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Patterns of neural activity are systematically elicited as the brain experiences categorical stimuli and amajor chal-
lenge is to understand what these patterns represent. Two influential approaches, hitherto treated as separate
analyses, have targeted this problem by using model-representations of stimuli to interpret the corresponding
neural activity patterns. Stimulus-model-based-encoding synthesizes neural activity patterns by first training
weights to map between stimulus-model features and voxels. This allows novel model-stimuli to be mapped
into voxel space, and hence the strength of the model to be assessed by comparing predicted against observed
neural activity. Representational Similarity Analysis (RSA) assesses models by testing how well the grand struc-
ture of pattern-similarities measured between all pairs of model-stimuli aligns with the same structure comput-
ed from neural activity patterns. RSA does not require model fitting, but also does not allow synthesis of neural
activity patterns, thereby limiting its applicability. We introduce a new approach, representational similarity-
encoding, that builds on the strengths of RSA and robustly enables stimulus-model-based neural encoding with-
out model fitting. The approach therefore sidesteps problems associated with overfitting that notoriously con-
front any approach requiring parameter estimation (and is consequently low cost computationally), and
importantly enables encoding analyses to be incorporatedwithin the wider Representational Similarity Analysis
framework. We illustrate this new approach by using it to synthesize and decode fMRI patterns representing the
meanings of words, and discuss its potential biological relevance to encoding in semantic memory. Our new
similarity-based encoding approach unites the two previously disparate methods of encoding models and RSA,
capturing the strengths of both, and enabling similarity-based synthesis of predicted fMRI patterns.

© 2015 Elsevier Inc. All rights reserved.
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Introduction

The brain represents different categories as spatially distributed
and overlapping activity patterns, and a major challenge is to crack
this representational code (Haxby et al., 2001; Haxby et al., 2014).
Neural activity can be elicited by presenting participants with various
stimuli (e.g.words, images, sounds) and recorded by neuroimaging tech-
niques such as functional Magnetic Resonance Imaging (fMRI). Two ap-
proaches targeting the problem of explaining the resultant neural
codes are stimulus-model-based-encoding and Representational Simi-
larity Analysis (RSA). Stimulus-model-based-encoding forms models of
stimuli as vectors of feature-weights. For pictorial stimuli, model-
features may correspond to visual filters (e.g. Kay et al., 2008; Naselaris
et al., 2009), for words, features may be the association of the word
with senses used to experience the word's referent (e.g. Mitchell
et al., 2008; Fernandino et al., 2015). Synthesized neural activity pat-
terns corresponding to new model-stimuli are predicted by a map-
ping from model-features to voxels trained by fitting weights to
A.J. Anderson).
features with supervised learning. In contrast, RSA assesses models
by comparing the grand structure of similarities between all pairs
of stimulus-model feature-vectors and neural activity patterns, and
does not require model fitting but cannot synthesize predicted
voxel-space activation patterns.

We present a new approach, similarity-encoding, that bridges be-
tween stimulus-model-based-encoding and RSA. The newmethod is
illustrated in Fig. 1. This approach achieves similar accuracy in syn-
thesizing predicted neural activity patterns to standard regression-
based strategies, but without model fitting. Hence unlike standard
regression we observe that similarity-encoding robustly manages
situations where there are many more stimulus-model dimensions
than stimuli. We also show how this new approach enables stimulus-
model-based-decoding of novel fMRI data to be entirely abstracted to
representational-similarity space (Fig. 2). Thus, like regression there is
generalization from trained to untrained stimuli. However, the general-
ization here stems from exploiting the structure of similarity-space.

Encoding and decoding (discussed in detail in the context of fMRI by
Naselaris et al., 2011) are of broad relevance to assess the value of
models/and or neural data to making practical decisions, e.g., clinically
in distinguishing healthy and unhealthy samples (e.g., Just et al.,
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Fig. 1. The three stages of similarity-based neural-activity-pattern encoding. Separate to this the fourth panel illustrates similarity-based-decoding for contrast with encoding in the other
three panels (see Fig. 2 for further details of the new similarity-based decoding algorithm).
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2014; Matthews et al., 2006), in brain–computer-interfaces and
neuroprosthetics (e.g. Sulzer et al., 2013; deCharms, 2008), or from
an ecological perspective to estimate whether measured neural ac-
tivity patterns could actually be the grounds of decision making
within an individual. As such whilst RSA and neural encoding and
decoding have tended to be treated as separate analyses with different
properties and benefits (e.g. Haxby et al., 2014), the extension intro-
duced here provides ameans for all types of analyses to be easily under-
taken within the same similarity based framework. Where previous
analyses have decoded neural activity patterns using representational-
similarity methods (e.g. Raizada and Connolly, 2012, Nili et al., 2014;
Anderson et al., 2015; Zinszer et al., 2015), none have considered
encoding (synthesis of predicted neural activity patterns from
stimulus-models).

Methodologically, the new similarity-encoding strategy is a natu-
ral development to the Representational Similarity Analysis (RSA)
framework (Kriegeskorte et al., 2008a,b; Kriegeskorte and Kievit,
2013; Nili et al., 2014), building on theories that visual-object cate-
gories are partially represented in terms of similarities in the brain
(Edelman, 1998, Edelman et al., 1998) and (as we will return to in
the Discussion) follows a computational architecture reminiscent
of distributed associative memory neural networks (e.g. Willshaw
et al., 1969). RSA takes a matching set of stimulus-feature-vectors
and neural activity patterns and measures the degree of association
between the stimulus models and neural modalities by (1) inter-
correlating all pairs of stimulus-feature-vectors to produce a square
model-correlation matrix; (2) likewise inter-correlating all pairs of
neural activity patterns to produce an equivalent square neural-
correlation matrix. (3) Quantifying the association between the
model-correlation matrix and the neural-correlation matrix by
extracting the lower below diagonal triangle (or upper) of unique
pairwise comparisons from each matrix, vectorizing both to produce
similarity-structure-vectors, and correlating model and neural-
similarity-structure-vectors to quantify the association. By
vectorizing the similarity-structure, conventional RSA treats an en-
tire data set holistically. This strategy has proved extremely success-
ful e.g. in interpreting pictorially induced representations in the
brain, as in Kriegeskorte et al. (2008a,b) and Connolly et al. (2012),
and demonstrating that the semantic structure embedded within
neural activity patterns associated with comprehending concrete
nouns matches sets of semantic models of those nouns (e.g.
Bruffaerts et al., 2013; Carlson et al., 2014; Anderson et al., 2013,
2015). However this holistic comparison does not allow synthesis
of predicted voxel-space activation patterns, and it is here that our
approach introduces new capabilities.

As opposed to manipulating the representational similarity-
structure holistically, we use inter-correlations between stimulus-
model feature-vectors as a secondary code to represent stimuli.
Therefore under our approach a stimulus is modeled with two codes,
the first is the standard stimulus-model feature-vector, the second –
the similarity-code – is a vector of correlations with other stimulus-
model feature-vectors. The similarity-code thus defines the similarity
between one stimulus and other stimuli and adheres to theories that
consider similarities to underpin object categories in the brain
(Edelman, 1998; Edelman et al., 1998).

Encoding – the synthesis of a predicted neural activity pattern – is
achieved by: taking a new stimulus-model feature-vector for which
we would like to predict the associated neural activity; generating
a new similarity-code for that stimulus-model feature-vector; trans-
ferring that similarity code to a matching data set of stored neural



Fig. 2. Visualization of the new leave-2-out similarity-decoding algorithm.

46 A.J. Anderson et al. / NeuroImage 128 (2016) 44–53
activity patterns; synthesizing the new predicted neural activity pat-
tern by applying the code as weights in a superposition of the stored
neural activity patterns.

In other stimulus-model-based-encoding approaches the encoding
is encapsulated in a fixed mapping from stimulus-model feature-
vectors to voxel-activity learnt in regression. In predicting novel neural
activity patterns the stimulus-model features mapped into neural-
activity-pattern-space are the basis functions and feature-vector-values
are the weights applied to basis functions. In our new similarity-
encoding approach, the neural activity patterns are basis functions,
and the similarity-code derived from the stimulus-feature-vectors
defines the weights. No mapping between stimulus-model feature-
vectors and neural activity patterns needs to be learnt to synthesize a
predicted neural activity pattern. All that is necessary is the similarity-
code. This makes the similarity-encoding approach low cost because
there is no need to fit a model, and robust because it is parameter free.

Given novel neural activity patterns without labels and labeled
stimulus-model feature-vectors (on top of a stored set of different
stimulus-model feature-vectors matched with neural activity pat-
terns), we go on to demonstrate how building neural-similarity-
codes and model-similarity-codes allows us to match neural-
similarities to model-similarities and thus assign labels to the
neural-similarity-codes to decode the neural activity patterns with-
out the encoding phase.

We demonstrate our approach in a reanalysis of Mitchell et al.
(2008) fMRI data set of neural activity elicited as participants viewed
line drawings of objects presented alongside their names. Mitchell
et al. (2008) built stimulus-model feature-vectors fromwhich they syn-
thesized predicted neural activity patterns associated with the objects
using multiple-regression. We show how similarity-codes estimated
using Mitchell et al. (2008)'s original semantic-models and state of the
art computational-semantic-models (Baroni et al., 2014) can be easily
applied to predict and decode neural activity patterns without model
fitting. This process capitalizes both on RSA's power in relating high-
dimensional data with few exemplars across modalities, and in these
cases of high dimensional data is simple and fast because it does not in-
volve training a mapping between semantic features and voxels (and
setting/tuning learning parameters), it therefore sidesteps problems as-
sociatedwith overfitting. Because similarity-codes can be computed in a
piecemeal fashion, it means that the approach is flexible to the acquisi-
tion of new training data, unlike regressionwhere amodelmust be refit
to the new data. Given the connections drawn between object similari-
ties and object representation in the brain (Edelman, 1998; Edelman
et al., 1998), and the power and simplicity of our approach, we close
in the Discussion by considering the possible implications of
similarity-encoding for knowledge representation in the brain.

Methods

Brief summary of the Mitchell et al. (2008) methods

We reanalyze Mitchell et al. (2008) fMRI data, available at http://
www.cs.cmu.edu/~tom/science2008. Mitchell et al. scanned nine
right-handed adult participants (5 female, age between 18 and 32) as
they were presented with stimuli showing a particular concrete-object
noun and also a picture of that object. The participants' task was to
think about the properties of the object. There were 60 nouns in all,
five each from twelve different classes, such as animals, furniture,
tools and vehicles. Each noun was presented six times to each partici-
pant, in a randomly interleaved order. Beyond a few minor differences
in preprocessing identified below, the fMRI data taken to analysis
were the same as in Mitchell et al. (2008).

Scanning protocol and pre-processing

Mitchell et al. (2008) acquired functional images on a Siemens
Allegra 3.0 T scanner using a gradient echo EPI pulse sequence with
TR = 1000 ms, TE = 30 ms and a 60° angle. Seventeen 5-mm thick
oblique-axial slices were imaged with a gap of 1-mm between slices.
The acquisition matrix was 64 × 64 with 3.125 × 3.125 × 5-mm voxels.
They subsequently corrected data for slice timing, motion, linear trend,
and performed temporal smoothingwith a high-pass filter at 190 s cut-
off. The data were spatially normalized to the MNI template brain
image, and resampled to 3 × 3 × 6mm3 voxels. The voxel-wise percent
signal change relative to the fixation condition was computed for each
object presentation.

http://www.cs.cmu.edu/~tom/science2008
http://www.cs.cmu.edu/~tom/science2008
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The voxelwise mean of the four volumes acquired 4 s after stimulus
presentation was used to represent that noun presentation. To create a
single representation per noun per participant, we took the voxel-wise
mean of all six presentations of each word. We normalized voxel activ-
ity by transforming the nouns'values per voxel to z-scores (Mitchell
et al. who predicted each voxel individually did not perform this stan-
dardization). Voxels estimated to have good signal were selected
using the same criteria as Mitchell et al. (2008), who picked the 500
voxels with the most stable activation profile over words, with profiles
compared across sessions: Pearson's correlation of each voxel's activity
between matched word lists in all scanning session pairs (15 unique
session pairs giving 15 correlation coefficients of voxel activity for the
list of training words) was computed and the mean coefficient used as
stability measure. The voxels with the 500 largest correlations were
chosen. Voxel selection in the similarity-encoding analysis was con-
ducted in a cross-validated fashion: In each test iteration, fMRI-activity
patterns corresponding to two test words were held-out, and conse-
quently voxel selection was based on the remaining 58/60 ‘training
words’ to ensure independence of training and test data. In similarity-
decoding, where both target (fMRI similarity) and predictor (seman-
tic-model-similarity) remain entirely separated (and are thus indepen-
dent), voxel selection was conducted on all 60 fMRI-words. The
difference between similarity-encoding versus decoding is detailed as
the analyses are described in the Results.

Stimulus-model feature-vectors

In analysis we used Mitchell et al.'s original set of semantic-feature-
vectors and also a set of state of the art vectors from computational
linguistics. In building semantic models for the stimulus nouns,
Mitchell et al. took inspiration from theories that sensorimotor fea-
tures are important for representation and manually selected a set
of 25 sensorimotor verbs (e.g. ‘touch’, ‘see’, and ‘manipulate’), and
counted the co-occurrence frequencies of each of the 60 noun stimuli
with each of the 25 verbs throughout Google's publicly available
trillion-word corpus (called the Web 1T 5-gram, because co-
occurrences were counted within a five-word window). This yielded
a vector of 25 frequencies for each of the 60 nouns, each subsequently
normalized to unit length. Thesemodels are referred to asMitchell-verbs.

We sourced leading edge computational semantic models from
Baroni et al. (2014) who compared a selection of state-of-the-art
computational-semantic-models in a variety of benchmark tasks. For
simplicity we focus on a model based on co-occurrence counts whose
derivation follows much the same procedure as the Mitchell-verb
semantic-models on a grander scale (despite new neural-network se-
mantic models outperforming others in a number of the benchmarks,
in preliminary tests that we do not report they did not afford a perfor-
mance gain here). Baroni et al. built semantic models, subsequently re-
ferred to as Text-win2, by counting co-occurrences within a window of
a fixed size of 2 to left and right of each target word in a corpus of about
2.8 billion tokens constructed by concatenating ukWaC, the English
Wikipedia and the British National Corpus. The top 300Kmost frequent
words (which included the 60 stimulus-nouns) in the combined-corpus
were counted both as target and context elements. They transformed
the co-occurrence matrix into nonnegative Pointwise Mutual Informa-
tion and reduced it by Singular ValueDecomposition to 500dimensions.

Results

Similarity-based encoding: synthesizing predicted neural activity patterns
for novel words using stimulus-model-similarity-codes

Neural activity associated with a novel word's meaning is predicted
by a process of first coding the new word as a semantic-model
similarity-code — a vector of model similarities to other words (calcu-
lated by inter-correlating semantic-model feature-vectors) and using
these as weights in an average of respective fMRI words. This process
is illustrated in Fig. 1, where stage #1 displays the stored ‘training’ set
of semantic-feature-vectors for nouns linked to matching recordings
of neural activity (to the right). Note that the more task specific term
semantic-model feature-vector is used in place of stimulus-model
feature-vector in the following text. We also have an extra semantic-
feature-vector for a new word that we would like to predict the
neural-activity-pattern for, displayed to the left. In stage #2 the
semantic-model similarity-code is estimated by correlating the
semantic-model feature-vector of the new word with all of the stored
semantic-model feature-vectors using Pearson's correlation. The
semantic-model similarity-code is therefore a vector of similarity values
in the range [−1 1] that are tied to each noun we have neural coverage
for.We synthesize the predicted neural activity pattern of the newword
in stage #3 by simply transferring the semantic-model similarity-code
across modalities to serve as weights in a similarity-weighted average
of the corresponding neural activity patterns for respective words. In
this case neural activity patterns are stored as long column vectors of
voxel activities, so the weighted average firstly involves scaling each
noun's fMRI-vector with the corresponding similarity-code value, and
then summing the weighted fMRI-vectors (voxelwise). The summed
vector is then normalized by dividing by the sum of the similarity-
codes, with them first being converted into absolute values, as is stan-
dard for normalization quotients. This can be expressed formally as:
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where there are N words for which we have stored neural activity pat-
terns, each neural-activity-pattern is stored in a vectorb that is linked to
a semantic-feature-vector (s). The newwordwewould like to predict is
indexed N + 1 and b0Nþ1 is the synthesized predicted neural-activity-
pattern for the newword s. The normalizing constant C is the sum of ab-
solute correlation values in the semantic-model-similarity-code for the
new word. The relative magnitude of C potentially serves as a measure
of confidence in the prediction made, following the intuition that if
the new word's meaning is not similar to any other stored words,
then the prediction is liable to be weak (and vice versa, if the new
word is similar to known nouns, predictive power is liable to be strong).
However with the current data set of concrete nouns that are equally
distributed amongst semantic classes (i.e. there are no extreme seman-
tic outliers) this measure was not found to be revealing in unreported
analyses.

Visualization of predictions of neural activity made across all voxels
in the brain for the nouns ‘celery’ and ‘airplane’ using similarities with
the other 58 nouns computed from Mitchell et al.'s sensorimotor verb
semantic models are in Fig. 3 (to match the visualization in Mitchell
et al., 2008). A second visualization that displays each of the Mitchell-
verb semantic-feature-vectors, auto-reconstructed using semantic-
model-similarity-codes calculated by correlating that noun's semantic-
feature-vector and each of the other 59 nouns, and then using this to
weight an average of the semantic-feature-vectors for the other 59
nouns is in Fig. 4. Inspecting Fig. 4 reveals that prominent features in
the pattern are reconstructed however this process shifts the measure-
ment scale which although inconsequential for the subsequent correla-
tion based analyses we undertake, may be undesirable in different
circumstances and we identify ways to ameliorate the effect of this in
the Discussion.

Quantitative evaluation of the synthesized predicted-neural-activity
patterns can be undertaken using the leave-2-out pairwise matching
strategy introduced by Mitchell et al. (2008): Two words at a time are
selected for testing; semantic-model-similarity-codes for each of these
two words are created by correlating each of their semantic-feature-



Fig. 3. Neural activity patterns predicted using the similarity-encoding method (Fig. 1) with the Mitchell-verb-semantic models as compared to observed neural activity patterns. The
chosen words “celery” and “airplane” and slice z = −12 mm (MNI coordinates), match those displayed in Mitchell et al. (2008). The most stable voxels identified in voxel selection
are bounded by black boxes.
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vectorswith those of the remaining 58words; neural activity for each of
the two held out-words is predicted by applying the words' semantic-
model-similarity-codes to weight the superposition of neural activity
patterns for the 58 otherwords; prediction accuracy is evaluated by cor-
relating the predicted-neural activity patterns for the two words with
the observed-neural activity patterns (which gives four correlation
values), if the sum of correlations corresponding to the correctly
matched predicted/observed pair exceeds the sum for the incongruent
pair, decoding is a success, otherwise a failure. This process is repeated
for all possible word pairs, with the mean accuracy giving a metric of
success for each participant.

Significance was estimated empirically by permutation testing.
Word-labels across both stimulus-models and fMRI-data were held
fixed, and remained correctly assigned to the fMRI-vectors. Leave-2-
out cross-validated voxel selection was repeated for all 1770 unique
word-pairs, to produce 1770 different lists of selected voxels (note
Fig. 4. Auto-reconstruction of each Mitchell-verb semantic-feature-vector based on its
similarities to the other semantic-feature-vectors. Features are in rows and nouns are in
columns (row/column names are not displayed to avoid cluttering the diagram).
that if the word-labels were shuffled this would result in the same
1770 selected voxel-lists, just in a different order). The connection be-
tween word-labels and the semantic-model-vectors was then system-
atically jumbled to simulate random assignment of word-labels to
semantic-content as follows.

To expedite computation a semantic-model correlation matrix
was created (containing a stack of similarity-vectors). A vector of
word indices was created [ 1,2, …, 60 ] and randomly shuffled. The
shuffled indices were applied to reorder both rows and also columns
of the semantic-model correlation matrix. This meant that word-
labels were now misaligned to the semantic-model similarity-
vector contents. An entire leave-2-out encoding analysis was rerun,
drawing pairs of similarity-vectors, now mismatched to word-
labels, from the correlation matrix, deleting entries for the two test
words in the semantic-model similarity-codes such that the vectors
contain 58 correlations) and using these to synthesize predicted
fMRI-activity from the 58 word-label matched fMRI-vectors. This re-
sulted in a list of 1770 decoding scores, each corresponding to a
unique pair of word-labels. This list of scores was averaged to give
a summary statistic of accuracy. Repeating this shuffling process
10,000 times allowed us to generate a null distribution of mean accu-
racies arising when the assignment of semantic-content to word-
labels is governed by chance. Taking the proportion of times the
mean decoding accuracy arising from randomly shuffled semantic-
model correlation matrices was greater than the actual accuracy
with the unshuffled semantic-model correlation matrix gave a
permutation p-value.

Results for all nine participants (P1–P9) using similarity-encoding
are displayed in Fig. 5. For comparison decoding accuracies from
Mitchell et al. (2008) original analysis are displayed in light blue
(Mitchell-verb-regress). We also display the outcome of a rerun of
the analysis using standard multiple regression on the semantically
richer and larger Text-win2 vectors (Text-win2-regress) displayed in
dark blue. Here it is obvious that decoding accuracy is compromised
by regression overfitting the Text-win2-vectors. Using similarity-
encoding with the Mitchell-verb semantic-feature-vectors (orange),
all results are significant (p b .01), and accuracy across participants is
mean +/− sd = 76% +/− 4% correct (where 50% is chance-level).



Fig. 5. Comparison of leave-2-out decoding accuracies using the Mitchell-verb and Text-
win2 semantic models with regression and similarity-encoding (as per Fig. 1). The left
most plot is mean +/− std-error accuracy across the 9 participants, the right plot
displays accuracy per participant.
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These are equivalent (signed rank = 22, p = .98) to the accuracies re-
ported by Mitchell et al. (2008) which were mean +/− sd 77% +/−
6%. In contrast to regression which overfit Text-win2, mean accuracies
using similarity-encoding with the Text-win2 model (dark red) had a
mean +/− sd accuracy of 83% +/− 6% and were significantly higher
(signed-rank = 45, p = .0039) than accuracies using similarity-
encoding with the Mitchell-verb model. The similarity-encoding ap-
proach gave unanimously higher accuracy for all participants on Text-
win2 than regression (signed-rank = 45, p = .0039).

Similarity-based decoding: decoding novel neural activity patterns by
matching neural-similarity-codes to semantic-model-similarity-codes

We demonstrate how decoding can be entirely abstracted to repre-
sentational similarity space, without synthesizing the predicted neural
activity patterns beforehand. Here the problem differs because we re-
quire both the new but unlabeled neural activity patterns for the new
words as well as labeled semantic-feature-vectors. The task is to esti-
mate the labels for the neural data. This contrasts with similarity-
encoding when only the semantic-feature-vectors were available and
neural activity patterns for thenewwordswere synthesized (this differ-
ence is illustrated in Fig. 1).

The algorithm we present for representational-similarity-decoding
in overview operates as follows. First, both semantic-model-correla-
tion matrices and neural-activity-correlation matrices (i.e. stacks of
similarity-code-vectors) are calculated. Then, two words are chosen
to serve as the test-stimuli to be decoded. The word-labels for those
test stimuli are obtained by matching neural-activity-similarity-codes
onto semantic-model-similarity-codes. This is repeated for all possible
pairs of words. The algorithm is visualized in detail in Fig. 2.

For computational efficiency the first step is to calculate
representational-similarity matrices for all 60 words for both
semantic-models and neural activity patterns. However, if labels
for two of the neural activity patterns are unknown, we only know
the correspondence between neural activity patterns and
semantic-feature-vectors for 58 nouns, so we will need to delete
two entries in the 60 ∗ 60 correlation matrices to simulate this situa-
tion. For the leave-two-out testing, all possible pairs of words are
chosen, in turn, to serve as the test-stimuli to be decoded. The
neural-similarity-code-vectors for the two test words are extracted
from the 60 ∗ 60 neural-similarity-matrix, and the words' semantic-
model-similarity-code-vectors are correspondingly extracted from the
semantic-model-similarity-matrix. The elements corresponding to the
two test stimuli themselves are removed from the neural and semantic
similarity-code-vectors (to simulate the case that labels are unknown)
and the resulting reduced vectors contain no information about the
similarity of the two test stimuli either to themselves or to each other.

With those reduced neural and semantic-similarity-code-vectors in
hand, the actual decoding can now be performed. The decoding pro-
ceeds by matching neural-similarity-codes onto semantic-model-simi-
larity-codes: the true labels of the two test-words' neural-similarity-
vectors are unknown to the decoder, and the decoder's task is to assign
labels to the neural-similarity-vectors (and hence the associated neural
activity patterns) by choosing a labeling that produces the bestmatch to
the semantic-model-similarity-codes, whose labels are known. In the
example illustrated in Fig. 2, the two test stimuli are the words 3 and
6 out of the set of 60. The actual labels get removed from the neural-
similarity-vectors, so that they now have the unknown labels A and B.
One possible labeling is (A = 3, B = 6), and the other possible labeling
is (A= 6, B= 3). The decoding proceeds simply by calculating the cor-
relations between the neural-similarity-vectors A and B and the
semantic-similarity-vectors 3 and 6, and picking the labeling corre-
sponding to the highest correlations.

The null hypothesis tested for similarity-decoding is that there
will be no relationship between semantic-model similarity-vectors
and neural-similarity-vectors, and importantly this is different to
similarity-encoding (that there will be no relationship between
observed-fMRI activity and model-predicted-fMRI activity). Differ-
ently for a similarity-decoding analysis it is essential that the
semantic-model correlation matrix is strictly independent from the
fMRI correlation matrix (for similarity-encoding it is essential that
the held-out target fMRI activity is strictly independent from the
predicted fMRI activity). The practical impact of this difference is in
voxel selection. For similarity-decoding voxel selection can be under-
taken a single time on the entire set of 60 fMRI-words because this
has no knock on effect on the semantic-model correlation matrix. In
contrast for similarity-encoding the two test fMRI-words need to be
held out from voxel selection to avoid them contaminating the predic-
tion process. Permutation testing with randomly shuffled data (follow-
ing the procedure detailed in the following paragraph), empirically
confirms that the null distribution is centered on 50%when voxel selec-
tion is conducted a single time on each participant before the similarity-
decoding analysis. For each of the 9 participants, 10,000 permutations
with shuffled data were run, This resulted in mean +/− sd accuracy
across participants of 50.01+/− .07, that was not significantly different
to 50% p = .58, t = .58, df = 8, 2-tail.

The statistical significance of the accuracies achieved using
similarity-decoding was empirically tested via permutation testing.
Rows and columns of the semantic-model similarity matrix were
shuffled, relative to the row and column word-labels (as described
for similarity-encoding), whilst the fMRI similarity matrix was held
fixed. Evaluation compared pairs of shuffled semantic-model
similarity-vectors to the observed fMRI-similarity-vectors. Repeat-
ing this shuffling process 10,000 times generated a null distribution
of mean accuracies arising when the assignment of semantic-
similarity-vectors to word-labels is governed by chance. Taking the
proportion of times the mean decoding accuracy arising from ran-
domly shuffled semantic-model correlation matrices was greater
than the actual accuracy achieved with the unshuffled semantic-
model correlation matrix yielded the permutation p-value.

Leave-two-out decoding accuracies using the Mitchell-verb
models are on average slightly improved over the previous
similarity-encoding approach at mean +/− sd of 78% +/− 4% but
this difference is not statistically significant (signed rank = 30,
p = .13, 2-tail), where mean accuracy across participants is
78% +/− 4%. Using the Text-win2 vectors accuracies were equiva-
lent to the similarity-encoding strategy previously reported
(signed-rank = 4, p = .5), mean 84% +/− 7. Individual's results in
both tests are plotted in Fig. 6.



Fig. 6. Comparison of leave-2-out accuracies achieved with the similarity-encoding (see
Fig. 1) and similarity-decoding (Fig. 2) approaches using the Mitchell-verb and Text-
win2 semantic models.
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Group-level decoding: decoding group-level-neural-similarity-codes with
semantic-model-similarity-codes

The computational semantic models used are population-level
linguistic models in the sense that they accumulate word co-
occurrence statistics across documents written by many different
authors. Group-level neural-similarity-codes can easily be estimated
by taking the mean of individuals' similarity-codes, which is benefi-
cial only if there are group-level commonalities in representational
similarity, in which case averaging will serve to cancel out noise in
individual-level data. Caution should be taken in interpreting
group-level results, as significance tests are testing an inference on
those particular participants (treating them as a fixed rather than
random effect), meaning that results do not necessarily generalize
to individuals randomly selected from the population. We apply
the decoding algorithm (Fig. 2) to match the group-level-neural-
similarity-codes onto the semantic-model-similarity-codes. This
strategy is highly accurate. Using the leave-two-out similarity-
decoding procedure, mean decoding accuracies of 86% and 93% are
returned for the Mitchell-verb semantic vectors and Text-win2 re-
spectively (both results are plotted in Fig. 6).

As a final test we examined which words were best andworst dis-
criminated for the different models in the test using group-level neu-
ral similarities to see whether there were any obvious patterns.
Discrimination accuracies for the 60 words (maximum score per
word of 59) were significantly correlated across the two semantic
models (Spearman's ρ = .3, p = .02). For the Mitchell-verb models
the best five discriminated words were: car (59); door (59); glass
(59); horse (58); airplane (58), and the worst were: key (32); saw
(36); table (36); lettuce (36); hand (37). For Text-win2 the best
five were: airplane (59); barn (59); house (59); glass (59); bicycle
(58) whereas the worst were: saw (40); corn (45); eye (46); chisel
(48); igloo (48). We observe that “saw”, ”key” and “table” which
were all weakly distinguished have distinct senses of meaning (e.g.
“saw” as the tool and vision related verb), however “lettuce”, “eye”
and “igloo” do not, as such it is difficult to discern whether there is
any systematic pattern.

Discussion

The key contribution of this paper is to unite the two previously
disparate methods of encoding models and RSA, capturing the
strengths of both, and enabling similarity-based synthesis of predict-
ed fMRI patterns. Our new similarity-encoding method quickly and
accurately predicts the neural representation of concrete-nouns
based on using computational-semantic-models to measure how
similar those nouns' meaning is to other nouns, and we have ob-
served it to robustly scale to situations when there are many more
stimulus-model features than stimulus-models. We have also dem-
onstrated how re-representing both semantic-models for words
and neural activity patterns for words as similarity-code-vectors
allows semantic-model and neural-similarity-vectors to be matched
to each other, and therefore neural activity patterns to bematched to
computational-semantic-models (and decoded). We discuss: how
our results and approach compare to previous results that have
used semantic-model-based-encoding methods to decode the same
brain data and then identify practical, architectural and computa-
tional differences to regression-based approaches. Finally, motivated
by theories that consider similarities to be central to object represen-
tation in the brain (Edelman, 1998; Edelman et al., 1998), we close by
identifying connections between our new similarity-encoding ap-
proach and analyses to the existing literature. This includes the po-
tential relevance of similarity-codes to the organization of thematic
and taxonomic knowledge in the brain, and the overlap in architec-
ture between our approach and biologically plausible artificial neural
networks.

Comparison of decoding accuracy to other approaches

Representational Similarity based decoding achieved equivalent
accuracy (mean 78%) to Mitchell et al. (2008) original regression-
based encoding analysis (mean 77%) using the same semantic-
models, and a group-level accuracy of 86% (group-level decoding
of this data has not previously been attempted). In subsequent
work, Mitchell and colleagues (e.g. Palatucci et al., 2009; Murphy
et al., 2012) and other research groups (e.g. Devereux et al., 2010;
Jelodar et al., 2010; Pereira et al., 2013; Levy and Bullinaria, 2012;
Akama et al., 2015) have explored using different semantic models
to decode the same neural data. Successful models have tended to
incorporate more semantic features e.g. Palatucci et al. (2009)
who achieved a mean accuracy of 81% by using a human-
generated set of 218 semantic features, and by Levy and Bullinaria
(2012), who achieved a mean accuracy of 85% correct using
10,000 semantic features and tuned learning parameters in regular-
ized regression. Our results using contemporary computational-
semantic-models (with 500 features), resulted in a mean accuracy
of 84% (group-level 93%) which is at least competitive with the pre-
vious approaches, without need to fit a model or tune optimization
parameters.

Practical differences to other approaches

The similarity-based approach has advantages in its simplicity, as
there is no model that needs to be fit an analysis can be run at high
speed, and that it fits within the conventional RSA framework. The
flipside of these benefits, is that unlike regression, because there
is no mapping between semantic features and individual voxels
the similarity method does not predict how specific voxels contrib-
ute to semantic representation (e.g. as valuable to test whether re-
gions active in color/motion/acoustic perception are recruited in
representing color/motion/acoustic related concepts Mitchell
et al., 2008; Fernandino et al., 2015), however this could be com-
pensated for using searchlight analyses to confine analyses to
local brain regions (Kriegeskorte et al., 2006). Also without modify-
ing the similarity-encoding algorithm presented here, the synthe-
sized neural activity patterns predicted are constrained to be
interpolations between the existing store of neural activity pat-
terns. Extrapolation outside the space spanned by the stored pat-
terns would require introducing non-linear scaling of the stored
patterns.

A potentially undesirable consequence of theweighted average in
similarity-encoding is that it is prone to shift the scale of the encoded
vectors (as observed in Figs. 3 and 4). In the analyses reported here
this was not an issue, and we opted to present the technique using
Pearson's correlation because it is commonplace in the Representa-
tional Similarity Analysis literature and parameter free. However in
cases where the shift is problematic, it may be possible to ameliorate



51A.J. Anderson et al. / NeuroImage 128 (2016) 44–53
problems using alternative similarity metrics that have tunable pa-
rameters. One alternative is Gaussian similarity:

sim ¼ exp �1
2
∙
d2

σ2

 !

where d is the Euclidian distance and σ is a free parameter that can
be appropriately tuned to the situation. As an example Fig. 7 replots
Fig. 4 using Gaussian similarity and illustrates how modifying σ
modulates the visual quality of the match to the original data.

Differences in computational architecture to regression approaches

Regression approaches learn a mapping between each voxel and all
semantic-model-features. The interface between semantic-model-
features and all voxels is therefore a number-of-features ∗ number-of-
voxels matrix of weights (25 ∗ 500 = 12,500 using Mitchell et al.'s
semantic-models) that needs to be learnt. Architecturally the similarity
approach differs because semantic features and voxels are not directly
linked to each other, but instead the link between model and fMRI
data is between similarity-codes, where similarity-codes are vectors of
correlations that are number-of-words long.

What are the computational differences between similarity-encoding and
standard regression?

The most notable computational difference between similarity-
encoding and regression is that the similarity-encoding contains zero
tunable parameters, and thus there is no process of fitting weights.
Therefore no values need to be adjusted in order to reduce any model-
fit error. This is in contrast to regression, in which each regression
weight (sometimes called a beta coefficient) is a free parameter which
must be tuned in order to reduce the overall sum-of-squares error.

A useful distinction to draw here is between calculating and
fitting. If one is asked to add up ten numbers, then a calculation is
performed which involves ten operations. However, this is very dif-
ferent from the fitting of a model with ten free parameters when
there may be many candidate solutions. When adding up ten
Fig. 7.Auto reconstruction of eachMitchell-verb feature-vector using a Gaussian similarity
metric to calculate the similarity to the other feature-vectors. The top row corresponds to
reconstructionwith a smaller value of sigma (.3), which produces a visibly bettermatch to
the original vectors (bottom row) than sigma = 1 (middle row).
numbers, the calculation can only proceed in one way. Likewise the
correlation between feature vectors used in similarity-encoding is a
direct calculation and overfitting is impossible because there are no
free parameters to fit. To recap each weight i of a similarity-vector
is calculated as wi ¼ corrðsNþ1; siÞ , where sNþ1 is the semantic-
model vector for the word to be estimated and si is a semantic-
model vector for a stored word. Our similarity-decoding approach
constructs a 60 ∗ 60 matrix consisting of the correlations between
the words' semantic vectors. However, the number of free parame-
ters in that 60 ∗ 60 matrix is also zero. In contrast, a regression
based encoding model has a number of free parameters, equal to
the number of semantic features multiplied by the number of voxels.

Another difference which follows from the above, is that for the
similarity-encoding approach, individual similarity-vectors, and
synthesis of predicted neural activity patterns, can be computed
one by one. For regression the entire regression model needs to be
fit before a single neural activity pattern can be synthesized. This
also entails that as new data becomes available to train on, the entire
regression needs to be refit incorporating the new training
word(s) into the calculation. However once the regression mapping
has been learnt, the store of feature-vectors and fMRI data are redun-
dant (and unlike the similarity-encoding which requires the ‘train-
ing data’ to be permanently stored, they can be erased).

A third difference is that the similarity-encoding approach computes
weights (the similarity-vector) using inter-correlations between the
feature-vectors and therefore the process is entirely disconnected
from the voxel activities in the fMRI data. As it turns out, this discon-
nection between the model and the fMRI data is actually helpful here
as can be seen from the fact that our similarity encoding model per-
forms with higher accuracy than regression when using the rich se-
mantic vectors of TextWin2, as shown in Fig. 5. In contrast for
regression, the covariation between each individual-feature-value
across words and each individual-voxel's-activity across words is
measured and contributes towards the resulting weights that map
between features and voxels.

Is there a similarity-metric that could make multiple regression and
similarity-encoding identical?

Without a radical reconfiguration of the similarity-encoding archi-
tecture there is not a similarity metric that would make similarity and
regression based approaches identical. The simple reason for this is
that the computation of weights for the similarity-encoding approach
is entirely disconnected from the voxel activities in the fMRI data (as
per the previous section). For the two approaches to be equivalent
there would need to be some mixing of semantic model and fMRI data
in weight calculation.

Does the brain use similarity-encoding in semantic memory?

Having observed how similarity-encoding can efficiently generate
robust and accurate predictions online (without having to train a
model) and given theories that object categories are represented in
the brain in terms of similarities (Edelman, 1998; Edelman et al.,
1998) it naturally follows to consider if similarities play a part bio-
logically as an encoding strategy in semantic memory. We close by
considering the function that similarity-encoding could have biolog-
ically, and drawing connections to empirical studies of knowledge
representation and computational aspects of biologically plausible
artificial neural network architectures.

Everyday experience tells us that meaning can be rapidly
assigned to words that have never been experienced (e.g. unicorns).
It is also intuitive that meaning can be assigned to a new word-label
by knowing which other word-labels are similar and dissimilar in
meaning to the new word-label (this information is found in a the-
saurus). In the context of this analysis the similarity-code could be
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considered as a variant of the type of information extracted from a
thesaurus, and the encoding – the synthesis of predicted patterns
of meaning – is analogous to synthesizing a memory trace grounded
in a prediction of what the experience would have been like. In this
case the similarity-code is sourced externally (e.g. from a thesaurus),
however an alternative scenario is where the similarity-code is de-
rived internally, as could play a role in cross-modal pattern synthe-
sis. A completely new item is sensed only in one modality, and a
prediction of that item's features is synthesized in a second modality
based onmerging experience with items that were judged to be sim-
ilar in the first modality. For instance the taste of a berry that has not
previously been experienced, but is now seen, might be synthesized
based on merging past experience of the tastes of other berries that
look similar.

Relevant to the question of whether similarity-codes have a role in
the representation of semantic knowledge is the distinction between
thematically related knowledge - things that occur together in space
and time (thus musicians, instruments and music are associated with
one another despite being intrinsically different entities), and taxonom-
ic category relationships based on similarity between category mem-
bers' (where cats and tigers would be similar despite almost never
occurring in the same context in the world). The distinction between
thematic/taxonomic relations has been extensively studied behaviorally
Fig. 8. Visualization of Text-win2 semantic models arranged according toMitchell et al.'s manu
domain (i.e. Mitchell et al.'s classes) as observed by the squares on thematrix diagonal (note th
this class could reasonably be assigned to other classes).
(e.g. Lin and Murphy, 2001) and there is conflicting evidence as to
whether thematic/taxonomically organized knowledge representations
can be systematically spatially dissociated on the neural substrate (e.g.
Kalénine et al., 2009; Schwartz et al., 2011; Anderson et al., 2014;
Jackson et al., 2015). Even though the difference between thematic
and taxonomic knowledge is not always clear-cut, semantic-model-
vectors based on word co-occurrence frequencies in large text corpora
(such as Text-win2)will reliably accumulate both aspects of knowledge
(e.g. that dogs co-occur with leash and bone / fur and mammal respec-
tively). Similarity-codes derived from these same semantic-feature-
vectors visibly distill taxonomic-category structure in Mitchell et al.'s
selection of classes (as can be seen from the block-diagonal structure
of the matrix in Fig. 8 where each bright block along the diagonal indi-
cates a group of objects from the same category whose Text-win2 se-
mantic similarities with each other are high). As such this hints that
similarity-codes resulting from comparisons made between experience
based concrete object representations in the brain could provide a route
to the emergence of taxonomic category related activity patterns, and as
we discuss next we might expect similarity-codes to be a common
byproduct of parallel-distributed computation.

Computationally similarity-codes are a fundamental component of
biologically plausible artificial neural network models including self or-
ganizingmap neural networks (Kohonen, 1997) and correlation matrix
ally selected classes and correlation-matrix that distills taxonomic-structure from this task
at ‘man-made items’ in this context is not a well defined class in the sense that instances of
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memory based neural networks introduced by Willshaw et al. (1969);
Kohonen (1972); Austin and Stonham (1987). The procedure we have
described is agnostic of topography and generating the similarity-code
in stage #2 of Fig. 1 follows fundamentally the same procedure as the
recall-phase of correlation matrix memories. More generally speaking
we expect similarity-codes to emerge from any computational process
that involves a parallel match of an input pattern to prototypical-
template-patterns stored in memory (Edelman et al., 1998; Peelen
et al., 2009 for evidence), where the strength of pattern match to each
template is synonymous with a similarity measure. There is therefore
good reason to expect similarity-codes to exist in the brain and there-
fore the brain has at least the potential to employ similarity-encoding.
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