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Importance of color in the segmentation
of variegated surfaces
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We examined how variations in color and brightness are used by the visual system in distinguishing textured
surfaces that differed in their first- or second-order statistics. Observers viewed a 32 3 32 array containing
two types of square elements differing in chromaticity or luminance or both. The spatial distributions of the
two kinds of elements were varied within the array until observers could distinguish two juxtaposed regions.
At low but not at high contrast, observers are better able to distinguish regions when the elements differ only
in chromaticity than when they differ only in luminance. The advantage of color at low contrasts results from
the greater visibility of the arrays defined by color variation. An observer’s capacity to distinguish textures
defined by variations in first-order chromatic statistics is little affected by the addition of achromatic noise but
is more affected by the addition of chromatic noise. The relative robustness of chromatic cues in the face of
achromatic noise leaves the visual system well equipped to exploit color variations in segmenting complex
scenes, even in the presence of variations in brightness. This capacity seems to depend on mechanisms that
sum over large regions: When surfaces differ in their second-order statistics and cannot be distinguished by
mechanisms that sum over large regions, the advantage of color is much diminished. © 2001 Optical Society
of America
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1. INTRODUCTION
A good deal is known about the detection and discrimina-
tion of simple patterns defined by pure luminance varia-
tions or pure color variations: The visual system is rela-
tively more sensitive to brightness variations at high
spatial and temporal frequencies and to chromatic varia-
tions at low spatial and temporal frequencies.1–9 Bright-
ness variations are more effective than color variations in
the discrimination of movement and depth.10,11 On the
other hand, in some stereo tasks color variations are used
more efficiently than brightness variations.12 In yet
other tasks, such as detection of masked gratings,13 tex-
ture discrimination,14 and collinearity judgments,15 we
perform about equally well with stimuli defined by color
variations or brightness variations. When stimuli con-
tain variations in both color and brightness, observers
may detect gratings16 and make stereo discriminations12

better than they do when stimuli are defined only by color
variations or only by brightness variations.

Relatively little is known about the ways in which the
visual system uses information about color and bright-
ness in more complex tasks involving the articulation of
textured surfaces or about the relative importance of color
and brightness variations when both are present. It is
generally agreed that brightness differences provide es-
sential information about the structure and form of a vi-
sual scene. This can be demonstrated by removing the
brightness variations from an image, leaving only color
variations. The resulting images tend to look fuzzy, and
objects are difficult to recognize. The importance of color
differences is less clear: Images devoid of color varia-
tions are generally still easy to segment, as we can appre-
ciate in watching black and white television, or in looking
0740-3232/2001/061240-12$15.00 ©
at black and white photographs. When an object appears
against a background containing substantial local varia-
tions in brightness, particularly those accidental varia-
tions caused by shadows and highlights, one might expect
color variations to become more important cues to surface
structure.17

The experiments described here constitute an attempt
to understand the importance of color variations in seg-
menting spatially complex scenes. We examine two is-
sues: (1) the relative effectiveness of color and bright-
ness variations as cues for segmenting surfaces composed
of texture elements that can vary in color, brightness, or
both and (2) the robustness of color and brightness varia-
tions as cues for segmenting textured surfaces in the
presence of noise.

2. THE SEGMENTATION TASK
We define segmentation as the differentiation of regions
by their surface characteristics, the characteristics of in-
terest here being spatial variations in chromaticity and
luminance. In the present experiments a surface is a
two-dimensional array of texture elements. Elements
can differ in chromaticity, luminance, or both. Surfaces
can differ in the statistics that describe the color and lu-
minance of the elements that compose them. The sim-
plest possible surface would contain elements of a single
chromaticity and luminance; a complex surface might
contain elements sampled with specified statistics from
the gamut available in a three-dimensional color space.

In the present experiments the surfaces to be distin-
guished are formed by the left and right halves of a
2001 Optical Society of America
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32 3 32 array of elements. The elements constituting
the array fall into two classes, which for illustration we
call A and B. Over the whole array the two classes of el-
ements occur in equal numbers. We vary the proportions
of A and B elements in the left and right halves of the ar-
ray to find the least asymmetry that an observer can de-
tect. Within each half, the elements that are present are
randomly distributed. Figure 1 shows an example of a
stimulus in which the A elements are black and the B el-
ements white. We express the asymmetry as the propor-
tion of the class A element on one side of the array (the
class B element occurs in the same proportion in the other
half), and call this dominance. At the lower limit, 50%
dominance (Fig. 1, left), 50% of the elements on the left
are class A, black (and therefore 50% on the right are
class B, white). At this dominance the array appears as
a single continuous surface. At 100% dominance (Fig. 1,
right), all the elements on the left are class A (and there-
fore all on the right are class B). At this dominance, the
stimulus unquestionably contains two regions. Each 1%
difference in dominance corresponds to five elements of
imbalance; i.e., five elements more of one class fall on one
side of the midline and five elements more of the other on
the other side of the midline.

The dominance at which the left and right sides of the
array can just be distinguished we take as the observer’s
segmentation threshold. This metric allows us to com-
pare performance when the observer distinguishes sur-
faces defined by elements whose properties differ in vari-
ous ways.

The surfaces that we consider in this paper are com-
posed of elements drawn from a single plane in color
space, defined by the achromatic axis and the axis of
purely L–M-cone excitation.18,19 For the simplest cases

Fig. 1. The arrangement of two types of elements (here shown
as black and as white) in an array determines its dominance.
Dominance is defined as the proportion of one element type on
one side of the stimulus. At 50% dominance (left) half the ele-
ments on the left are black (and therefore half on the right are
white). At 100% dominance (right) 100% of the elements on the
left are black (and 100% on the right are white). Dominance
was varied to the point at which observers could just distinguish
two regions in the stimulus.
Fig. 2. Examples of simple arrays at 60% dominance. The two classes of elements differ only in luminance (top left) or only in chro-
maticity (bottom left). Panels on the right show the same arrays, now with element values perturbed by the addition of one-dimensional
noise. At top right, chromatic noise has been added to the light- and dark-gray elements of the achromatic array; at the bottom right,
achromatic noise has been added to the red and green elements of the chromatic array.
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Fig. 3. Examples of complex arrays at 100% dominance. The two classes of elements differ in the statistics of the distributions of
element luminances (top left) or chromaticities (bottom left). In both cases the distributions of elements have zero mean but differ in
shape, one being Gaussian, the other uniform. The sides of the arrays on which elements are uniformly distributed (left) appear to have
higher contrast. Panels on the right show the same arrays, now with element values perturbed by the addition of one-dimensional
noise. At top right, chromatic noise has been added to the distributions of gray elements of the achromatic array; at bottom right,
achromatic noise has been added to the distributions of red and green elements of the chromatic array.
that we explored, each class of elements from which the
surfaces were assembled was defined by a single chroma-
ticity and luminance (e.g., class A was red and class B
was green). Figure 2 (left) shows examples of arrays at
60% dominance: In the top panels, A and B elements dif-
fer only in luminance; in the bottom panels, A and B ele-
ments differ only in chromaticity. For these cases, the
mean chromaticity and luminance of the left and right
sides of the array varies with dominance, so mechanisms
that integrate across regions as large as half the array
will be best suited to the task.

For the most complex cases that we explored, each
class was defined by a distribution of chromaticities and
luminances, with class and A and class B having different
statistics. Figure 3 (left) shows examples of arrays at
100% dominance: In the top panels, the A and B ele-
ments are defined by distributions of luminance values
with the same mean but different shape (values of A ele-
ments had a uniform distribution; values of B elements a
Gaussian distribution); in the bottom panels, A and B el-
ements are defined by corresponding distributions of
chromaticities along the L–M axis. For these cases, the
mean chromaticity and luminance of the two sides of the
array do not change as a function of dominance. Mecha-
nisms that integrate over regions smaller than each side
of the array will thus be required for computation of local
distributions of chromaticities and luminance values.

To simulate accidental variations in color and bright-
ness within and across surfaces, we can add noise to per-
turb the values of individual texture elements. This
noise provides an offset that displaces the position of an
element in color space. By varying the properties of the
noise, we can explore the selectivity of the mechanisms
that distinguish the surfaces. Figure 2 (right) shows the
array (left) perturbed by the addition to each element of
an offset that displaces its position in color space: at the
top, each element is changed in color by an offset along
the L–M axis; at the bottom right, each element is
changed in brightness by an offset along the achromatic
axis. Similarly, Fig. 3 (right) shows the array (left) per-
turbed by the addition to each element of an offset that
displaces its position in color space: At the top, each el-
ement is changed in color by an offset along the L–M axis;
at the bottom right, each element is changed in bright-
ness by an offset along the achromatic axis.

3. METHODS
A. Stimuli
Stimuli were generated by a PIXAR II computer and dis-
played on a 1280 3 1024 Nanao T560i monitor at a frame
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rate of 60 Hz. The Pixar provided for intensity quantiza-
tion of 10 bits per gun; after correction for display nonlin-
earities, the effective range was reduced by more than 1
bit. Each element of the 32 3 32 array was 4 pixels
square and subtended 12 arc min at a viewing distance of
57 cm. The whole array subtended 6.5 3 6.5 deg and
was enclosed by a gray surround of the same space-
average chromaticity and luminance (x 5 0.335, y
5 0.341, 35 cd/m2) that subtended 26 deg. Observers
viewed the display binocularly with a free head in a dimly
illuminated room. Under these conditions observers’ pu-
pils were ;4 mm in diameter.

The chromaticity and luminance of each element were
specified by a vector in a color space defined by three axes:
an axis along which the relative excitations of the L and
M cones vary in opposition without change in luminance
(the L–M axis), an axis along which the excitation of S
cones varies (the S axis), and an achromatic axis along
which all three cones are proportionally excited.18,19 The
intersection of these axes (the ‘‘white’’ point) lay at the
mean chromaticity and luminance of the display. In all
experiments, array elements were drawn from a single
plane in the color space, differing in color (red and green)
through variation along the L–M axis of the color space,
and/or in brightness (light and dark) through variation
along the achromatic axis of the color space.

Figure 4 shows how the chromaticity or luminance of
elements was perturbed by adding chromatic or achro-
matic noise. At the top left, the values of elements differ
only in brightness (along the achromatic axis). At the
top right, perturbations along the L–M axis of color space
have been added, thereby changing the color of each ele-
ment. At the bottom left, the values of elements differ

Fig. 4. Diagrams showing the locations in color space of the el-
ements constituting the simple arrays shown in Fig. 2. In the
absence of noise, arrays contained only two element values (left);
when noise was added, the chromaticity (top right) or luminance
(bottom right) of the elements was perturbed, so the values of el-
ements were distributed along lines in color space. For addi-
tional information see text.
only in color (along the L–M axis). At the bottom right,
these values have been perturbed by noise displacements
along the achromatic axis, thereby changing the bright-
ness of each element. Noise in the experimental stimuli
was continuous with a Gaussian distribution.

Stimuli of this sort have been used previously20 to ex-
amine the tuning of chromatic mechanisms underlying
texture segmentation.

B. Determining Isoluminance
In preliminary measurements we established, for each ob-
server, the locus of isoluminant values along the L–M di-
rection in color space. The observer viewed a colored (red
or green) target square subtending 2 deg alternating at 15
Hz with a gray square of the same size, with chromaticity
and luminance fixed at the white point. The luminance
of the colored square was adjusted to minimize perceived
flicker. We made measurements along the L–M axis, in
(rms cone) contrast steps of 5%, up to 20%, where the CIE
coordinates were (x 5 0.397, y 5 0.28) and (x 5 0.237,
y 5 0.386). The means of five measurements at each
contrast value were used to estimate the locus of each ob-
server’s isoluminant L–M axis.

C. Determining Dominance Thresholds
The general procedure was to establish how variations in
the properties of the elements in an array affected an ob-
server’s capacity to discern changes in dominance within
the array. This was done through a forced-choice proce-
dure. The observer was presented with two successive
arrays of elements, one (in the null interval) containing
statistically identical distributions of elements in its left
and right halves (50% dominance) and the other (in the
target interval) containing elements distributed unevenly
between the halves. The task was to determine the in-
terval in which the dominance of the array deviated from
50%. A single trial consisted of two 1-s intervals sepa-
rated by a 1-s blank period during which the screen was
gray (white point). In the target interval, dominance
was varied according to a method of constant stimuli with
a step size of 1%. An appropriate range of six dominance
values was estimated in a preliminary session.

A session consisted of 210 trials (35 for each of 6 domi-
nance values, randomly interleaved), preceded by 2 min of
adaptation to the gray background. For each level of
dominance, the positions of elements within each half of
the array were shuffled randomly between trials to pre-
vent the observer from using local clusters to identify the
target interval. The dominance of the two element types
randomly alternated sides in the array to prevent com-
parison of particular portions of the stimulus in the null
and target intervals. By pressing one of two buttons on a
mouse, observers indicated the interval in which the
dominance of the array differed from 50%. Audible feed-
back was given. Each session lasted approximately 10
min.

Using a maximum-likelihood procedure, we fitted a
Weibull function to the measurements from each session:

f~x ! 5 1 2 ~1 2 c ! exp~2x/a !b (1)

where a is the threshold parameter, b is the slope param-
eter, and c is the chance level parameter that was set to
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0.5 for a two-alternative forced-choice task. For each ses-
sion, threshold was taken as the dominance that yielded
75% correct on the fitted curve. The final threshold esti-
mate was the average of those obtained in three sessions.

Three observers served in the experiments: LB and
AB were undergraduates ignorant of the purpose of the
experiment; AL, an author, was an experienced observer.
All had normal or corrected-to-normal acuity and normal
color vision.

4. SEGMENTATION BY COLOR AND BY
BRIGHTNESS
A. Segmentation by Color versus Segmentation by
Brightness
To characterize the value of color as a cue for segmenta-
tion, we compared observers’ capacities to segment an ar-
ray of elements that differed only in chromaticity, only in
luminance, or in both chromaticity and luminance. In
the chromatic condition, elements were red and green and
lay on the L–M axis; in the achromatic condition, they
were light and dark and lay on the achromatic axis; in the
mixed condition, elements were light red and dark green,
with values chosen so that the ratio of cone contrast of the
chromatic component to the cone contrast of the achro-
matic component was 0.5. For each of these conditions
we measured two things: first the visibility threshold—
the element contrast required for an observer to detect
the presence of an array at 50% dominance; second, the
segmentation threshold—the dominance required for an
observer to segment the array—at a range of element con-
trasts. For each kind of measurement we used the
forced-choice procedure described in Section 3 (for the de-
tection measurements, one interval contained only the
blank screen) and estimated thresholds from the fitted
Weibull functions.

1. Visibility Thresholds
Figure 5 shows the rms cone contrasts required by each of
two observers to detect arrays defined by the different
kinds of elements. Vertical bars show 95% confidence in-
tervals around the mean of three estimates. For both ob-
servers, thresholds for arrays defined by achromatic con-
trast are 2–2.63 those for arrays defined by chromatic
contrast. Thresholds for the mixed condition lie at inter-
mediate values.

2. Segmentation Thresholds
Figures 6 and 7 show, for the two observers from Fig. 5,
how the dominance required for segmentation varies with
element contrast. Segmentation thresholds for the dif-
ferent types of elements are represented by different sym-
bols. In Fig. 6 the contrast is expressed in visibility units
(from Fig. 5); in Fig. 7 the contrast is expressed as rms
cone contrast. Vertical bars represent 95% confidence in-
tervals around the mean of three estimates.

For all conditions, threshold dominance declines with
increasing contrast and almost identically when contrast
is expressed in visibility units. When contrast is ex-
pressed as rms cone contrast, observers perform best with
elements differing in color and worst with elements dif-
fering in luminance. The visual system apparently
handles chromatic signals more efficiently (visibility
thresholds are lower), but, given adequately visible
stimuli, the mechanisms that distinguish surfaces seem

Fig. 5. Visibility thresholds in rms cone contrast for chromatic,
mixed, and achromatic arrays of elements. Error bars represent
95% confidence intervals around the means, each based on three
sets of measurements.

Fig. 6. Dominance required for segmentation, as a function of
element contrast, where contrast is expressed in units of thresh-
old visibility. Different kinds of elements (chromatic, achro-
matic, mixed) are shown by different symbols identified in the
figure.
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to be indifferent to the chromatic dimensions along which
elements differ.

A potential concern about the results in Figs. 5–7 is
that the observer’s capacity to distinguish the two halves
of the display depends not on an appreciation of the dif-
ferent surface characteristics—the statistics of the two-
dimensional arrays of elements—but on detecting a local
discontinuity at the boundary between them. We have
explored this in subsidiary experiments on one observer,
using a task that was exactly as before except that the
two halves of the array were separated by either 0.125 or
0.25 deg, producing a prominent gap between them.
When a gap of either width separated the halves of the
array, performance was reliably better than when the
halves were juxtaposed. Evidently observers distinguish
the juxtaposed surfaces not by detecting the boundary be-
tween them but by relying on some signal accumulated
more broadly from within them: The array can be seg-
mented only after the surfaces have been distinguished.
Even when the task is to distinguish juxtaposed uniform
fields that differ in chromaticity, observers apparently do
not obtain useful information from the edge between
them: Eskew and Boynton21 found that sensitivity de-
pended most on the area of the fields; for rectangular
fields of equal area but different shape, performance be-
came poorer as the common border between them was
lengthened.

Fig. 7. Dominance thresholds from Fig. 6, replotted as a func-
tion of rms cone contrast. Other details as in Fig. 6.
B. What Makes Color a Potent Cue to Surface
Structure?
The results described so far make clear that when arrays
of elements differ in their first-order statistics (mean val-
ues), those that differ in mean chromaticity are more ef-
ficiently distinguished than those that differ in mean lu-
minance. The greater visibility of the chromatic patterns
(Fig. 5) might have resulted from our use of arrays in
which element sizes favored chromatic mechanisms,
which are known to be relatively more sensitive to low
spatial frequencies (the dominant spatial frequency in the
arrays was 2.5 c/deg). To explore the sensitivity of our
findings to the spatial characteristics of the array we un-
dertook subsidiary experiments in which we varied the
numbers and sizes of array elements that differed only in
chromaticity. Within limits imposed by hardware, we
explored the effect of varying element area over a factor of
4, allowing array area to vary commensurately, or holding
area constant by varying the number of elements in the
array. Table 1 shows the array configurations used (the
configuration used in the original measurements is in
boldface).

Figure 8 shows, for two observers, the effect of reducing
element area by a factor of 4 while holding the number of
elements constant or holding array area constant. These
manipulations have little effect on the observers’ capacity
to segment the array. (For observer AL, increasing the to-
tal number of elements lowered threshold slightly.)

Figure 9 shows, for the same observers, the effect of in-
creasing element area by a factor of 4 while holding the
number of elements constant or by holding array area
constant. Again the change in element size has little ef-
fect on performance. Where Figs. 8 and 9 show any ef-
fects of the spatial characteristics of arrays, it is such as
to suggest improved performance with more and smaller
elements. Were the generally superior performance with
chromatic arrays due to their elements better matching
the spatial properties of the mechanisms that analyze
them, we would have expected the relative advantage of
chromatic arrays to increase as element sizes were made
larger. Instead, the advantage was, if anything, slightly
diminished. Chromatic aberration will tend to introduce
achromatic contrast into isoluminant patterns as spatial
frequency is raised, conceivably compensating for some
loss of sensitivity in chromatic mechanisms. For stimuli
of the spectral and spatial composition used here, how-
ever, the effects of chromatic aberration should be
inconsequential.22

These results suggest that observers’ superior perfor-
mance in distinguishing surfaces defined by chromatic

Table 1. Size and Number of Texture Elements
Used to Explore Effects of Configuration on

Performance

Element
Size

Number of Elements

22 3 22 32 3 32 46 3 46

8.5 min X X
12 min X
17 min X X
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differences among elements does not stem from our hav-
ing fortuitously chosen an advantageous element size, but
the results do not demonstrate that performance actually
depends on mechanisms that are sensitive to the proper-
ties of individual elements. It could, for example, depend
on higher-order integration by mechanisms that compute
the average chromaticity or luminance across each half of
the array. To establish whether observers can use infor-
mation on a scale smaller than each half of the array, we
explored the segmentation of surfaces that were identical
in their first-order statistics but differed in their second-
order characteristics.

The two element classes from which surfaces were as-
sembled were defined by probability distributions of ele-
ment chromaticities that had equal mean (centered
around white) but different shape: In one (uniform) dis-
tribution, all chromaticities within a limiting range were
equally likely to occur; in the other (Gaussian) distribu-
tion, chromaticities close to white occurred more often.
The term second-order thus describes the order of the sta-
tistics of the color histogram of each distribution rather
than the joint statistics of pairs of elements.23 At 100%

Fig. 8. Dominance required for the segmentation of arrays of
chromatic elements, each one fourth of the area used in the main
experiment. In the small condition (downward triangles), the
number of elements was kept constant and the area of the array
was changed; in the small/same area condition (upward tri-
angles), the area of the array was kept constant and the number
of elements was changed.
dominance the two sides of the array appear to differ in
overall contrast (Fig. 3, left): The side on which elements
are chosen with a uniform probability distribution (left)
appears to have higher contrast. To distinguish surfaces
the observer must sample on a scale smaller than each
half of the array. An observer performing optimally
would sample at the scale of the individual elements.

We measured segmentation thresholds for arrays in
which the distributions of element values lay along either
the achromatic axis or the L–M axis. The Gaussian dis-
tribution had a standard deviation of 103 the visibility
threshold and was clipped at 63 standard deviations.
The range of the uniform distribution was clipped at the
same limits as the Gaussian distribution. The variance
of the uniform distribution was thus slightly more than
33 that of the Gaussian distribution. Both distributions
had zero mean; the average contrast of each was high
enough that increases in contrast would not be expected
to improve performance. Other details were the same as
those for the experiments of Fig. 6. We tested observer
AL and observer AB (instead of observer LB).

Figure 10 shows that both observers could distinguish
surfaces that differed in their second-order statistics. To
do this requires mechanisms that can distinguish the sta-
tistics of distributions of local variations in contrast. For

Fig. 9. Dominance required for the segmentation arrays of chro-
matic elements, each 43 the area used in the main experiment.
Other details as for Fig. 8.
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the particular distributions used here, surfaces defined by
elements differing in color were no more distinguishable
than those defined by elements differing in luminance.
The results shown in Fig. 10 make clear that when ob-
servers are forced to analyze spatial variations in chroma-
ticity on the scale of individual elements, surfaces can be
distinguished satisfactorily; large-scale spatial summa-
tion of information is evidently not necessary.

5. EFFECT OF NOISE ON SEGMENTATION
Accidental variations in surface properties (particularly
those caused by shadows and highlights) are common in
natural scenes and constitute noise in which underlying
differences in surfaces have to be discerned.24 To under-
stand the relative importance of brightness and color dif-
ferences, one wants to know how robust they are as seg-
mentation cues in the face of noise.

A. Segmentation by First-Order Color Differences

1. Stimuli
Using arrays of elements that differed in chromaticity at
a contrast of 103 visibility threshold—high enough that
in the absence of noise, performance is independent of
contrast (see Fig. 6)—we measured the dominance re-
quired for the array to be segmented, as a function of the
amplitude (i.e., standard deviation) of noise added to it.

Each element in the array had added to it an offset in
color space chosen from a one-dimensional distribution of
Gaussian noise, with zero mean and values clipped at 63
standard deviations. Offsets displaced elements along
either the L–M axis (chromatic noise) or the achromatic
axis (achromatic noise). The bottom row of Fig. 2 shows
examples of an array of elements with and without added
achromatic noise.

2. Results
Figure 11 shows, for two observers, the relative domi-
nance required for segmentation in the presence of differ-

Fig. 10. Dominance required for segmentation of arrays in
which the two classes of elements were defined by the different
shapes of their distributions of chromaticity or luminance. One
distribution was Gaussian, the other uniform (see text for de-
tails). Error bars represent 95% confidence intervals around the
means, each based on three sets of measurements.
ent amounts of chromatic noise (circles) or achromatic
noise (squares). Relative dominance is the ratio of the
threshold dominance in noise to the threshold dominance
in the absence of noise, with threshold here taken as the
percentage by which dominance exceeds 50%. Vertical
bars represent 95% confidence intervals around the mean
of three sets of measurements. Noise amplitude is ex-
pressed in units of visibility threshold. This was estab-
lished in a separate set of measurements in which we
added noise to chromatic elements at 103 threshold con-
figured at 50% dominance. We used the slope of the best-
fitting straight line to characterize the effects of noise.
For both observers chromatic noise substantially impairs
segmentation: At 53 its visibility threshold, chromatic
noise raises the threshold dominance by a factor of 2–2.7.
On the other hand, achromatic noise had little effect, and
the highest noise amplitudes we could produce (;503
threshold) raised threshold dominance only by ;10%.
The slopes of the lines obtained with chromatic noise were
813 (observer AL) and 593 (observer LB) steeper than
those obtained with achromatic noise.

Fig. 11. Dominance required for segmentation of a chromatic
array in the presence of chromatic noise (solid lines) and achro-
matic noise (dashed lines). Thresholds are expressed as mul-
tiples of the unmasked threshold. Noise amplitude is expressed
as the standard deviation in visibility threshold units. Points
have been fitted linearly with the zero-noise point fixed. The ob-
servers’ sensitivities to chromatic noise are 813 (upper) and 593
(lower) greater than their sensitivities to achromatic noise.



1248 J. Opt. Soc. Am. A/Vol. 18, No. 6 /June 2001 A. Li and P. Lennie
B. Segmentation by First-Order Brightness Differences

1. Stimuli
We used arrays of elements differing in brightness, at a
contrast set to be 103 visibility threshold, and measured
the dominance required for the array to be segmented, as
a function of the amplitude of chromatic or achromatic
noise added to it. Display limitations restricted the
maximum amplitude of chromatic noise to 6.5% rms cone
contrast. The top row of Fig. 2 shows examples of the ar-
ray with and without added chromatic noise.

2. Results
Figure 12 shows, in the same format as Fig. 11, how the
relative dominance required for segmentation depends on
the amplitude of added noise. Over the range of con-
trasts realizable on the monitor, segmentation thresholds
are affected by both achromatic noise and chromatic
noise. Achromatic noise at 53 threshold raises threshold
dominance by a factor of 2 (thick solid lines)—about as
much as chromatic noise raises the threshold dominance
required for chromatic targets to be distinguished (Fig.
11). Chromatic noise (thick dashed lines) provides a
weaker though still effective mask: The slopes of the
lines obtained with achromatic noise were 4.53 (observer
AL) and 2.43 (observer LB) steeper than those obtained
in chromatic noise, a much smaller ratio than character-
izes the lines in Fig. 11.

If the mechanisms underlying segmentation by color
and segmentation by brightness were similarly affected
by internal and external noise, we would expect the effect
of chromatic noise on a chromatic target (Fig. 11, solid
lines) to equal that of achromatic noise on an achromatic
target (Fig. 12, solid lines). For direct comparison, the
solid lines from Fig. 11 have been replotted in Fig. 12 as
the thin solid lines. Although for both observers the ef-
fect of chromatic noise on a chromatic target was slightly
greater than the effect of achromatic noise on an achro-
matic target (23% greater for observer AL and 36% for ob-
server LB), the chromatic–chromatic masking lines gen-
erally fall within the 95% confidence intervals around the
achromatic–achromatic masking lines. The lines repre-
senting the effect of achromatic noise on a chromatic tar-
get from Fig. 11 have also been replotted in Fig. 12 (thin
dashed lines). The effect of achromatic noise on a chro-
matic target is significantly less than the effect of chro-
matic noise on an achromatic target (thick dashed lines).

Figure 13 shows, for both observers, slopes of the mask-
ing functions obtained in all the experimental conditions.
It provides a summary of the effectiveness of the two
kinds of masks on the two kinds of targets. The most po-
tent mask is chromatic noise applied to a chromatic tar-
get; the least potent mask is achromatic noise applied to a
chromatic target.

C. Why Is Segmentation by Color Resistant to
Achromatic Noise?
The small influence of achromatic noise on an observer’s
ability to distinguish surfaces defined by first-order differ-
ences in chromaticity might reflect the different spatial
sampling properties of the mechanisms that deal with the
chromatic signal and achromatic noise. If the observer
could engage mechanisms that integrated color signals
over a large region, these would afford some protection
against the influence of achromatic noise, which leaves
the mean color of each distribution unchanged. Were
this the explanation of the robust performance, we might
expect that when the only information that could distin-
guish surfaces occurs on a scale smaller than half of the
array, performance will be more susceptible to the influ-
ence of noise. To explore this idea we measured the
dominance required to distinguish surfaces by their
second-order chromatic statistics in the presence of ach-
romatic noise and the dominance required to segment by
second-order achromatic statistics in the presence of chro-
matic noise. The two classes of elements from which sur-
faces were assembled were drawn from a one-dimensional
Gaussian distribution or a one-dimensional uniform dis-
tribution. The Gaussian distribution was clipped at 63
standard deviations, where the standard deviation was
set to 103 the visibility threshold; the uniform distribu-
tion was clipped at the same limits. As before, the vari-
ance of the uniform distribution was thus slightly more

Fig. 12. Dominance required for segmentation of an achromatic
array in the presence of achromatic noise (thick solid lines) and
chromatic noise (thick dashed lines). The observers’ sensitivi-
ties to achromatic noise are 4.53 (upper) and 2.43 (lower)
greater than their sensitivities to chromatic noise. For direct
comparison, the masking lines from Fig. 11 have been replotted
as thin solid lines (chromatic noise on a chromatic target) and
thin dashed lines (achromatic noise on a chromatic target).



A. Li and P. Lennie Vol. 18, No. 6 /June 2001/J. Opt. Soc. Am. A 1249
than 33 that of the Gaussian distribution. As in the pre-
vious noise experiment, the standard deviation of the
noise was expressed in visibility threshold units. We
tested observer AL and observer AB (instead of observer
LB).

Figure 14 shows, for both observers, the slopes of the
masking functions that describe how the dominance
threshold depends on noise amplitude. When achromatic
surfaces differ in their second-order statistics, chromatic
noise is an effective mask. This was also the case when
surfaces were defined by differences in first-order statis-
tics (Fig. 13). When chromatic surfaces differ in their
second-order statistics, achromatic noise is an effective
mask. This was not the case when surfaces were defined

Fig. 13. Potency of achromatic and chromatic noise in masking
the segmentation of arrays in which the two classes of elements
differed in their first-order statistics (mean chromaticity or mean
luminance). For each of two observers the bars show the slopes
of masking functions for all combinations of element type (chro-
matic or achromatic) and noise type (chromatic or achromatic).

Fig. 14. Potency of achromatic and chromatic noise in masking
the segmentation of arrays in which the two classes of elements
were defined by different second-order statistics (the different
shapes of their distributions of chromaticity or luminance). For
each of two observers the bars show the slopes of masking func-
tions for a chromatic target in achromatic noise and an achro-
matic target in chromatic noise.
by differences in first-order statistics. For surfaces de-
fined by first- and second-order statistics, the effects of
chromatic noise on an achromatic target exceeded the ef-
fects of achromatic noise on a chromatic target. How-
ever, the relative difference was far more pronounced for
surfaces defined by first-order statistics (13.83 for ob-
server AL and 163 for observer LB) than for surfaces de-
fined by second-order statistics (1.83 for observer AL and
1.23 for observer LB). These results suggest that chro-
matic textures are immune to masking by achromatic
noise when (in the case of first-order statistics) observers
can benefit from summing signals over a substantial re-
gion; when the task requires that observers sample on a
scale smaller than half of the array, achromatic noise sub-
stantially impairs performance.

6. DISCUSSION
We have demonstrated several circumstances under
which differences between the chromatic structures of
surfaces make the surfaces readily distinguishable.

First-order color variations provide not only effective
cues to surface structure but, at low contrasts, better cues
than do corresponding brightness variations (Fig. 7).
This is reflected by the superior visibility of arrays de-
fined by color variation: When the contrasts of elements
are equated for visibility, observers perform equally well
whether the elements are defined by differences in chro-
maticity or differences in luminance (Fig. 6). This find-
ing suggests that the performance is limited only by the
internal signal-to-noise ratio of the stimulus and that, at
least in the chromatic domain, stimuli detected with
equal reliability will provide equally effective segmenta-
tion cues. There is no need to postulate different types of
mechanisms underlying segmentation by color and seg-
mentation by brightness when mechanisms that sum sig-
nals over large regions are sufficient for the task.

The greater efficiency with which observers detect ar-
rays whose elements vary in color than arrays whose ele-
ments vary in brightness (Fig. 5) is not easily explained.
The arrays used to establish detection thresholds were at
50% dominance, so their mean chromaticity and lumi-
nance matched that of the background against which they
were presented and would provide little information to
mechanisms that integrated signals over a large region.
(When stimuli to be detected are large regions of uniform
illumination, the advantage of color over luminance is
considerably greater than the factor of 2 found here.
Greenstein et al.,25 using pinwheel-like stimuli (opposite
quadrants of a circular stimulus subtending 4 deg), found
that threshold for a red–green stimulus was approxi-
mately one sixth that for an achromatic one. Li and
Lennie,20 using uniform square stimuli subtending 4 deg,
found that thresholds for red and green stimuli were ap-
proximately one tenth those for light and dark stimuli.)
Evidently chromatic information is more efficiently
handled even in the middle range of spatial frequencies
that were dominant in the arrays used in our experi-
ments.

Our experiments to explore the influence of noise
showed that segmentation by first-order color differences
is robust to achromatic noise (Fig. 11)—indeed, pseudoiso-
chromatic plates used in tests of color vision rely on this
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fact. On the other hand, segmentation by first-order
brightness differences is clearly impaired by chromatic
noise (Fig. 12), though not dramatically. Similar asym-
metries have been found in other studies.13,20,24,26 The
asymmetry was accompanied by different subjective im-
pressions of the two kinds of arrays (see Fig. 2). When
achromatic noise was added to arrays of colored elements,
the noise was assimilated as part of the surfaces defined
by the colored elements. On the other hand, when chro-
matic noise was added to arrays of achromatic elements,
the differences in color were more salient than the differ-
ences in brightness, making it difficult to discern two sur-
faces of different brightnesses. Color differences often
signify differences in surface or object materials, espe-
cially in cases where objects are of similar shape and
scale.17 With this in mind, the asymmetry in the per-
cepts is consistent with achromatic noise on a chromatic
array being interpreted as chromatically textured sur-
faces under variable illumination (Fig. 2, bottom right);
chromatic noise on an achromatic array is interpreted as
elements of different material distributed throughout a
surface (Fig. 2, top right).

The relative immunity of segmentation by first-order
color differences to disruption by achromatic noise seems
to depend on the visual system’s capacity, when required,
to engage mechanisms that sum signals over a large re-
gion. Surfaces defined by second-order chromatic varia-
tions cannot be discerned by mechanisms that simply
sum signals over a large region. These surfaces must be
distinguished by mechanisms sensitive to local variations
in contrast (on a scale similar to that of the noise) and
which then capture, on a larger scale, the statistical
structure of the surface. For surfaces of this kind, the
advantage of color is diminished and in some cases re-
moved altogether. The integration that gives color its
advantage seems to depend on the visual system’s capac-
ity to abstract an estimate of the mean from an array
whose fine structure (on the scale of the individual ele-
ments) is very salient. The fact that the stimuli used
here are spatially complex does not preclude the possibil-
ity that simple mechanisms can perform the segmenta-
tion task. For example, the existence of chromatic
mechanisms that integrate over large areas can be well
predicted from the low-pass chromatic contrast sensitiv-
ity function. The mechanisms of integration must arise
at a relatively high level in the visual pathway. Neurons
in the lateral geniculate nucleus and striate cortex have
small receptive fields: In and within a few degrees of the
fovea most of these integrate over regions no bigger than
1 deg and often much less.27

In discerning the structure of scenes, the visual system
therefore seems to be better equipped to discount bright-
ness variations than to discount color variations. This is
useful in a world in which brightness variations are often
accidental, resulting from shadows or highlights, and
therefore need to be discounted when one is locating ob-
ject boundaries by identifying differences in the reflec-
tance of surfaces.24
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