
Two hundred years ago, Young1 suggested that colour 
vision depends on the excitation of three fundamental 
mechanisms with different but overlapping spectral 
sensitivities. More than a hundred years ago, Hering2 
suggested that the appearance of colours depends on 
mechanisms that bring together in opposition (for 
example, red versus green) the signals that are elicited 
by lights from different parts of the spectrum. These 
perceptual observations have guided physiological inves-
tigations, which over the past 40 years have confirmed 
the existence of three fundamental mechanisms whose 
signals are later brought together in opposition. This 
seemingly simple hierarchical organization indicates 
that specific visual tasks might be readily assigned to 
neural mechanisms at each stage of the pathway (BOX 1). 
However, recent work has revealed an unexpected rich-
ness of physiological organization that is invisible to the 
perceptual scientist.

We review here the machinery through which the 
brain might provide for colour vision, proceeding from 
the photoreceptors to the cerebral cortex (BOX 1). We 
focus on the mechanisms of primate colour vision, in 
humans and in our closest animal model, the macaque 
monkey. We describe, in the retina and in the lateral 
geniculate nucleus, many more pathways for colour 
signals than seemed possible only 15 years ago. We then 
show that signal transformations within the primary 
visual cortex (V1) accomplish much of what needs to 
be done to accommodate findings from perceptual 
studies. New work has also provided much clearer evi-
dence than we have had until now about which cells 
in the cortex convey information about colour, and 

has sharpened our understanding of the relationship 
between colour vision and binocular vision.

The building blocks of colour vision
Photoreception. The spectrum of light that is visible to 
humans and most other mammals spans wavelengths 
of ~400–700 nm. Humans with normal colour vision 
can distinguish many thousands of colours3. To accom-
plish this we use the signals from three types of cone 
photoreceptor, whose greatest sensitivities are to short 
(S, ~430 nm), medium (M, ~530 nm) and long (L, ~560 
nm) wavelengths, but whose tuning is broad enough 
that each responds to light throughout much of the 
visible spectrum (FIG. 1). The spectral sensitivity of a 
photoreceptor is best understood as a measure of the 
probability that the receptor will absorb a photon of 
a particular wavelength. Once absorbed, the identity 
of the photon is lost, so no single photoreceptor can 
distinguish a change in the wavelength of light from a 
change in its intensity. This is the principle of univari-
ance4. Colour vision, the ability to distinguish lights of 
different spectral composition, regardless of intensity, 
depends on the comparison of signals from photorecep-
tors with different spectral sensitivities. The presence of 
three types of cone photoreceptor makes human colour 
vision ‘trichromatic’. It is dichromatic when there are 
two types, as is the case in some humans, most New 
World primates, and most other mammals. Some noc-
turnal mammals, including owl monkeys5, have only 
one type of cone photoreceptor.

The spectral sensitivity of a mammalian photo-
receptor is determined by the opsin it expresses, 
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Opsin
A G protein membrane-bound 
receptor usually found in rod 
and cone photoreceptors that 
initiates phototransduction. Its 
spectral sensitivity depends on 
the sequence of amino acids.
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Abstract | Some fundamental principles of colour vision, deduced from perceptual studies, 
have been understood for a long time. Physiological studies have confirmed the existence 
of three classes of cone photoreceptors, and of colour-opponent neurons that compare the 
signals from cones, but modern work has drawn attention to unexpected complexities of 
early organization: the proportions of cones of different types vary widely among individuals, 
without great effect on colour vision; the arrangement of different types of cones in the 
mosaic seems to be random, making it hard to optimize the connections to colour-opponent 
mechanisms; and new forms of colour-opponent mechanisms have recently been discovered. 
At a higher level, in the primary visual cortex, recent studies have revealed a simpler 
organization than had earlier been supposed, and in some respects have made it easier to 
reconcile physiological and perceptual findings.
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A molecule, or part of one, that 
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absorbing light, inducing a 
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opsin bound to it and thereby 
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which in the outer segment is covalently bound to a 
chromophore6. The spectral sensitivity of this com-
pound is determined by the sequence of amino acids 
that make up the opsin protein. Small changes in the 
opsin sequence can shift the most effective wavelength: 
for example, differences in two of the ~350 amino acids 
in the L- and M-opsins of the human retina account 
for most of the 30 nm difference in their peak wave-
lengths7,8, and differences at a further 5 sites can intro-
duce more subtle variants. Although animals of other 

phyla can express four different opsins in the cone 
photoreceptors, mammals seem to have lost all but 
two (one sensitive to short wavelengths and another 
sensitive to long wavelengths). Subsequently in evo-
lution, primates seem to have regained a third opsin 
(for a review, see REF. 9), providing two opsins (M- and 
L-) that cover the middle- and long-wavelength 
parts of the spectrum. The genes that code for the L- and 
M- opsins are found in an array on the X-chromosome, 
with the L-opsin gene being closest to the region that 
controls gene expression, with one or more M-opsin 
genes downstream of it, although only the first seems 
to be expressed10,11. The genes are vulnerable to altera-
tion or loss, resulting (much more often in men than 
in women) in loss or impairment of the capacity to dis-
tinguish colours in the middle- and long-wavelength 
parts of the spectrum. The close similarity and 
concatenation of the L- and M-genes in Old World 
primates makes it likely that the ancestor of macaques 
and humans possessed a single L-opsin gene on the 
X-chromosome, and that this gene then duplicated 
and mutated into the gene for the M-opsin.

If one of the L- or M-opsin genes is deleted or fatally 
mutated and not expressed, dichromacy is inevitable 
(although see REF. 12). In Old World primates, there 
are two potential dichromatic phenotypes: all the non-
S-cone photoreceptors might express the same opsin, 
or the photoreceptors that would otherwise have 
expressed the dysfunctional opsin express no opsin at 
all. These are not mutually exclusive — the phenotype 
should depend on the type of mutation — and there is 
evidence for both13,14.

Other variations in the properties of photorecep-
tors should affect trichromatic vision. First, the peak 
sensitivity of the opsins can be changed by non-fatal 
mutations, through crossing over. Such shifts in spec-
tral sensitivity give rise to characteristic anomalies of 
colour vision (almost exclusively in men), depending 
on the opsin that is affected: deuternomaly arises when 
the spectral sensitivity of the M-opsin shifts, and 
protanomaly when that of the L-opsin shifts. Genetic 
screening has shown that there are many anomalous 
opsins among the human population15,16, but only large 
shifts seem to cause noticeable deficits in colour vision. 
Second, the ratio of L- to M-cones in the photoreceptor 
mosaic varies widely, from approximately 0.4 to 
more than 10 (REFS 17–19). This might be expected 
to influence colour vision, but does not; for example, 
the wavelength that individuals describe as uniquely 
yellow does not depend on the proportion of L-cones 
in the mosaic19.

One to three percent of ganglion cells in most mam-
malian retinas are intrinsically photosensitive: they 
express the photo-pigment melanopsin, a G-protein-
coupled receptor. The light response of this pigment is 
much slower than that of cones or rods, so it probably 
does not contribute to colour vision as it is normally stud-
ied (although it is important for the control of circadian 
rhythms20, and probably for the pupillary light reflex21). 
Nevertheless, these ganglion cells project to the dorsal lat-
eral geniculate nucleus (LGN) of the thalamus, the main 

Box 1 | The dominant visual pathway in primates

The left panel shows a schematic drawing of the pathway from the retina to the primary 
visual cortex (V1) through the dorsal lateral geniculate nucleus (LGN) of the thalamus. 
The right panels highlight the important anatomical structures. Light entering the eye 
passes through the ganglion cells and is imaged on the photoreceptor layer (rod 
photoreceptors, which are not active in colour vision, are found between the cones). 
Signals from photoreceptors pass through bipolar cells to ganglion cells, the axons of 
which form the optic nerve, which projects principally to the LGN. The horizontal and 
amacrine cell pathways within the retina allow spatial comparisons of cone signals. 
Ganglion cells from the temporal retina project to the ipsilateral LGN (red lines) and 
those from the nasal retina project to the contralateral LGN (green lines). Within the 
LGN, the projections from the two eyes are aligned, so the same topographic map (of 
the contralateral half of the visual field) is found in all layers. The axons of LGN neurons 
project almost exclusively to V1, where they terminate primarily in layer 4 and form 
ocular dominance columns (a small fraction of LGN cells project to extrastriate areas: 
see  REF. 163 and the references therein). The termination site within layer 4 depends on 
the layer in which the LGN neuron is found: parvocellular (P) cells project mainly to layer 
4Cβ, magnocellular (M) to layer 4Cα, and koniocellular (K) cells to layer 4A and lower 
layer 3. The shading depicts the distinct pattern that emerges when slices through V1 
are stained for cytochrome oxidase activity. Reactivity is particularly high in layer 4 and 
in patches that dot the superficial layers 2 and 3. 
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Crossing over
During meiosis, two like-
chromosomes can both break; 
each can reconnect with the 
fragment from the other, 
exchanging genes or parts of 
genes in the process.

Deuteranomaly
Small deviations of colour 
vision from the normal 
observer (often only revealed 
in tasks requiring fine 
discriminations) brought about 
by mutations that shift the 
spectral sensitivity of the 
M-cone opsin.

Protanomaly
Small deviations of colour 
vision from the normal 
observer (often only revealed 
in tasks requiring fine 
discriminations) brought about 
by mutations that shift the 
spectral sensitivity of the 
L-cone opsin.

Ganzfelds
Formless fields of light, and 
ineffective stimuli for ganglion 
cells driven by photoreceptors.

Receptive fields
The region of visual space (or, 
equivalently, an area on the 
retinal surface) where 
presentation of an appropriate 
pattern of light causes changes 
in the activity of a neuron.

pathway for vision, so they might contribute directly to 
perception22. Their intrinsic photosensitivity does not 
adapt to the ambient light, and so they could provide 
a signal for absolute brightness22. Were the signal from 
melanopsin important for the perception of bright-
ness, its distinctive spectral sensitivity should allow 
this to be revealed (FIG. 1): the prediction being that 
ganzfelds illuminated by different monochromatic 
lights that equally excite melanopsin should be judged 
as equally bright.

The photoreceptor mosaic. Colour vision depends on 
the comparison of activity in different photoreceptors, 
but these photoreceptors lie in a two-dimensional sheet, 
with only a single photoreceptor at any one position. 
So, for colour vision we must make comparisons across 
space. For the best spatial resolution of colour varia-
tions, we might want photoreceptors to be arranged in 
a triangular lattice (much like a shadow-mask television 
tube). Indeed, we might expect the mechanisms that 
determine which opsin is expressed in each photorecep-
tor to also confer spatial order on the cone mosaic (such 
that, for example, neighbouring photoreceptors act 
mutually to suppress the expression of the same opsin). 
The S-cones in primates are histologically distinctive, 
and their proportion (5–10% of all cones) and quasi-
regular distribution in the retina have been known for 
some time18,23–25. Until recently, it was assumed that 
L- and M-cones (which are not easy to distinguish) 
were arranged in a regular lattice. However, modern 
measurements26,27, culminating in the extraordinary 
images of the living primate retina provided by recent 
studies18,28,29, one of which is shown in FIG. 1, have now 
refuted this assumption.

Rather than lying in a triangular lattice, the L- and 
M-cones are distributed as if the type (L or M) of each 
cone is determined randomly8. Little is known about 
the developmental mechanisms of cone differentiation 
and migration, and the apparently random mosaic 
might arise from the interplay of non-stochastic proc-
esses18. The ratio of L-:M-cones seems to depend on the 
cones’ location in the retina, generally increasing in the 
far periphery, and this does not easily fit the random 
hypothesis18,30–33. Across large areas and for purely 
chromatic L–M modulation18, a random mosaic will 
produce the same spatial frequency resolution as a 
crystalline one. Nevertheless, the clusters of cones of 
one type that develop in these mosaics have significant 
implications for colour vision: they make the achiev-
able spatial resolution of colour vision different in each 
local region of the retina, and will cause a physically 
identical stimulus to evoke different patterns of activity 
depending on its location on the mosaic. In perception 
this might have its corollary in the various colour sen-
sations that can be elicited by the same small light34,35. 
The upshot is that, in a mosaic containing clusters of 
cones of a single type, the area of the retina that must 
be sampled to form a neural representation of hue that 
does not depend on retinal location is larger than it 
would be were the mosaic crystalline. This must limit 
the acuity of colour vision.

Organization of subcortical pathways
Because a single photoreceptor cannot distinguish 
between a change in the wavelength of light and a change 
in its intensity, the analysis of colour requires the com-
parison of signals from different types of cones. Early 
perceptual observations2,36 indicated that the representa-
tion of hue is organized along two fundamental dimen-
sions — red–green variation and blue–yellow variation 
(BOX 2).

Early neurophysiological investigations of post-
receptor colour mechanisms looked at neurons in the 
primate LGN. Neurons in this relay station, which 
have receptive fields that are largely indistinguishable 
from those of the retinal ganglion cells that drive them 
(BOX 1), have chromatic properties that at first sight 

Figure 1 | Spectral sensitivity and spatial distribution 
of photoreceptors in the primate retina. a | Spectral 
sensitivities of L-cones, M-cones and S-cones. Shown for 
comparison are the spectral sensitivities of rods and 
intrinsically photosensitive ganglion cells (which express 
melanopsin, Mel+; from  REF. 22). b | Spatial arrangement of 
the different types of cones in the photoreceptor mosaic 
in the human retina18. The images are the mosaic of a single 
individual, JP, 0.8 degrees from the fovea in the temporal 
retina. The greyscale image shows the arrangement of 
photoreceptors. Three additional images are then 
obtained, each after exposure to intense lights of different 
wavelengths, and compared to this reference. Each intense 
light bleaches photopigment in some cone types more 
than others, so the type — S, M or L — of cone can be 
recovered by comparing changes in absorptance induced 
by each of the three conditions. On the right, false 
colouring shows the type of cone — red for L-cones, green 
for M and blue for S. In this mosaic, the L-cones outnumber 
the M-cones by a ratio of ~2.3:1. The S-cones are much less 
numerous, roughly 4% of all cones here. The L-and M-cones 
are distributed randomly, so there are frequent clumps of 
cones of one type.
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seemed strikingly like those suggested by perceptual 
work37,38. Later work firmly established two distinct 
groups of neurons and characterized them quantita-
tively39–41. Neurons in one group oppose the signals of 
L- and M-cones: these are the midget ganglion cells 
and their targets are in the parvocellular (P) layers of 
the LGN. Neurons in the other group receive strong 
signals from S-cones, opposed to some combination 
of signals from L- and M-cones (FIG. 2): these are usu-
ally found in zones bordering the principal layers of the 
LGN. As we have learned more about these groups, it has 
become increasingly clear that they have no simple con-
nections with the fundamental perceptual dimensions.

The receptive fields of P-cells. P-cells receive inputs from 
only L- and M-cones, and these inputs generally have 
opposite signs (FIG. 2), which indicates that P-cells are 
important for red–green colour vision (for an alternative 
view, see REFS 42,43). However, there seem to be many 
more P-cells than are necessary to support colour vision, 
and no other pathway provides the sampling density that 
is needed to support fine spatial resolution, indicating 
that the P-pathway is essential for spatial vision. It was 
recognized early on that cone-opponency in P-cell recep-
tive fields might be provided by their centre-surround 
spatial structure (with, for example, L-cones providing 
the main input to the centre, and M-cones providing the 
main input to the surround), so the capacity to support 
red–green colour vision might have exploited mecha-
nisms that were developed for spatial vision44–48.

The complexity of supporting these two roles is 
highlighted by the recent discovery28,29 that the appar-
ently random distribution of L- and M-cones can lead 
to large clusters of one type, making it hard to construct 
receptive fields that have both precise spatial and pre-
cise chromatic properties. To understand how this is 
accomplished we need to know two things. First, does 
colour vision require receptive fields where the inputs 
from different types of cone are tightly specified? 
Second, do cone inputs to the receptive fields of P-cells 
differ from what we would expect from indiscriminate 
sampling of the cone mosaic? The answer to the first 
question is probably ‘no’: models without selective 
wiring of cone inputs in retinal receptive fields can 
account for many aspects of human colour vision49,50. 
Moreover, individuals with different L:M-cone ratios 
have similar colour vision18,19. It seems unlikely that, in 
these individuals, retinal receptive fields have managed 
to assign fixed weights to each cone type without loss 
of spatial acuity. The second question has proved much 
more difficult to answer.

Cone-specific inputs to the centre and surround will 
confer on a P-cell receptive field the highest possible sen-
sitivity to chromatic signals. But chromatic opponency 
can also arise through the antagonistic interactions of 
two mechanisms that have substantial spectral overlap, 
as would be the case if the centre and surround drew 
inputs randomly from the photoreceptor mosaic. There 
is no known anatomical mechanism through which the 
centre and surround select inputs from specific types of 
cone51–53, but we know almost nothing of the chromatic 

properties of amacrine and bipolar cells in the primate 
retina54,55 (BOX 1), so it has been hard to discern the path-
ways through which cones provide input to ganglion 
cell receptive fields. In the central retina, P-cells prob-
ably derive their principal excitatory input from only 
one cone56,57; physiological investigations of the cone 
specificity of inputs to P-cell surrounds in the central 
retina have generally been inconclusive41,58–62. This is not 
surprising, because the functional difference between 
cone-selective and indiscriminate connections is small. 
Given this, and the absence of selective connections to 
M- or L-cones in the outer retina, there seems no rea-
son to suppose that the opponent mechanisms in P-cell 
receptive fields are cone-selective.

Box 2 | Colour space and isoluminance

Panel a shows a three-dimensional colour space, the 
axes of which are the activation level of each cone type 
(L, M and S). Within this space is a series of parallel 
surfaces; in each of these the activity of L- and M-cones 
varies so that their sum remains constant (L ≈ –2M). 
These surfaces are called isoluminant, where lights 
differ in hue and saturation but not in luminance; one 
surface is shown in the figure. S-cones do not usually 
contribute to the sensation of luminance, so in the space 
formed by the cone activations the surface forms a 
plane parallel to the axis of S-cone activation. A 
physiologically relevant transformation of this space39,164 
is shown in panel b, where the same surface is redrawn. 
Two axes now define it as a plane. One axis represents 
the level of S-cone activation (S), the other is the 
difference between L- and M-cone activation (L −M). The 
plane formed by these two axes is isoluminant because 
throughout it the sum of L- and M-cone activity is constant. 
When stimuli are defined by excursions from the centre of 
this plane (the white point), the angle within the plane 
defines the level of cone activation and hue, as is shown 
in panel c. Here, 0 degrees is an excursion from the white 
point to +L −M (increased L-cone activity and decreased 
M-cone activity) and 270 degrees is increased S-cone 
activity. Normal to this plane is an achromatic axis along 
which the signals of all cones vary.
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Outside the central retina, the receptive field centres of 
P-cells draw on several cones, so indiscriminate sampling 
of the cone mosaic would cause the colour-opponent 
organization to become more variable. Nevertheless, 
although opponency is weaker on average in the periph-
eral retina than in the central retina, it is not absent61,63. 
The surrounds of P-cells are also larger in the peripheral 
retina and may draw on hundreds of cones, so without 
selective wiring most of them should have the same spec-
tral sensitivity (that of the average of L- and M-cones in 
the photoreceptor mosaic), and there is some evidence for 
this61. Chromatic opponency in peripheral P-cells must 
arise through dominance of the centre mechanism by 
cones of a particular class, but to understand whether this 
arises through chance will require a quantitative model of 
the impact of clusters of cones of one type64.

Pathways that carry signals from S-cones. Subcortical 
receptive fields are commonly described by the sign, 
‘ON’ or ‘OFF’, of the centre mechanism. This sign is 
determined by the response of the neuron to uniform 
illumination by white light: ON when activity increases 
with increasing illumination, OFF when activity 
increases with decreasing illumination. In the same way, 
increased activity accompanying increasing S-cone activa-
tion means that the sign of the majority of S-cone input to 
the receptive field is ON. We usually think of ON and OFF 
pathways as providing complimentary representations of 
the retinal image, but recent work indicates that for S-cone 
signals this is not the case.

It has long been known that a specialized bipolar cell 
provides ON S-cone signals (‘S-ON’, often called ‘blue-
ON’) to later visual processes65,66. It now seems clear 

Figure 2 | Cone inputs to four different types of neuron in the macaque lateral geniculate nucleus. a | Which cones 
contribute inputs to the receptive field are shown — the plus sign indicates cones for which increases in activation lead to 
increased firing of the neuron, the minus indicates the cones where decreases in activation lead to increased firing. Cones 
that probably provide input to the surround are shown in the upper level, and to the centre in the lower level. Lighter 
shading of the circles indicates that the contribution of that class of cone to the opponent mechanism is uncertain. b | The 
average firing rates during selective modulation of cone activity (upper, modulation of the S-cones only; middle, M-cones; 
lower, L-cones). Two P-cells (L-cone ON, L-cone OFF) receive input only from L- and M-cones; two K-cells (S-ON, S-OFF) 
also receive input from S-cones. Two other neuron types important in colour vision — M-ON and M-OFF — are not shown, 
and their responses would be the mirror image of L-ON and L-OFF cells. Arrows in the top panels show the spontaneous 
discharge rate. imp s–1, impulses per second.

R E V I E W S

280 | APRIL 2007 | VOLUME 8  www.nature.com/reviews/neuro

© 2007 Nature Publishing Group 



that this S-cone pathway, which is preserved in diurnal 
primates67 and found in other mammals68, is phylo-
genetically ancient. S-cones are sparsely distributed, so 
they cannot support high visual acuity. It is therefore 
likely that the S-cone pathway evolved to provide col-
our vision in a common (dichromatic) ancestor of these 
mammals69.

We have learned much about some S-cone pathways 
through in vitro intracellular recordings of primate 
retinal ganglion cells, which are then stained to iden-
tify their morphology22,70,71. Early recordings showed 
that the ganglion cells that give S-ON responses have 
a distinctive bistratified morphology and form part of a 
pathway that is separate from the long-established midget–
parvocellular system. S-ON neurons are generally found 
in the koniocellular (K) layers of the LGN38,72,73 (BOX 1). In 
macaques in which the activity of cortical neurons has 
been silenced by application of muscimol (an agonist of 
GABAA (γ-aminobutyric acid A) receptors) to reveal the 
activity of LGN afferents to different cortical layers, S-ON 
responses are found only in the superficial layers 3 and 
4A74, to which the neurons in the LGN K-layers project75,76. 
The receptive fields of S-ON cells in the retina and LGN 
are larger than those of P-cells, consistent with the large 
dendritic tree of the small-bistratified retinal ganglion 
cell54,61,77,78. Their receptive fields are also distinctive in 
other ways: they are often sensitive to the direction of 
motion of an achromatic drifting grating79,80, a property 
that is not usually thought to be present in the retino-
geniculate pathway to the visual cortex.

Recent work, using injections of a retrograde dye 
into the LGN and microelectrode recording from the 
subsequently labelled ganglion cells22,71,81, has identified 
three further morphologically distinct types of ganglion 
cell that carry signals from S-cones. One type receives 
excitatory input from S-cones and two receive inhibitory 
input from S-cones — one of these is the intrinsically 
photosensitive (melanopsin-expressing) ganglion cell 
described earlier. The source of OFF S-cone signals in 
ganglion cells remains unclear — a recent description of 
an OFF S-cone bipolar cell has proved controversial82,83.

Some recent observations have helped to identify the 
possible roles of some of the different types of ganglion 
cell that carry S-cone signals. We have re-examined 
the cone inputs to the receptive fields of macaque 
LGN neurons79,84. As expected, most receptive fields in 
the P-layers are L–M opponent with little or no input 
from S-cones; some magnocellular cells might respond 
to S-cone modulation, but they are always much more 
sensitive to modulation of the L- or M-cones58,85–87. In 
addition to these cells, we found many neurons that 
responded strongly to modulation of the S-cones in and 
around the koniocellular zones separating the P-layers. 
S-cone input to these neurons was as likely to be ‘OFF’ as 
it was ‘ON’ (FIG. 2). The colour preferences of S-ON cells 
were reasonably homogenous, with excitatory S-cone 
input usually opposed to the summed activity of L- and 
M-cones; thus, they gave little response to isoluminant 
red–green (L–M) modulation39,41,88 (BOX 2). The colour 
preference of S-OFF cells was more heterogeneous89, 
but usually intermediate between that of S-ON cells and 

red–green opponent P-cells. This arises because in many 
S-OFF cells the input from M-cones has the same sign 
as that of the S-cones, and both are opposed to the input 
from L-cones (FIG. 2). S-OFF cells in the LGN also differ 
reliably from S-ON cells in preferring higher rates of drift 
and having lower contrast sensitivity. All this indicates 
that functionally distinct pathways signal increments 
and decrements in S-cone activity, consistent with the 
morphological differences in the retinal ganglion cells 
from which they originate.

Early signal transformations in the cortex
Signals that are important for colour vision are provided 
by several groups of LGN neurons, the axons of which 
project to different layers of V1 (REF. 74). However, the 
receptive field properties of neurons in V1 are rarely 
like those of the LGN: few cortical neurons respond to 
spatially uniform stimulation and most are selective for 
the orientation of edges; most respond well to achromatic 
modulation and less well or not at all to chromatic modu-
lation (a powerful stimulus to most LGN cells). There 
remains substantial disagreement about the role of these 
neurons in colour vision. About 5–10% of neurons in V1 
respond robustly to purely chromatic modulation and 
little, if at all, to achromatic modulation: these are most 
obviously important for colour vision. Among them, 
colour preferences are widely distributed, with only a 
slight bias towards those that predominate in LGN, but 
how these preferences are formed is a matter of debate.

Colour preferences of receptive fields. One of the most 
remarkable properties of V1 is that, despite being at least 
four (and often more) synapses away from the photore-
ceptors, the receptive fields of many neurons can be well 
characterized by supposing a linear combination of cone 
signals88,90–94. Other neurons have more complex recep-
tive field properties, but even in these the linear models 
can be very informative84,90,95,96. This has allowed us to 
interpret the chromatic responses of cortical receptive 
fields in terms of the cone signals that provide their 
input.

The L- and M-cone inputs to cortical receptive 
fields have been extensively studied. In many neurons 
these inputs are of the same sign, so the receptive field 
is generally insensitive to chromatic modulation. This 
organization resembles that found in LGN magno-
cellular cells97, although it does not imply that those cells 
provide the input: the receptive fields of cortical cells 
are much larger than those in the LGN, so they must get 
input from many LGN cells98. As would be the case for 
a retinal receptive field drawing indiscriminately from 
many photoreceptors, a cortical receptive field that 
draws indiscriminately from many P-cells will also tend 
to be non-opponent99. Other V1 receptive fields show 
weakly opponent interactions between L- and M-cone 
signals, and respond well to both chromatic and ach-
romatic modulation84,90,96,100–102. We cannot rule out the 
possibility that cone-opponency in many of these cells 
has arisen by chance (as has been argued for the recep-
tive fields of P-cells), but some of their other properties 
are important and we discuss them in more detail below. 
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Finally, roughly 10% of neurons show well-balanced, 
strongly opponent L- and M-cone inputs.

In most cortical receptive fields the S-cones pro-
vide much less input than the L- and M-cones88,90,96. 
Nevertheless, a substantial fraction of V1 neurons, larger 
than that in the LGN, receive at least some input from 
S-cones84,88,96. The prevalence of weak S-cone signals in 
V1 neurons indicates that these signals spread rapidly 
after entering the cortex, but it is not clear what function 
this might have93,103,104. As in the LGN, receptive fields 
with a strong S-cone input are encountered rarely, even 
among the subset of cells that respond best to isolumi-
nant modulation, and are presumed to be important for 
colour vision84,96. Among these the arrangement of cone 
inputs to the receptive field varies and includes every 
possible type, but the most common chromatic signature 
is that found in the S-OFF cells of the LGN (with L-cone 
signals opposed to those of S- and M-cones 84,91).

The variety of colour preferences shown by neurons 
in all layers of V1 indicates that signals from the LGN 
are recombined early in the cortex. Some direct evidence 
for this comes from recent work that has exploited 
contrast adaptation to reveal ‘fundamental’ chromatic 
mechanisms. Contrast adaptation has proved to be a 
powerful tool in the study of human colour vision105,106, 
and we know that the contrast sensitivity of most cor-
tical neurons is reduced by prolonged modulation of 
their preferred stimulus107. Those that respond well 
to isoluminant modulation are also desensitized by 
contrast adaptation108, despite the fact that the P-cells 
which drive them are not109. Adaptation also deforms 
the chromatic tuning of these neurons, in complex ways: 
it usually reduces sensitivity, especially to the adapted 
colour direction, but responses to other colour direc-
tions can increase during adaptation; adaptation to 
either the L–M or S direction generally leaves responses 
to the other unaffected. This rich range of behaviours 
can be readily explained by supposing that cortical neu-
rons and the inhibitory mechanisms that regulate their 

sensitivity are both84 driven by a sum of inputs from two 
fatigable mechanisms in the input layers: one driven by 
opposed inputs from L- and M-cones, the other driven 
by inputs from S-cones108. The chromatic signature of the 
S-mechanism is like that of LGN cells that receive strong 
S-cone input, but the chromatic signature of the L–M 
mechanism is unlike that of P-cells — it is not sensitive 
to achromatic modulation.

Spatial properties of receptive fields. Perceptual studies 
have revealed much about the properties of mechanisms 
that might allow us to distinguish the spatial forms of 
patterns defined solely by variations in hue110–114. To 
encode both the spatial and chromatic contrast in a 
local spatial region, a neuron requires a receptive field 
in which the spatially antagonistic regions are chromati-
cally opponent. The ‘double-opponent’ receptive field 
exemplifies one form of this (BOX 3). The arrangement 
of this field’s subregions causes a neuron to respond well 
to a small chromatic stimulus, or one containing spatial 
colour contrast, but much less well to a larger uniform 
one and not at all to an achromatic stimulus of any spa-
tial structure. Neurons with this kind of receptive field 
have been found in the goldfish retina115 but not in the 
primate retina; they have been sought in the monkey 
visual cortex116–121, but clear-cut examples have rarely 
been found94. Some reports of V1 neurons thought to 
possess this kind of receptive field91,92,116,122 have been 
challenged on methodological grounds123,124. The 
relatively few V1 neurons that clearly prefer a chro-
matic stimulus to an achromatic one are usually insen-
sitive to the precise spatial form (orientation, width) 
of that stimulus, so the receptive fields are spatially 
homogeneous90,100,101 (BOX 4).

If V1 neurons that are strongly chromatically oppo-
nent show little evidence of spatial opponency, how is the 
spatial structure of chromatic patterns to be discerned? 
One possibility for which there is a little evidence is that 
neurons with double-opponent receptive fields emerge in 
V2 or beyond101,118,120,121,125–129. Another possibility is that 
the capacity to encode the spatial structure of chromatic 
patterns depends on V1 neurons that respond to both 
colour contrast and brightness contrast. The receptive 
fields of these neurons are often selective for the width 
and orientation of edges, defined either by colour or by 
brightness90,96,100–102,130,131.

Most neurons in the visual cortex have receptive fields 
in both eyes, but early physiological studies indicated 
that those carrying chromatic signals were distinctively 
monocular116,122,132. Indirect support for this came from 
findings that colour-preferring cells were localized in 
the ‘blobs’ of dense cytochrome oxidase reactivity that 
characterize the upper layers of V1 (REFS 116,124), and 
lie in the centres of ocular dominance columns133,134. 
Later work found little relationship between blobs 
and the colour-preference of receptive fields90,131, and 
recent optical imaging confirms that the relationship 
is weaker than first reported135,136. But why should we 
expect the machinery of colour vision to be monocular? 
Although stereopsis is poor when stimuli are isolumi-
nant137–139, there have been frequent findings of binocular 

Box 3 | Two types of receptive field that might be important for colour vision

Each panel shows a 
schematic of the one-
dimensional spatial profile 
of sensitivity, with L- and 
M-cone inputs of opposite 
sign; the preferred colour 
stimulus is shown below. 
The left panel shows a 
receptive field in which 
the opposed inputs from 
different cone types are 
largely overlapping in 
space, so the neuron gives 
strong responses to uniform coloured fields (but not to white ones). Such receptive 
fields are sometimes called single-opponent, because there is cone-opponency but not 
spatial opponency. The right panel shows a double-opponent receptive field, which can 
be conceived as two single-opponent receptive fields, of opposite sign, placed side-by-
side. The resultant receptive field has balanced, spatially displaced, excitatory and 
inhibitory inputs from each cone type. It therefore does not respond to uniform fields of 
any colour, or to white light. It does respond well to purely chromatic edges.
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interactions in human colour vision even for the most 
basic of tasks140,141. Consistent with this, colour-prefer-
ring neurons in V1 are at least as likely to be binocular 
as any other type of neuron136,142. Moreover, as is the case 
for other early cortical neurons143, the colour-preferring 
neurons combine fairly linearly the inputs from the two 
eyes (FIG. 3). The receptive fields of colour-preferring 
neurons seem well equipped to support binocular single 
vision and the perception of surface colour, but because 
they generally lack spatial structure they are not well 
suited to coding fine stereoscopic detail.

Specialized cortical pathways for colour vision? Distinct 
populations of neurons carry the signals for colour vision 
to V1; within V1 there are functionally distinct classes of 
chromatically selective neurons. The signals about colour 
that leave V1 provide the capacity to isolate changes in 
colour from changes in brightness, to specify hue, and to 
combine information from the two eyes; these represen-
tations are substantially invariant to changes in spatial 
structure and contrast. Assuming these signals reach 
perception (which might not always be the case144–146), 
what further analysis of colour remains to be done? We 
usually think of the cortical areas that ascend from V1 to 
the inferotemporal cortex as supporting ‘mid-level’ visual 
tasks, such as constructing contour and texture represen-
tations and segregating surfaces in depth, or as generat-
ing object-centred representations. For colour vision this 

presumably means the ‘colouring-in’ of surfaces, and the 
identification of regions that belong together.

In areas beyond V1, the functional properties of 
neurons depend increasingly on extraretinal signals, so 
it is harder to study them in anaesthetized animals; we 
know correspondingly less about the chromatic prop-
erties of receptive fields and about the distinctiveness 
of chromatic pathways. Nevertheless, we have some 
information about how colour signals are propagated 
and transformed.

In area V2 there are colour-preferring neurons, the 
colour sensitivity of which depends on the surround-
ing context101. This attribute has often been considered 
a distinctive property of neurons in the macaque V4  
(REFS 118,120,121,129),  a visual area that is the gateway to 
the temporal lobe and is broadly important for the rep-
resentation of object structure147,148. V4 and its presumed 
homologue in humans have attracted attention as regions 
that might have a special significance for colour vision. 
Some humans with lesions to the ventromedial occipital 
cortex have impaired colour vision, although this is often 
accompanied by other deficits149–152. Functional imaging 
of this region provides more equivocal evidence on a 
special role in colour vision153–155: chromatic stimuli 
induce activity, but so do various kinds of achromatic 
visual stimuli. This is perhaps not unexpected, as colour 
experience embraces both the hue and the brightness of 
surfaces, but it points to the difficulty of establishing the 

Box 4 | Spatial and chromatic structure of receptive fields in V1

The left panels show schematics of the most common 
types of spatial frequency tuning curves obtained from 
neurons in the macaque  primary visual cortex (V1)90,96,100–102. 
Tuning curves for achromatic gratings are shown by the 
black lines, and for isoluminant L–M gratings by the red 
lines. The right panels show the spatial and chromatic 
structure of the receptive fields that might give rise to 
these tuning curves. In each case the L-cones (red) provide 
the principal excitatory input. The top panels show a type I 
cell116, where L-cones provide input to an excitatory 
mechanism; an inhibitory mechanism, which accumulates 
signals over a different spatial region, draws mainly 
from M-cones. For achromatic gratings the signals of 
L- and M-cones are opposed to each other (reflecting the 
signs of their inputs), but for isoluminant gratings their 
signals sum (because as L-cone activity increases, M-cone 
activity decreases). Thus, the spatial frequency tuning 
curves are band-pass for achromatic gratings but not for 
isoluminant gratings. The middle panels show a type II 
receptive field. Here, the mechanisms that accumulate 
M-cone signals and L-cone signals are the same size, so 
there is no spatial tuning for either achromatic or 
isoluminant gratings. Because the M-cone input is slightly 
weaker than the L-cone input, the cell responds weakly to 
achromatic modulation. The bottom panels show band-
pass spatial frequency tuning curves for both isoluminant 
and achromatic gratings. This might arise if the receptive 
field had two subregions, each of which resembled the receptive field of a type II cell123, but with cone-inputs that were 
not well balanced. The spatial structure would attenuate responses to low spatial frequencies for both achromatic and 
isoluminant gratings. Band-pass spatial tuning could also arise if in some type I cells (top panels) there was an extra 
component (depicted by the yellow shading) to the receptive field: a suppressive region sensitive to all colours101,124, 
and more sensitive to low spatial frequencies than to high frequencies165.
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function of a cortical area on the basis of its responses 
to a limited number of rather simple and constrained 
stimuli.

Bearing in mind these cautions, the most promising 
functional imaging studies might be those that seek 
to define the visual areas involved in colour vision by 
determining how their chromatic sensitivities change 
with parametric variation of, for example, temporal fre-
quency of the visual stimulus or adaptation state156–158. 

These manipulations have well-characterized effects on 
human vision, and understanding how they influence 
signals in different cortical regions could help us to 
identify likely and unlikely chromatic pathways.

Future directions
This brief review of recent work demonstrates that we 
have made major advances. Nevertheless, there remain 
substantial gaps in our knowledge of all stages of col-
our vision. In the retina we still know little about the 
pathways from cones to ganglion cells, or why human 
colour vision seems to be hardly affected by variation in 
the proportions of cones of different types. Introducing 
genes for novel pigments into animals with reduced col-
our vision159,160 could help us to understand how these 
early networks are constructed and how plastic they 
can be. In primates, retinal ganglion cells of types that 
are not yet well characterized might also be important 
in colour vision: without knowledge of these, it is dif-
ficult to constrain models of receptive field properties 
at later stages. In the cortex, the problems are different, 
and stem principally from our not having a clear idea 
of the properties to be expected of neurons that are 
responsible for colour perception. We have suggested84 
that one requirement of neurons involved in the analy-
sis of colour is that their chromatic properties be stable 
in the face of changes in other properties of a stimulus 
(such as orientation, size and contrast). Relatively few 
neurons in V1 meet this requirement, and those that 
do are ill-equipped to represent the spatial attributes 
of surfaces. Given the great differences between the 
attributes of neurons that are most obviously relevant 
to colour vision and those most obviously relevant to 
spatial vision, perhaps the most interesting challenge 
will be to understand how the chromatic properties of 
objects are perceptually bound to their spatial proper-
ties. Functional imaging might be helpful here, but to 
understand the roles of individual neurons will prob-
ably require the recording or stimulation of candidate 
neurons, or groups of neurons, during tasks that rely 
on the analysis of colour161,162.

Figure 3 | Binocular responses of a colour-preferring neuron in the visual cortex 
of a macaque. a | Responses to achromatic drifting gratings presented to each eye 
alone (top panel), to both eyes, in the same phase (middle panel) and to both eyes, but in 
antiphase (lower panel). When the gratings in the two eyes have the same phase, both 
receptive fields are stimulated together and the response is greater than for stimulation 
of either eye alone. In antiphase, the left eye sees white at the same time as the right eye 
sees black, and vice versa. The signals from the two eyes’ receptive fields therefore 
interfere, and there is little response from the neuron. b | Same, for isoluminant L–M 
gratings. In this case, antiphase stimulation means that the left eye receptive field sees 
red while the right sees green, and vice versa. The responses shown here and in FIG. 2 
were obtained from extracellular recordings in anaesthetized macaques.
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