition.

A comprehensive listing of sentence-level decoding accur-
acies per ROI per participant in the full-sentence and partial-
sentence conditions is in Tables S6a/b. High regional decoding
accuracies are apparent across a broadly similar set of ROIs as
seen in the previous analyses (e.g., inferior frontal and middle
temporal gyri), however the posterior cingulate gyrus also
scored comparatively highly.

A fourth analysis, included in Supplementary Materials,
repeated the analysis of this section on anterior, middle, and
posterior subregions of LSTS and left middle temporal gyrus
(LMTG). In addition, the “bag-of-words” averaging approach
used to build sentence representations in this section was com-
pared to an approach in which the voxel activation values of the
constituent words were multiplied. In brief, the results indi-
cated that there was no benefit to splitting LSTS or LMTG into
subregions (indeed, statistically higher accuracy was achieved
when LSTS was treated as a whole). Secondly, multiplying word
activations to build sentences yielded statistically weaker per-
formance than averaging them in all tests. This is presumably
because an attribute that is important to sentence representa-
tion can be zeroed out in multiplication if even one constituent
word in the sentence has a small value for that attribute.
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These analyses demonstrate that attribute-based recon-
structions of word activation patterns can be assembled to pre-
dict neural activity elicited by sentences at a level better than
chance, that this approach generalizes to predict neural activity
associated with novel words, and that these predictions of
novel words constitute viable semantic building blocks for
modeling activity elicited by sentences (because they demon-
strably add semantic content to the sentence).

Consistency in Attributes‘ Contributions Across ROIs
and Participants

The list of attributes used in the model was developed to com-
prehensively span different aspects of experience. Given that
some experiences are naturally more common than others,
that different people have different experiences, that the set of
situations described in the test sentences was limited, and that
brain regions have different specializations, we expect differ-
ences in the profile of factor weightings within and across peo-
ple’s brains.

A thorough analysis of this question is beyond the scope of
this work, but to get an initial impression of between-ROI and
between-participant differences, we selected five ROIs that (1)
supported accurate predictions in the preceding analyses; (2)
are frequently implicated in conceptual tasks; and (3) are spa-
tially spread across the network of regions commonly impli-
cated in semantic tasks (as per Lau et al. 2008; Binder et al.
2009; Friederici 2011; Pulvermüller 2013). These were LSTS, left
inferior frontal gyrus pars triangularis (LIFGtr), left angular
gyrus (LAG, which in the Destrieux atlas refers to the gyral crest
surrounding the posterior STS), and left posterior dorsal cingu-
late gyrus (LPDCing). To examine factor loadings outside these
regions, an “other-cortex” ROI was built (per participant) that
included all cortical voxels remaining after removing the previ-
ous ROIs bilaterally. Sentence-level prediction accuracies for
the other-cortex ROI were marginally weaker than the whole-

cortex-level analysis: mean+/–sd = 0.61+/–0.10 (and the same 7
participants returned significant prediction accuracies).

All 242 latent-wordsfMRI were decomposed from the full set
of 240 sentencesfMRI, and for each participant each voxel in the
cortex was regressed on the set of attribute vectors (with all
attributes entered simultaneously). To build a measure of the
sensitivity of the cortex or an ROI to an attribute, the squared
beta coefficients from the regression for each individual attri-
bute were summed across all relevant voxels in the cortex/ROI
(in the following text these beta-coefficients are referred to as
synthesis-betas):

∑= ( )
=

sumsq c 3i
v

V

1
vi
2

where sumsqi is the sum of synthesis-betas for the ith attribute
across all voxels v in the region of interest containing a total of
V voxels, and, as in equation (1), cvi is the synthesis-beta coeffi-
cient of the ith attribute on the vth voxel learnt in regression.
Synthesis-beta maps for four attributes are illustrated in
Figure 2.

For visualization we display positive synthesis-betas (rather
than sumsq) because visualization of squared synthesis-betas
drowns out patterns of attributes with lower loading. Cortex-
level mean positive synthesis-beta profiles for all participants
are overlaid in Figure 6a, where it is clear that despite variabil-
ity among individuals, similar attributes tend to receive high
values across participants (profiles for sum-negative or sum-
squared synthesis-betas are similar and are in Fig. S3).
Spearman correlation of the mean squared synthesis-beta pro-
file between all unique pairs of participants (91 pairs) was
mean+/–sd 0.83+/–0.05. All correlations were highly significant
(all p < 0.0001). Mean squared synthesis-betas for each attribute
were averaged across participants and ranked, with the highest
ranking weights in descending order being: speech, face, body,
biomotion, motion, audition, pleasant, unpleasant, human, fast, hap-
py, pattern, arousal, consequential, shape. There could be various

Figure 5. Using “bags of synthesized fMRI words” to predict and discriminate between fMRI activity elicited by unseen sentences. Mean decoding accuracies across

participants per ROI are color-coded on a generic inflated brain surface. Critical decoding accuracies indicated in the colorbar correspond to individual-level analysis.

Scores per participant for LSTS and the cortex-level analyses are in the plots to the right (LSTS is the bright yellow strip on the lower left brain map). For participants

#1–10 there were 12 replicate scans of each sentence, for #11–14 there were 6 replicates.
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reasons that some factors were underrepresented, including
that the attributes were not relevant to the sentence set, their
connection to concepts cannot be reliably estimated behavior-
ally, or that they do not map to brain activity elicited in sen-
tence comprehension.

Mean positive synthesis-betas in different ROIs are over-
laid for the two participants with highest sentence prediction
accuracies in Figure 6b,c. Within-participant profiles are simi-
lar across ROIs and also to the other-cortex ROI. A potentially
interesting qualitative observation (from Fig. 6b,c) is that one
participant loads comparatively heavily on affective attri-
butes (unpleasant, pleasant, fearful), suggesting they had a
more emotive interpretation of the test sentences. Mean
squared synthesis-beta correlations between ROIs (within
participants), averaged across participants, are in Table 2.
Correlations are all high, and LSTS shows the strongest cor-
relation with the other-cortex ROI (and therefore has the
closest match to macro-scale neural activity patterns).
Spearman correlation of mean squared synthesis-beta pro-
files across pairs of participants (91 unique pairs) were (mean
+/–sd): LSTS 0.71+/–0.08; LIFGtr 0.68+/–0.08; LAG 0.66+/–0.12;
LDPCing 0.51+/–0.12; other-cortex: 0.83+/–0.05; all p < 0.03
(and most p < 0.0001). Another qualitative observation is that
the mean squared synthesis-beta profile tends to be more
similar between ROIs within the same brain than across
brains. One interpretation of this could be that there is a ubi-
quitous semantic code that is locally available across a num-
ber of brain locations and this code varies slightly more from

person to person than it does between different regions of
the same individual‘s brain.

Discussion
We have introduced an approach that predicts patterns of
neural activity elicited by sentence reading. Our results dem-
onstrate that (1) neural activation specific to different nouns,
verbs, and adjectives can be extracted from a large set of
sentence-elicited fMRI representations; (2) word activation
can be modeled using behavioral ratings that relate word
meanings to neurobiologically-based experiential attributes;
(3) attribute-based predictions of word-level activations can
be assembled to predict activation patterns elicited by new,
untrained sentences; (4) prediction accuracy is consistently
higher when evaluation is focused on LSTS as opposed to the

Figure 6. Radar plots of the sum of positive weights across voxels associated with attributes. (a) Cortex-level results for all participants, each participant is color-

coded, colors are assigned arbitrarily to participants. (b,c). Two individuals’ profiles with different ROIs’ results overlaid. ROIs color-codes are LSTS (Yellow); LIFGtr

(Purple); LAG (Green); LDPCing (Cyan); other-cortex (Red).

Table 2 Mean-squared synthesis-beta profile correlations between
ROIs within participants, averaged across participants

LSTS LIFGtr LAG LPDCing Other-cortex

LSTS 1.00 0.84 0.85 0.77 0.90
LIFGtr 0.84 1.00 0.78 0.67 0.86
LAG 0.85 0.78 1.00 0.82 0.86
LPDCing 0.77 0.67 0.82 1.00 0.79
other-cortex 0.90 0.86 0.86 0.79 1.00
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whole cortex or any other segmented brain region (although
multiple sites across the brain support statistically significant
predictions). In the following, we discuss how these results
extend previous work on conceptual combination, the inter-
pretation of the high decoding accuracy observed in LSTS,
limitations of the current approach, and potential future
directions that could improve semantic models of sentences.

How we Extend Existing Work on Conceptual
Combination in the Brain

A substantial body of work has used experimental manipula-
tion of phrase, sentence, and narrative-level stimuli to identify
brain regions modulated by semantic and syntactic content of
the stimuli (reviews in Friederici 2011; Hagoort and Indefrey
2014; see also Humphries et al. 2007; Graves et al. 2010; Pallier
et al. 2011; Honey et al. 2012; Brennan and Pylkkänen 2012;
Silbert et al. 2014). While these experiments have identified
brain networks likely to be involved in processing the meaning
of multi-word stimuli, details concerning how individual con-
cepts are represented and combined within these networks
have been little explored.

A few previous studies modeled neural activity elicited by
word combinations and narrative level stimuli. Chang et al. (2009)
predicted neural activity elicited by reading 24 adjective-noun
stimuli using text-based semantic models. Vector representations
of each adjective and noun were built by counting the number of
times each word co-occurred with five verbs (see, hear, smell, eat,
and touch) in a large text corpus. Adjectives and nouns were com-
bined using either addition or multiplication, and the composite
vectors were used to predict neural activation in selected voxels
across the cortex. Although both addition and multiplication
returned statistically significant results, multiplication yielded
stronger predictions. Baron and Osherson (2011) demonstrated
how eight concepts such as “boy”, could be modeled by adding or
multiplying neural activity patterns elicited by constituent con-
cepts (e.g., “child” + “male”, “child” * “male”). Addition predicted
neural activation in multiple brain regions. Of these regions, the
posterior cingulate and anterior temporal lobe were also pre-
dicted by multiplication, with the anterior temporal lobe alone
showing an advantage for multiplication. In the current study,
modeling sentences by multiplying constituent attribute vectors
yielded weaker predictions, however the results reported here
(where sentences described situations involving objects, actions
and locations) are not directly comparable to adjective-noun
combinations.

At the narrative-level, Wehbe et al. (2014) used a text co-
occurrence-based semantic model together with syntax, dis-
course, and word-form properties to predict brain activity pat-
terns associated with reading supra-sentential chunks of text
read from a book chapter. They used these predictors to map out
how different brain localities are differentially reactive to seman-
tics, syntax, discourse and word-form. More recently Huth et al.
(2016) used regression to learn a mapping between text-based
semantic vectors and voxelwise neural activation elicited by lis-
tening to stories. They reduced the mapping by principal compo-
nents analysis and used the first four components as the basis
for an algorithm that generated semantic maps of the cortical
surface. This process demonstrated regional clustering of the
components across the brain surface and a similar spatial pat-
tern of components across participants. Neurobiological inter-
pretation of the components is ultimately ambiguous, however,
since their relationship to semantic content and thus to specific
brain processes is undefined.

Our analysis differs from these studies in decoding neural
activation elicited by sentences, and it extends this prior work in:

Word and feature-level detail. We decompose sentence-level
fMRI data into words, and then words into activation compo-
nents associated with experiential attributes, which can be
reassembled to predict sentence activation patterns. In theory,
this highly analytic approach allows the generalized prediction
of a very large number of sentence activation patterns for
which the semantic features of constituent words are known.
More generally, the current results demonstrate that hypoth-
eses about word- and feature-level semantic content of sen-
tences can now be tested empirically using semantic models
together with sentence-level fMRI data.

Semantic modeling. We apply and validate a semantic model
that is both built from interpretable features and comprehen-
sively spans many aspects of experience. This is the first model
of its kind that attempts to connect word meaning with the
high-dimensional complexity of experiential representation in
the brain. The results provide strong initial evidence that struc-
ture encoded in the semantic model is also present in brain
activation patterns.

On Interpreting the Relationship Between the Attribute
Model and Neural Activity

While our results show that semantic structure across the attri-
butes correlates with neural semantic structure, this does not
automatically entail that the neural semantic code is built out of
precisely the same attributes as the model. However, given the
principled design of the model, and previous results from a study
using five similar attributes to analyze the neural representation
of isolated words (Fernandino et al. 2015a,b), a correspondence
between the attributes and the neural systems on which they are
based seems likely. However, future work will be necessary to
clarify the nature and extent of this correspondence (e.g.,
whether a high attribute score on the lower limb attribute for a
target word like “kick” predicts lower limb related brain activity,
as observed by Hauk et al., 2004). In the meantime, our results
show that the attribute model provides a flexible way of predict-
ing the components that contribute to semantic representations
in the brain. This view is consistent with theories considering
conceptual representations to be partly embodied in modal sys-
tems (e.g., Barsalou et al. 2008; Binder and Desai, 2011; Kiefer and
Pulvermüller, 2012; Meteyard et al., 2012).

As we have not directly compared decoding performance
with other semantic models (e.g., Mitchell et al. 2008; Devereux
et al. 2010; Murphy et al. 2012; Huth et al. 2012; Pereira et al. 2013;
Anderson et al. 2013; Bruffaerts et al. 2013; Carlson et al. 2014;
Wehbe et al. 2014; Fernandino et al. 2015a; Anderson et al. 2015;
Huth et al. 2016), we make no claim about the superiority or
otherwise of the model to other posited models of conceptual
representation for the purpose of decoding brain activity. In work
in progress we are exploring comparison and combination of the
attribute model with state-of-the-art text-based computational
semantic models (e.g., Baroni et al. 2014). To foreshadow future
results, bothmodel types are competitive in similar tests to those
reported here, and they carry complementary information (as we
might expect from Andrews et al. 2009).

Importance of the Left Superior Temporal Sulcus and
Surrounding Cortex

We have presented new evidence that when sentences are
read, semantic representations associated with multiple words
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are activated in LSTS, and that this activation can be predicted
using attribute ratings. For consistency with the Destrieux atlas
nomenclature we use the term STS to denote this region, how-
ever it is important to note that the ROI also includes large por-
tions of the angular gyrus, middle and superior temporal gyri,
and lateral anterior temporal lobe. Furthermore, the adjacent
ROIs labeled angular gyrus and middle temporal gyrus also
showed high levels of decoding accuracy. Previous work has
linked all of these regions with semantic and syntactic pro-
cesses (e.g., Lau et al. 2008; Binder et al. 2009; Friederici 2011;
Pulvermüller 2013; Humphries et al. 2007; Pallier et al. 2011;
Honey et al. 2012; Silbert et al. 2014), and lesions in this region
are known to disrupt sentence processing (Dronkers et al. 2004;
Magnusdottir et al. 2013; Thothathiri et al. 2012). Various subre-
gions of the LSTS have also been linked (Hein and Knight 2008;
Liebenthal et al. 2014) to a diverse array of other tasks that
include speech perception, theory of mind, audio-visual inte-
gration, biological motion perception, and face processing
(tasks that we note bear striking similarity to the attributes
scoring highly in Fig. 6). Interpreted in the light of this prior evi-
dence, our results are consistent with a central role for the STS
and surrounding cortex (anterior temporal lobe, middle tem-
poral gyrus, and angular gyrus) in the representation of lexical
and sentential conceptual content. As noted by several authors,
these regions are important “convergence zones” for multisen-
sory processing streams (Beauchamp et al. 2004; Cavada and
Goldman-Rakic 1989a, 1989b; Jones and Powell 1970; Seltzer
and Pandya 1994) and serve as connectivity “hubs” linking mul-
tiple distributed networks (Achard et al. 2006; Sepulcre et al.
2012). Notably, other posterior cortical regions with similar con-
vergence zone and hub characteristics – the precuneus, poster-
ior cingulate gyrus, and left parahippocampal gyrus – also
showed relatively high levels of decoding accuracy. All of these
regions were previously associated with semantic processing in
a large meta-analysis of neuroimaging studies (Binder et al.
2009).

Limitations of the Present Approach, and Ways it Could
be Extended

Despite this first progress on sentence-level decoding, many
issues remain to be explored in future work. For example, word
order is a basic factor that determines meaning (e.g., “boat
house” and “house boat” do not mean the same thing), and
word combinations create meaning in complex ways that
reflect the intrinsic semantic properties of each word (e.g., a
“cancer therapy” is a therapy for cancer, but a “water therapy”
is not a therapy for water) and context-specific idiomatic mean-
ing (e.g., a “red car” is the color red but this is not the case for
“red army” or “red herring”).

In this article, we have stopped short of attempting to cap-
ture the specific senses of meaning brought by the interactions
of words in context. In the longer term it is desirable to con-
struct more sophisticated methods that can combine word-
level vectors to estimate specific aspects of meaning in context
and, unlike the “bag-of-words” model, capture the effects of
syntax and word morphology. One potential method would be
to train computational models to learn how words modify each
other when they appear in context (e.g., Baroni and Zamparelli
2010; Paperno et al. 2014).

In the immediate term, and directly addressable using our
existing framework, attribute vectors can be estimated at word-
pair, phrase, sentence, or even supra-sentence level simply by
having people rate these different targets. In contrast, it is

difficult to collect ground-truth text-based semantic vectors for
larger phrase and sentence-level constructs, where occurrences
of specific sentences, even in huge bodies of text, are often rare
or non-existent

A second benefit of the attribute rating approach is that it is
comparatively simple to collect person-specific attribute ratings
for words and sentences, as would be useful for predicting indi-
vidual differences in neural semantic representation. In con-
trast, to our knowledge all computational semantic models
applied to brain data have been built at group-level (e.g., built
from the text written by many authors in digital data repositor-
ies). Although in principle person-specific models could be
compiled based on personal document stores and photographs,
it is less easy to guarantee that any specific person will have
accumulated sufficient data to construct such a model.

Experiential attribute models also have limitations, how-
ever. Under ideal circumstances, the set of attributes coded in
the model reflects current neurobiological knowledge of brain
function, yet there is no guarantee that this set is complete,
since neurobiological knowledge is likely to evolve. Because the
attributes are linguistic descriptions, it may not be practical or
possible to identify dimensions of experience that are highly
nonverbal or inaccessible to conscious awareness. A practical
disadvantage is that it is costly and time consuming to collect
human ratings on a massive scale (compared to running a com-
putational algorithm on a digital data repository) even given
modern internet crowdsourcing tools that facilitate the collec-
tion of such data. Furthermore, future refinements to the model
(e.g., adding features) require new ratings to be collected. It
may therefore prove valuable to leverage the combined benefits
of semantic models from different sources (Andrews et al. 2009;
Anderson et al. 2015).

Aside from syntax and morphology, the model presented in
the current article does not account for detailed aspects of
experiential simulation (such as mental imagery) that may be
invoked in conceptual tasks (e.g. Louwerse and Hutchinson
2012), episodic memory (e.g. Hassabis et al. 2007), inferences
and theory-of-mind (Hagoort and Indefrey 2014). New grounded
semantic models, such as those derived from natural image
statistics, have seen early success decoding visual aspects of
neural activity elicited by reading (Anderson et al. 2015), and in
general provide methods to target modally grounded aspects of
neural representations (e.g. see also Kiela and Clark, 2015 for
audio-based representations). Incorporating pragmatic infer-
ence into models is a further challenge. Certain types of infer-
ence may be amenable to modeling using experiential attribute
ratings. For instance it is reasonable to conjecture that the
modulation of affect (and associated changes in brain activity)
invoked by sentences such as “The grandfather kicked the
baby” in contrast with “The baby kicked the grandfather” as
observed by Frankland and Greene (2015) could be captured by
the experiential attribute model. Other inferences that require
an understanding of the mental state of others, thus enabling
“it‘s hot in here” to be selectively recognized as an indirect
request to open a window in appropriate circumstances (van
Ackeren et al. 2012), however, may require additional techni-
ques to model.

In conclusion, this article has presented an approach that
decomposes fMRI sentences into words, and words into
embodied neural semantic features, and then reassembles
them to predict new words and sentences. This has enabled
statistically significant prediction of fMRI activation patterns
elicited by reading sentences across a broad range of cortical
regions and in particular the LSTS. The results provide initial
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validation for the experiential attribute model and a foundation
for modeling the neural representation of sentence meaning,
which has many opportunities for extension.

Supplementary Material
Supplementary material can be found at: http://www.cercor.
oxfordjournals.org/
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